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Loss-induced suppression, revival, and switch of photon blockade
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Loss-induced transparency (LIT), featuring the revival of optical intensity by adding loss, has been demon-
strated in classical optics. However, a fundamental question has remained unexplored, i.e., during the process of
LIT, whether quantum correlations of the photons can also be revived or even tuned by increasing the loss. Here
we find that, accompanying classical LIT in a nonlinear optical-molecule system, a purely quantum effect as
photon blockade (PB) indeed can be revived with the help of loss. In particular, a quantum critical point emerges
in the system: below the point, adding loss leads to the suppression of optical intensity and its correlations; in
contrast, by surpassing the point, PB is revived and enhanced with more losses. Also, a quantum switch between
single-PB and two-PB can be realized by simply tuning the loss. Our work provides a counterintuitive strategy
to engineer quantum devices in a practical lossy environment.
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I. INTRODUCTION

Loss is ubiquitous in nature, which is usually regarded
as harmful and undesirable in making and operating quan-
tum devices. Very recently, loss has been found to play an
unconventional role in non-Hermitian physics [1–3], such
as loss-induced transparency (LIT) [4,5], loss-induced las-
ing revival [6], and loss-induced nonreciprocity [7,8]. These
pioneering works, however, mainly focused on the classical
regime, i.e., studying loss-tuned optical intensity, instead of
the quantum correlation of light. As a further step, under-
standing the role of loss in engineering purely quantum effects
not only facilitates the development of open quantum theories,
but also provides a practical way to fabricate loss-controlled
quantum devices inaccessible by conventional ways and al-
lows exploring their applications in quantum technology.

In this work, we show how to engineer a purely quan-
tum effect, i.e., photon blockade (PB), with the help of
loss. PB has been demonstrated in diverse systems rang-
ing from cavity QED [9–12] to superconducting circuits
[13–15] and cavity-free devices [16]. PB provides a unique
way not only to make important quantum devices [17–30],
such as single-photon turnstiles [31], quantum routers [32],
and quantum circulators [33], but also to explore the fun-
damental issues of quantum many-body physics [34–41]. To
date, the main approaches for realizing PB are nonlinearity-
induced anharmonic eigenenergy [9–11,14–16,42–44], and
destructive interference between different modes [12,13,45–
50]. Generically, the loss should be smaller than the strength
of nonlinearity or the coupling of different modes since it is
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regarded as limiting the efficiency or functionalities of PB
devices.

Here we show that PB or the nonclassical correlations of
photons can be suppressed and revived by adding loss in an
optical compound system, accompanying the classical LIT.
In the pioneering experiments on LIT [4,6], the revival of
classical optical transmission is attributed to an exceptional
point (EP), featuring the coalescence of both the complex
eigenvalues and their corresponding eigenstates [51]. How-
ever, we find that, for the quantum revival of PB, not only does
the EP-induced mode coalescence, but also the breakdown of
the two-photon resonance is required. More interestingly, dif-
ferent types of quantum correlations can emerge in the revived
light by merely increasing the loss (via placing an external
nanotip near the optical resonator), resulting in a loss-tuned
quantum switch between single-PB and two-PB. Our work
drives the field of loss-induced effects into the purely quantum
regime, where it becomes promising to study various quantum
effects with lossy synthetic materials [8,52] or topological
structures [53,54], as well as to build loss-tuned single-photon
devices for quantum engineering [55–61].

II. MODEL AND METHOD

We consider an optical Kerr resonator (μR1) directly cou-
pled to a linear resonator (μR2) with the coupling strength J
[Fig. 1(a)], which can be described by (h̄ = 1):

Ĥ = Ĥi − i
γ ′

1

2
â†

1â1 − i
γ ′

2

2
â†

2â2,

Ĥi =
∑
j=1,2

ωcâ†
j â j + Ĥint, (1)

Ĥint = χ â†
1â†

1â1â1 + J (â†
1â2 + â†

2â1),

where â j=1,2 are the optical modes with resonance frequency
ωc, and χ = 3h̄ω2

cχ
(3)/(4ε0ε

2
r Veff ) is the Kerr parameter with
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FIG. 1. The suppression and revival of quantum correlations in loss-induced transparency. (a) A whispering-gallery-mode resonator μR1
with Kerr-type nonlinearity χ (3) coupled to a linear optical cavity μR2 with additional loss γtip induced by a Cr-coated nanotip, where J is the
coupling strength between μR1 and μR2. (b) The Liouvillian exceptional points (LEPs, black dashed line) are shown in the eigenspectra Λ±

1

of the system’s Liouvillian. The red solid curves indicate the case of J/γ ′
1 = 2. (c) The suppression and revival in quantum correlation g(2)

1 (0)
(classical photon number N1) are revealed by increasing loss before and beyond the quantum (classical) critical point CPq (CPc), respectively.
(d) The real parts of Λ±

1 versus γtip for J/γ ′
1 = 2. (e) The photon number N1 and (f) quantum correlation g(2)

1 (0) versus γtip, where markers
(squares, circles) and black lines are analytical and numerical solutions, respectively. The parameters are given in the main text.

vacuum (relative) permittivity ε0 (εr), nonlinear susceptibility
χ (3), and mode volume Veff . In addition to nonlinear materials
[62–66], Kerr-type nonlinearity can also be achieved in cavity
or circuit QED systems [9,67,68], cavity-free systems [69], as
well as optomechanical [18,70,71] or magnon devices [72,73].

