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Tunable frequency-bin multimode squeezed vacuum states of light
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Squeezed states are a versatile class of quantum states with applications ranging from quantum computing
to high-precision detection. We propose a method for generating tunable squeezed vacuum states of light with
multiple modes encoded in frequency bins. Our method uses custom-engineered spontaneous parametric down-
conversion pumped by a pulse-shaped pump field. The multimode squeezed states are generated in a single pass
and can be tuned in real time by adjusting the properties of the pump field. Exploring new quantum states of
light, encoded in new degrees of freedom, can be a fruitful path toward discovering new quantum applications.
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I. INTRODUCTION

Quantum light is a key ingredient in emerging quantum
technologies such as quantum communication [1], quantum
cryptography [2], quantum computing [3], quantum imaging
[4], and quantum metrology [5]. Its broad application results
from the wide variety of available degrees of freedom (e.g.,
polarization, frequency, and temporal mode), which in turn
can encode a wide variety of quantum states (e.g., qubits,
Fock states, and cat states). Exploring the generation of new
quantum states, with unique sets of properties, can lead to the
development of new quantum technologies.

A versatile class of quantum states are know as squeezed
vacuum states [6] or simply squeezed states. (For a brief
review of squeezed vacuum states, refer to Appendix A.) They
are typically classified by the number of modes they populate,
where different kinds of squeezed states are better suited
for different applications. Single-mode squeezed states have
reduced quantum noise in one degree of freedom, making
them most useful for quantum cryptography [2] and quantum
metrology [5]. Two-mode squeezed states, on the other hand,
possess entanglement between the modes of the electromag-
netic field and can be used for quantum teleportation [1].
Squeezed states can also be distributed across multiple modes.
These multimode squeezed states can be used to generalize
various quantum information protocols, e.g., multiparameter
quantum metrology [7], multichannel quantum imaging [8],
and multipartite teleportation [9], or be used for quantum
computation [10].

The generalization of single- and two-mode squeezed
states was first proposed by Yuen [11] and later by Yeo-
man and Barnett [12]. Yeoman and Barnett considered states
that had both single- and two-mode squeezing properties
and proposed a method to generate them with two single-
mode squeezed states and a beam splitter. This method was

*christian.drago@mail.utoronto.ca

generalized to include multimode squeezed states by van
Loock and Braunstein [13], who proposed using a sequence
of N beam splitters to prepare a multimode squeezed state
entangled across N spatial modes. This method requires
interferometric stabilization of the optical paths and indis-
tinguishability between frequency and polarization modes
[14]. To overcome these challenges, another approach was
proposed [15,16] in which an optical parametric oscillator
(OPO) and a single periodically poled ferroelectric crystal is
used to generate N-mode entangled states between the cav-
ity modes of the OPO. This method was further expanded
upon by multiplexing the light in time, allowing an unlim-
ited number of entangled modes [17,18]. Further, one can
encode squeezed state modes into Schmidt modes [19]. These
newer methods are much more compact and stable and benefit
from the intrinsic compatibility of frequency and time encod-
ings with waveguides and fiber transmission, and we expand
on them here.

We introduce a method for generating tunable multimode
squeezed states of light encoded in frequency bins. Our pro-
posal builds on the idea that frequency-bin entanglement can
be generated by domain-engineered down-conversion, which
was recently demonstrated by Morrison et al. [20]. We show
how the addition of a frequency-shaped pump can yield grid
states similar to the two-photon joint spectral amplitudes in-
troduced by Fabre et al. [10], but with more control over
the peaks and without the need for a cavity (at the expense
of fewer modes available). We further show how, with the
addition of frequency filtering, one can create a squeezed state
that can be tuned from a single mode to two modes in real
time.

Our method for generating multimode squeezed states
differs from previous proposals in several ways: (i) Unlike
[10,15–18], our method does not require a cavity to gener-
ate multiple modes; (ii) unlike [12,13], our method does not
require increasingly more beam splitters to generate more
modes; and (iii) unlike the Schmidt modes [19], which are
difficult to distinguish experimentally due to their complex
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spectral shape, our modes are encoded in discrete frequency
bins and can be distinguished by their central frequencies.
Furthermore, our method allows the squeezing parameters of
the state to be tuned in real time. Depending on the appli-
cation, these properties may make this method advantageous
over other methods.

II. FREQUENCY BIN ENCODING

A desirable property of quantum light is localization in
space and time, which makes it possible to deliver wave
packets of quantum light in a clocked manner [21]. A
Gaussian-like frequency encoding satisfies these properties.
As with their cw counterparts [15,16], such an encoding is
intrinsically compatible with waveguides and fiber transmis-
sion.

To encode our modes we define a multifrequency field
operator from the usual bosonic field operator â(ω) by

Ân =
∫

dω Gn(ω)â(ω), (1)

where {Gn(ω)} describe nonoverlapping Gaussian-like pulses
such that to good approximation∫

dω Gn(ω)Gm(ω) = δnm (2)

and thus

[Ân, Â†
m] = δnm. (3)

In terms of these operators, the multimode squeezed state
takes the form

|ψ〉 = exp

(
1

2

∑
n,m

γnmÂ†
nÂ†

m − H.c.

)
|vac〉 , (4)

which can be rewritten as

|ψ〉= exp

(
1

2

∫
dωidωsh(ωs, ωi )â

†(ωi )â
†(ωs) − H.c.

)
|vac〉 ,

(5)

if h(ωs, ωi ) can be decomposed as

h(ωs, ωi ) =
∑
n,m

γnmGn(ωi )Gm(ωs), (6)

where γnm is in general complex and taken to be symmetric.
The decomposition in Eq. (6) cannot be general because a
set of Gaussian functions are not exactly orthogonal nor are
they complete. However, for the h(ωs, ωi ) we consider, the
decomposition in Eq. (6) is exact. The state in Eq. (5) could
in principle be generated by type-I spontaneous parametric
down-conversion (where both idler and signal modes have
the same polarization) if one had means of engineering a
joint spectral amplitude of the form given by (6). To date,
most joint-spectral engineering methods have been developed
for type-II parametric down-conversion (where both idler and
signal have orthogonal polarization), so we will focus on a
type-II setup in this paper. In the next section we show how to
use spectrally engineered type-II down-conversion to generate
a state that, once sent through a Mach-Zehnder interferometer
with a half waveplate (HWP) set to 45◦ in one arm, is equal to
the multimode squeezed state in (4).