The intrinsic losses of the two resonators are γ j=1,2. The
total loss of μR1 is given by γ ′

1 = γ1 + γex, where γex is the
loss induced by the coupling between μR1 and the fiber taper.
An additional loss γtip is introduced on μR2 by a chromium
(Cr) coated silica-nanofiber tip, featuring strong absorption in
the 1550-nm band [6]. The strength of γtip can be increased by
enlarging the volume of the nanotip within the cavity mode
field, leading to a linewidth broadening without observable
change in resonance frequency [6]. The total loss of μR2 is
given by γ ′

2 = γ2 + γtip.
Our system is identified as a passive parity-time symmetric

system [3,74], where EPs exist in our system [Figs. 1(b) to
1(d)]; leading to the LIT effects [4–6]. As shown in Figs. 1(c)
and 1(e), with an EP, increasing loss leads to classical sup-
pression and revival of the mean-photon number N1 = 〈â†

1â1〉,
where the critical point with the minimum of N1 is referred to
as classical critical point (CPc) between these two processes.

The quantum features of the light can be characterized by
the second-order correlation function g(2)

1 (0):

g(2)
1 (0) =

〈
â†2

1 â2
1

〉
〈â†

1â1〉2
, (2)

with

g(2)
1 (0)

{
>1 super-Poissonian (bunching),

<1 sub-Poissonian (antibunching),

and g(2)
1 (0) → 0 indicates a full single-PB. The quantum re-

vival of single-PB can be considered as the transition of the
quantum correlation from super-Poissonian (bunching) to sub-
Poissonian (antibunching) [Figs. 1(c) and 1(f)]. Thus, we refer
to the point with g(2)

1 (0) = 1 as the quantum critical point
(CPq).

We study the eigenenergy spectrum of this system by con-
sidering the effects of loss. The eigenstates of one or two
excitations, i.e., |ψ±

1 〉 or |ψ±,0
2 〉, are the superposition states

of the Fock state |m, n〉 with m photons in μR1 and n photons
in μR2 (see details in Appendix A).

The complex eigenvalues of the one excitation are found as

λ±
1 = −i	 + ωc ±

√
J2 − β2, (3)

whose real and imaginary parts indicate the eigenfrequen-
cies ω±

1 and the linewidths κ±
1 , respectively. Here, 	 = (γ ′

1 +
γ ′

2)/4 and β = (γ ′
2 − γ ′

1)/4 quantify the total loss and the
loss contrast of the system, respectively. The Hamiltonian
EPs (HEPs) are defined as the spectral degeneracies of the
non-Hermitian Hamiltonian [51], which emerge for λ+

1 = λ−
1
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FIG. 2. (a) The eigenfrequencies ω±
1 as functions of γtip. (b) The real parts of the eigenvalues Λ±

1 versus γtip. The inset shows the evolution
of the linewidths κ±,0

2 as a function of γtip. (c) The evolution of the excitation spectrum S1(�) and eigenvalues versus γtip. The S1(�) shows
the spectrum splitting and spectrum coalescence. The parameters are the same as those in Fig. 1

[Figs. 2(a) and 2(c)], i.e.,

γ EP
tip = 4J + γ ′

1 − γ2. (4)

For the two-excitations case, the frequencies ω+,0
2 and

linewidths κ+,0
2 are defined by the real and imaginary parts

of the eigenvalues λ+,0
2 , respectively, i.e.,

ω+,0
2 = Re

[
λ+,0

2

]
, κ+,0

2 = Im
[
λ+,0

2

]
. (5)

By increasing γtip, the linewidths κ±
2 coalesce before

EP and split in the vicinity of EP [the inset of
Fig. 2(b)].

Hamiltonian EPs do not take into account the quantum
noise associated with quantum jumps. For a fully quantum
picture, we consider the system’s Liouvillian superopera-
tor L, which includes the effect of quantum jumps [75].
This can be done using the Lindblad master-equation ap-
proach, and the Liouvillian superoperator L is given
by [75]

Lρ̂ = −i[Ĥi, ρ̂] +
∑
j=1,2

D(ρ̂, Â j ), (6)

where D(ρ̂, Â j ) = Â j ρ̂Â†
j − Â†

j Â j ρ̂/2 − ρ̂Â†
j Â j/2 are the dis-

sipators associated with jump operators Â j =
√

γ ′
j â j . Liou-

villian EPs (LEPs) are found through the eigenspectra of L
[Fig. 2(b)]. By solving the equation [75] Lρ̂i = Λiρ̂i, where
Λi and ρ̂i are the eigenvalues and the corresponding eigen-
states of L. In the one-excitation subspace, LEPs are emerge
for Λ+

1 = Λ−
1 , where Λ±

1 are the eigenvalues of L. We find
that LEP and HEP occur at the same positions, i.e., γtip/γ

′
1 =

8.9, as shown in Figs. 2(a) and 2(b) [75,76].
In addition, we note that, under the semiclassical limit,

the eigenvalues of Liouvillian (Λi) and the effective non-
Hermitian Hamiltonian (λi) fulfill −i(λl − λ∗

m)ρ̂i = Λiρ̂i.
Thus, the solutions of the Liouvillian and Hamiltonian are
different outside of the EPs [Figs. 2(a) and 2(b)].

III. ANALYTICAL AND NUMERICAL RESULTS

In the frame rotating with the driving frequency ωl , the
system’s Hamiltonian becomes

Ĥr =
∑
j=1,2

�â†
j â j + Ĥint + �(â†

1 + â1), (7)

where � = ωc − ωl , and � = [γexPin/(h̄ωl )]1/2 is the driving
amplitude with power Pin on μR1. Optical losses can be in-
cluded in the effective non-Hermitian Hamiltonian [77]

Ĥeff = Ĥr − i
∑

j=1,2
(γ ′

j/2)â†
j â j . (8)

Under the weak-driving condition (� � γ ′
1), the Hilbert space

can be restricted to a subspace with few photons. In the sub-
space with N = m + n = 3 excitations, the general state of the
system can be expressed as

|ψ (t )〉 =
3∑

N=0

N∑
m=0

Cm,N−m|m, N − m〉, (9)

with probability amplitudes Cm,N−m, which can be obtained
by solving the Schrödinger equation

i|ψ̇ (t )〉 = Ĥeff |ψ (t )〉. (10)

When a weak-driving field is applied to the cavity, it may
excite a few photons in the cavity. Thus, we can approximate
the probability amplitudes of the excitations as Cm,N−m ∼
(�/γ ′

1)N . By using a perturbation method and discarding
higher-order terms in each equation for lower-order variables,
we obtain the following equations of motion for the probabil-
ity amplitudes:

iĊ00(t ) = 0, iĊ01(t ) = �2C01(t ) + JC10(t ),

iĊ10(t ) = �1C10(t ) + JC01(t ) + �C00(t ),

iĊ02(t ) = 2�2C02(t ) +
√

2JC11(t ),
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iĊ11(t ) = (�1 + �2)C11(t ) +
√

2JC20(t )

+
√

2JC02(t ) + �C01(t ),

iĊ20(t ) = 2�3C20(t ) +
√

2JC11(t ) +
√

2�C10(t ),

iĊ03(t ) = 3�2C03(t ) +
√

3JC12(t ),

iĊ12(t ) = �6C12(t ) + 2JC21(t ) +
√

3JC03(t ) + �C02(t ),

iĊ21(t ) = �5C21(t ) + 2JC12(t ) +
√

3JC30(t )

+
√

2�C11(t ),

iĊ30(t ) = 3�4C30(t ) +
√

3JC21(t ) +
√

3�C20(t ), (11)

where

�1 = � − iγ ′
1/2, �2 = � − iγ ′

2/2,

�3 = �1 + χ, �4 = �1 + 2χ,

�5 = 2�3 + �2, �6 = �1 + 2�2. (12)

For the initially empty resonators, i.e., the initial state of the
system is the vacuum state |00〉, the initial condition reads as
C00(0) = 1. By setting Ċmn(t ) = 0, we obtain the following
solutions:

C01 = J�

η1
, C10 = −��2

η1
, C02 =

√
2�2J2ζ2

η1η2
,

C11 = −2�2�2Jζ2

η1η2
, C20 =

√
2�2�2

2ζ1

η1η2
,

C03 =
√

6J3�3
[
2�2

2ζ1 − ξ2ζ2
]

3η1η2μ
,

C12 =
√

2J2�3�2
[
ξ2ζ2 − 2�2

2ζ1
]

η1η2μ
,

(13)

C21 =
√

2J�3�2
2[2�4�6ζ2 − η3ζ1]

η1η2μ
,

C30 =
√

6�3�2
2[(4J2�2 + �5η3)ζ1 − 2J2�6ζ2]

3η1η2μ
,

where

ζ1 = �1 + �2, ζ2 = �2 + �3,

η1 = �1�2 − J2, η2 = 2ξ1�2 − 2J2�3,

η3 = J2 − �2�6, ξ1 = �1�3 + �2�3 − J2,

ξ2 = J2 − 4�2�4 − �4�5,

μ = J2ξ2 − J2�2�6 + �2�4�5�6. (14)

The probabilities of finding m photons in μR1 and n pho-
tons in μR2 are given by Pmn = |Cmn|2. The mean-photon
numbers in μR1 and μR2 are denoted by N1 and N2, re-
spectively, and can be obtained from the above probability

distribution as

N1 = 〈â†
1â1〉 =

3∑
N=0

N∑
m=0

mPmn 
 �2�2
2

η2
1

,

N2 = 〈â†
2â2〉 =

3∑
N=0

N∑
n=0

nPmn 
 �2J2

η2
1

. (15)

The effect of increasing γtip on N1 and N2 is depicted in
Fig. 4(a). The equal-time (namely, zero-time-delay) second-
order correlation function of μR1 is written as

g(2)
1 (0) =

〈
â†2

1 â2
1

〉
〈â†

1â1〉2

 4η2

1(�1 + �2)2

η2
2

. (16)

The approximate equal-time third-order correlation function
is written as

g(3)
1 (0) =

〈
â†3

1 â3
1

〉
〈â†

1â1〉3


 4η4
1[(4J2�2 + �5η3)ζ1 − 2J2�6ζ2]2

η2
2μ

2�2
2

. (17)

To confirm our analytical results, we numerically study the
full quantum dynamics of the system by solving the master
equation [78,79]

˙̂ρ = −i[Ĥr, ρ̂] +
∑
j=1,2

γ ′
j

2
(2â j ρ̂â†

j − â†
j â j ρ̂ − ρ̂â†

j â j ). (18)

Then, Pmn = 〈m, n|ρss|m, n〉 can be obtained from the steady-
state solutions ρss.

In our work, the experimentally accessible parameters
are given by [62–66,80–84]: Veff = 100 μm3, Q = 2 ×
109, χ (3)/ε2

r = 2 × 10−17 m2/V2 (i.e., χ/γ ′
1 = 2.2), Pin =

4 fW, λ = 1550 nm, and γ2/γ
′
1 = 0.1. For the microring

resonators, Veff is typically 102–104 μm3 [80,81] and Q was
increased up to 109–1012 [82,83]. The Kerr coefficient can be
χ (3)/ε2

r = 2 × 10−17 m2/V2 for the semiconductor materials
with GaAs [62,63], and reach χ (3)/ε2

r = 2.12 × 10−17 m2/V2

for the materials with indium tin oxide [64]. Also, χ (3) can
be further enhanced to 2 × 10−11 m/V2 by introducing other
materials [65,66].

An excellent agreement between the analytical and numer-
ical results is seen in Figs. 1(e) and 1(f). Figure 1(e) shows the
classical suppression and revival of N1. Adding loss below the
CPc (γtip/γ

′
1 = 5.3), N1 is decreased to 0.003. When the loss

exceeds the CPc, N1 is revived due to the EP-induced mode
coalescence. This loss-induced revival of optical intensity was
also experimentally demonstrated in a non-Hermitian double-
well device consisting of two coupled waveguides [4].

More importantly, we find the loss-induced suppression
and revival of quantum correlation in Fig. 1(f). For γtip =
0, single-PB emerges with g(2)

1 (0) ∼ 0.23. Adding loss an-
nihilates it, where the antibunched single-photon stream is
converted into bunched photons. Surprisingly, the antibunched
stream recovers by further increasing loss beyond the CPq

(γtip/γ
′
1 = 6.5), and single-PB is fully revived at the EP

(γtip/γ
′
1 = 8.9). We also find that the CPq gradually moves
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FIG. 3. The origin of loss-induced quantum suppression and revival. (a) The cavity excitation spectra S1(�) and the eigenfrequency spectra
ω1,2 with linewidths κ1,2 for different critical points. (b) By increasing loss beyond the CPq the system enters the weak coupling regime featuring
unresolved spectra of the two modes. (c) The photon excitation pathway beyond the EP shows the breakdown of two-photon resonance, leading
to the full revival of single-PB. The dashed arrows are the forbidden excitations.

away from EP as the system moves closer to the thermody-
namic limit [85] (see details in Appendix C).

This loss-induced revival of single-PB requires the in-
terplay of both EP-induced mode coalescence and the
breakdown of two-photon resonance. We study the mode split-
ting and coalescence in the cavity excitation spectrum of μR1:

S1(�) = N1

n0

 (γ ′

1 + γ ′
2)2�2

2

η2
1

, (19)

where n0 = �2/(γ ′
1 + γ ′

2)2 is the normalization factor. We
find that the cavity excitation spectrum becomes coalescent at
the quantum critical point CPq [Figs. 2(c) and 3(a) and 3(b)].
In the mode-splitting region, the light with frequency ω+

1
is resonantly coupled to the transition |ψ0〉 → |ψ+

1 〉, while
|ψ+

1 〉 → |ψ+
2 〉 is detuned, resulting in single-PB at γtip = 0

[Fig. 3(a-i)]. By further adding γtip, the light coincides
with the two-photon resonance, leading to a suppression of
single-PB. The CPc is in the quantum suppression process
with two separated modes, and fulfills the condition of
two-photon resonance [Fig. 3(a-ii)].

Increasing γtip to CPq leads to an overlap of the two
modes [Fig. 3(a-iii)], indicating the two cavities enter the
effective weak-coupling regime (J � γtip) [Fig. 3(b)]. This
process breaks two-photon resonance resulting in the revival
of single-photon resonance. Eventually, two modes coalesce
at EP, and the single-photon resonance fully recovers leading
to single-PB [Fig. 3(a-iv)]. We note that the CPq features the
transition from two separated modes to an overlap of the two
modes, as well as the transition from two-photon resonance to
single-photon resonance.

Specifically, by increasing loss beyond the EP, |ψ+
2 〉

and |ψ−
2 〉 are localized on |0, 2〉 and |1, 1〉, respectively

[Fig. 4(c)]. Although |0, 2〉 or |1, 1〉 coincides with the two-
photon resonance energy 2ωc, the transitions from |0, 0〉
to |0, 2〉 and |1, 1〉, i.e., |ψ0〉 → |ψ±

2 〉, are forbidden due
to the effective weak coupling between the two cavities
[Fig. 3(c)]. Here, |ψ0

2 〉 and |ψ+
1 〉 are governed by the states

|2, 0〉 and |1, 0〉, respectively [Figs. 4(b) and 4(c)]. When
the light resonantly coupled to |0, 0〉 → |1, 0〉, the transi-
tion |1, 0〉 → |2, 0〉 is detuned by 2χ , i.e., single-PB is
revived.
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FIG. 4. (a) Intracavity photon numbers N1 (blue) and N2 (green) versus γtip. Below CPc, N1 and N2 decrease by increasing γtip. When
γtip exceeds CPc, N1 is revived, while N2 keep decreasing, resulting in a predominant mode localized in μR1. The analytical results (colored
squares) agree well with the numerical results (black solid curves). After the EP, (b) the single-photon eigenstates |ψ±

1 〉 are intensively localized
on |1, 0〉 and |0, 1〉, respectively. (c) The |ψ0,±

2 〉 are, respectively, governed by the states |2, 0〉, |0, 2〉, and |1, 1〉.

We conclude that the interplay of EP-induced mode coa-
lescence and the breakdown of two-photon resonance leads
to this loss-induced quantum revival of single PB. This
underlying principle is different from that of loss-induced en-
tanglement [86] in which a quantum effect is realized through
conditional dynamics.

Figure 5 shows different quantum correlations can be
tuned by adding loss for the revived light after CPc. Single-
PB features two-photon antibunching, while two-PB features
three-photon antibunching, but with two-photon bunching,
i.e., the absorption of two photons can suppress the ab-
sorption of additional photons [26]. Two-PB fulfills the
conditions [11]: g(3)

1 (0) < 1 and g(2)
1 (0) > 1, with g(3)

1 (0) =
〈â†3

1 â3
1〉/〈â†

1â1〉3.
We find two-PB emerges with g(3)

1 (0) ∼ 0.27 and g(2)
1 (0) ∼

1.12 at γtip/γ
′
1 = 6 [Fig. 5(a)]. Adding γtip beyond CPq leads

to a single-PB occurring at the EP. These results can also be
confirmed by comparing the photon-number distribution Pm

with the Poisson distribution Pm [Fig. 5(b)]. We find that two-
photon probability P2 is enhanced while Pm>2 are suppressed
at γtip/γ

′
1 = 6, which is in sharp contrast to the case at the EP.

With such a device, a switch between two-PB and single-PB
can be achieved by tuning loss below or beyond CPq.

IV. MORE COMPARISONS AND DISCUSSIONS

We now present some discussions on the comparison with
single-mode systems. If one only considers a single-mode
system, i.e., by placing a nanotip near a single resonator, it
is impossible to observe the classical HEP or the classical
effect of LIT. Moreover, although single-PB can be realized in

single-mode systems [28,87], the loss-induced revival effects
cannot be revealed in the single-mode systems due to the
absence of the EP, in which both the mean photon number
and quantum correlations are suppressed by increasing loss
[Figs. 6(a) and 6(b)].

FIG. 5. Loss-induced quantum switching between two-photon
blockade (2PB) and single-photon blockade (1PB). (a) g(2)

1 (0) (red
solid curve) and g(3)

1 (0) (green dashed curve) versus γtip. (b) This
quantum switch can also be recognized from the deviations of the
photon distribution Pm to the standard Poisson distribution Pm with
the same mean photon number m.
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FIG. 6. (a) The intracavity photon number N1 and (b) the second-order correlation function g(2)
1 (0) versus γtip for single-mode (dot-dashed

curves) and two-mode (solid curves) cases. (c) N1 and (d) g(2)
1 (0) versus γtip in different methods. The black dashed (color solid) is obtained

for the adiabatic case (non-Hermitian case).

In addition, we give a comparison between the adiabatic
elimination and the EP case. The Heisenberg equations of
motion of this compound system are

˙̂a1 = −i�0â1 − γ ′
1

2
â1 − 2iχ â†

1â1â1 − iJâ2 − i�,

˙̂a2 = −i�0â2 − γ ′
2

2
â2 − iJâ1. (20)

We now suppose that γtip is large and adiabatically elim-
inate mode a2. A widely used prescription for this is to set
˙̂a2 to zero and solve the resulting equations for â2 [88], so
eliminating â2 from the remaining equation of Eq. (20). The
result is

˙̂a1 = −i�0â1 − γ ′
1

2
â1 − 2iχ â†

1â1â1

− J2

i�0 + γ ′
2/2

â1 − i�. (21)

By comparing the Eqs. (20) and (21), we see that the
coupling of cavity mode a1 to cavity mode a2 can essentially
be regarded as adding an additional loss channel for cavity
μR1 for large γtip. This is not a large increase in the loss of
mode a1, and of course the increase becomes less and less
with increasing γtip.

We find that the adiabatic elimination method can not pro-
vide a good description before EP for neither the mean-photon
number N1 nor the quantum correlation function g(2)

1 (0), as
shown in Figs. 6(c) and 6(d). Specifically, (i) the EP can
lead to classical suppression and revival of N1, and classical
critical point (CPc), i,e., the minimum of the classical N1.
However, in the adiabatic case, there is no turning point for

N1 by continuously increasing γtip [Fig. 6(c)]. For quantum
correlations, the adiabatic elimination method fails to reveal
the suppression process by increasing loss [Fig. 6(d)]. (ii) The
adiabatic elimination method also fails to show the revival
process by increasing loss to the vicinity of the quantum
critical point (CPq), where g(2)

1 (0) > 1 for the adiabatic case
[Fig. 6(d)]. (iii) At the EP, the value of g(2)

1 (0) for the adiabatic
case is 27% higher than that for our EP theory.

V. CONCLUSION

In summary, we show how to engineer quantum correla-
tions with the help of loss, which is in contrast to the general
belief that nonclassical correlations are fragile and can be
destroyed by loss. Our findings contain three main features.
First, previous works on LIT [4–6] mainly focused on the
classical regime, i.e., studying the optical intensities instead of
quantum correlations. Our work here fills this gap and reveals
unexpected purely quantum features of the LIT. Furthermore,
in contrast to the classical LIT resulting from EPs, the under-
lying physical mechanism of such a purely quantum revival
effect is not only the EP-induced mode coalescence, but also
the breakdown of two-photon resonance. More interestingly,
different types of quantum correlations are exhibited in the
revived light, which can be well tuned by loss. This ability
provides a counterintuitive possibility for achieving quantum
switches of photons by harnessing the power of loss.

Our work sheds light on reversing the effect of loss in the
fully quantum regime, which not only facilitates the funda-
mental studies of quantum physics with lossy materials or
topological structures [89–93], but also provides possibilities
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to achieve loss-tuned quantum devices for applications in
quantum engineering.
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APPENDIX A: ANALYTICAL SOLUTION FOR
HAMILTONIAN EXCEPTIONAL POINT

The nonlinear eigenenergy spectrum can be obtained
through the following Hamiltonian:

Ĥ = Ĥi − i
γ ′

1

2
â†

1â1 − i
γ ′

2

2
â†

2â2. (A1)

Since the commutative relation [â†
1â1 + â†

2â2, Ĥ ] = 0, the
total excitation number is conserved, we can obtain the eigen-
system with the Hilbert space spanned by the basis state
|m, n〉, i.e., the Fock state with m photons in μR1 and n
photons in μR2.

In the zero-excitation subspace, we have Ĥψ0 = λ0ψ0, and
the eigenstate is given by ψ0 = |0, 0〉 with the eigenvalue
λ0 = 0. In this subspace with one photon, the Hamiltonian
can be expressed as

Ĥ =
(

ωc − i γ ′
1

2 J

J ωc − i γ ′
2

2

)
. (A2)

The complex eigenvalues are

λ±
1 = −i	 + ωc ±

√
J2 − β2, (A3)

whose real and imaginary parts indicate the eigenfrequen-
cies ω±

1 and the linewidths κ±
1 , respectively. Here, 	 = (γ ′

1 +
γ ′

2)/4 and β = (γ ′
2 − γ ′

1)/4 quantify the total loss and the
loss contrast of the system, respectively. The Hamiltonian
EPs (HEPs) are defined as the spectral degeneracies of the
non-Hermitian Hamiltonian [51], which emerge for λ+

1 = λ−
1 ,

i.e.,

γ EP
tip = 4J + γ ′

1 − γ2. (A4)

The corresponding eigenstates are

ψ±
1 = C±

10|1, 0〉 + C±
01|0, 1〉, (A5)

where

C±
10 = JN±

1 ,

C±
01 = −(iβ ∓

√
J2 − β2)N±

1 ,

N±
1 = (|J|2 + |iβ ∓

√
J2 − β2|2)−1/2. (A6)

In this subspace with two photons, we express the Hamil-
tonian in the matrix form as

Ĥ =

⎛
⎜⎝

2ωc + 2χ − iγ ′
1

√
2J 0√

2J 2ωc − i γ ′
1+γ ′

2
2

√
2J

0
√

2J 2ωc − iγ ′
2

⎞
⎟⎠.

(A7)
By solving the characteristic equation, we find the eigenvalues
as

λ0
2 = G − (1 − i

√
3)E

3 × 22/3F
+ (1 + i

√
3)F

6 × 21/3
,

λ+
2 = G − (1 + i

√
3)E

3 × 22/3F
+ (1 − i

√
3)F

6 × 21/3
, (A8)

λ−
2 = G + 21/3E

3F
− F

3 × 21/3
,

where

A = 2ωc + 2χ − iγ ′
1,

B = 2ωc − i
γ ′

1 + γ ′
2

2
, C = 2ωc − iγ ′

2,

D = 36J2χ + 9

2
χ (γ ′

1 − γ ′
2)2 + 18iχ2(γ ′

1 − γ ′
2) − 16χ3,

E = −12J2 + 3

4
(γ ′

1 − γ ′
2)2 + 3iχ (γ ′

1 − γ ′
2) − 4χ2,

F = [D +
√

4E3 + D2]1/3, G = 1

3
(A + B + C), (A9)

whose real and imaginary parts are the eigenfrequencies
ω±,0

2 and the linewidths κ±,0
2 , respectively. The corresponding

eigenstates are

ψ±,0
2 = C±,0

20 |2, 0〉 + C±,0
11 |1, 1〉 + C±,0

02 |0, 2〉, (A10)

where

C±,0
20 =

√
2J (C − λ±,0

2 )N±,0
2 ,

C±,0
11 = −(

C − λ±,0
2

)|A − λ±,0
2 |N±,0

2 ,

C±,0
02 =

√
2J|A − λ±,0

2 |N±,0
2 ,

N±,0
2 = [

2J2(∣∣C − λ±,0
2

∣∣2 + ∣∣A − λ±,0
2

∣∣2)
+ ∣∣A − λ±,0

2

∣∣2∣∣C − λ±,0
2

∣∣2]−1/2
. (A11)

APPENDIX B: PASSIVE PARITY-TIME SYMMETRY

In our scheme, we consider two passive coupled res-
onators. This system is identified as passive parity-time (PT)
symmetric systems [3]. The system consisting of two lossy
components is represented by a 2 × 2 matrix [as done in
Eq. (A2)]. The corresponding Schrödinger equation is given
as follows (h̄ = 1):

i
d

dt

(
â1

â2

)
=

(
ωc − i γ ′

1
2 J

J ωc − i γ ′
2

2

)(
â1

â2

)
. (B1)

Defining 	 = (γ ′
1 + γ ′

2)/4 and β = (γ ′
2 − γ ′

1)/4, and ap-
plying the gauge transformation

(â1 â2)T = e−	t (â′
1 â′

2)T , (B2)
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we end up with

i
d

dt

(
â′

1

â′
2

)
=

(
ωc − i γ ′

1
2 J

J ωc − i γ ′
2

2

)(
â′

1

â′
2

)
+ i	

(
â′

1

â′
2

)

=
(

ωc + iβ J

J ωc − iβ

)(
â′

1

â′
2

)

= Ĥ ′
(

â′
1

â′
2

)
. (B3)

The off-diagonal elements J in the effective Hamiltonian
Ĥ ′ are the same as those in the original Hamiltonian Ĥ ;
however, the imaginary parts of the diagonal elements are
now balanced, which means that the magnitude of the gain
in the one of the diagonal elements is equal to that in the other
diagonal element. This matrix fulfills [Ĥ ′, PT ] = 0 and thus
it is PT symmetric.

Thus, the gauge transformation reveals the hidden PT sym-
metry present in the non-Hermitian matrix Ĥ by changing the
reference point (see details in Ref. [3]).

APPENDIX C: QUANTUM CRITICAL POINT
IN THE THERMODYNAMIC LIMIT

The thermodynamic limit is obtained by letting the non-
linearity go to 0 and the driving intensity go to +∞ while

0 5 10
0.1

1.1

2.1

3.1

0.4

0.6

0.8

1.0

1.2

1.4
g

1
)

0(
  

(2
)

γtip / γ1
'

Ω
 /

 γ 1'

EP
CPq

FIG. 7. The second-order correlation function g(2)
1 (0) obtained as

function of γtip and �. The white dashed indicates CPq.

keeping their product constant [85]. However, in our sys-
tem, the generation of the conventional photon blockade
requires large nonlinearity and weak drive strength. Thus, in
the thermodynamic limit, it is almost impossible to generate
the conventional photon blockade. As shown in Fig. 7, the
second-order correlation function g(2)

1 (0) is increased with
increasing driving strength �, which is not conducive to the
generation of PB. Even when the � is large enough, the
photon blockade will disappear. Moreover, we found that CPq

gradually moved away from EP with increasing � [Fig. 7].
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[76] R. Huang, Ş. K. Özdemir, J.-Q. Liao, F. Minganti, L.-M. Kuang,
F. Nori, and H. Jing, Laser Photonics Rev. 16, 2100430 (2022).

[77] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[78] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 183, 1760 (2012).
[79] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 184, 1234 (2013).
[80] K. J. Vahala, Nature (London) 424, 839 (2003).
[81] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E.

Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[82] N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov,

N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L.
Gorodetsky, Opt. Lett. 42, 514 (2017).

[83] V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron,
M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y.
Dumeige, Phys. Rev. Lett. 116, 133902 (2016).

[84] I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H.
Pinkse, K. Murr, and G. Rempe, Nat. Phys. 4, 382 (2008).

043715-10

https://doi.org/10.1103/PhysRevA.87.023809
https://doi.org/10.1103/PhysRevA.98.043858
https://doi.org/10.1103/PhysRevLett.123.013602
https://doi.org/10.1103/PhysRevX.10.021022
https://doi.org/10.1021/acs.nanolett.0c01562
https://doi.org/10.1126/science.1152261
https://doi.org/10.1126/science.1254699
https://doi.org/10.1126/science.aaj2118
https://doi.org/10.1103/PhysRevLett.110.163605
https://doi.org/10.1038/nphys466
https://doi.org/10.1103/PhysRevA.76.031805
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1103/PhysRevA.98.051801
https://doi.org/10.1103/PhysRevA.99.063828
https://doi.org/10.1103/PhysRevLett.125.197402
https://doi.org/10.1103/PhysRevLett.126.083605
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevA.89.043818
https://doi.org/10.1103/PhysRevLett.121.153601
https://doi.org/10.1103/PhysRevLett.104.183601
https://doi.org/10.1103/PhysRevA.83.021802
https://doi.org/10.1103/PhysRevLett.108.183601
https://doi.org/10.1103/PhysRevA.96.053810
https://doi.org/10.1364/OE.391628
https://doi.org/10.1364/PRJ.7.000630
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevLett.108.193904
https://doi.org/10.1103/PhysRevB.99.094404
https://doi.org/10.1126/science.abg3904
https://doi.org/10.1103/PhysRevLett.81.3611
https://doi.org/10.1038/nphys708
https://doi.org/10.1103/PhysRevLett.101.203602
https://doi.org/10.1103/PhysRevLett.92.037903
https://doi.org/10.1126/science.1177838
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1007/s11433-019-9451-3
https://doi.org/10.1103/PhysRevLett.124.160501
https://doi.org/10.1126/science.aae0330
https://doi.org/10.1364/OL.42.005298
https://doi.org/10.1103/PhysRevLett.118.223605
https://doi.org/10.1038/nature11902
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevLett.121.203602
https://doi.org/10.1103/PhysRevA.80.065801
https://doi.org/10.1038/srep02943
https://doi.org/10.1103/PhysRevLett.120.057202
https://doi.org/10.1103/PRXQuantum.2.020307
https://doi.org/10.1364/PRJ.7.000862
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1002/lpor.202100430
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1038/nature01939
https://doi.org/10.1103/PhysRevA.71.013817
https://doi.org/10.1364/OL.42.000514
https://doi.org/10.1103/PhysRevLett.116.133902
https://doi.org/10.1038/nphys940


LOSS-INDUCED SUPPRESSION, REVIVAL, AND SWITCH … PHYSICAL REVIEW A 106, 043715 (2022)

[85] W. Casteels, R. Fazio, and C. Ciuti, Phys. Rev. A 95, 012128
(2017).

[86] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Phys.
Rev. A 59, 2468 (1999).

[87] S. Ferretti and D. Gerace, Phys. Rev. B 85, 033303 (2012).
[88] M. Fewell, Opt. Commun. 253, 125 (2005).
[89] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong,

and J. F. Du, Science 364, 878 (2019).

[90] M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Nat.
Phys. 15, 1232 (2019).

[91] F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel, and
A. Szameit, Nat. Photonics 13, 883 (2019).

[92] W. Cao, X. Lu, X. Meng, J. Sun, H. Shen, and Y. Xiao, Phys.
Rev. Lett. 124, 030401 (2020).

[93] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda,
and F. Nori, Phys. Rev. Lett. 122, 076801 (2019).

043715-11

https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevB.85.033303
https://doi.org/10.1016/j.optcom.2005.04.049
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1038/s41566-019-0517-0
https://doi.org/10.1103/PhysRevLett.124.030401
https://doi.org/10.1103/PhysRevLett.122.076801

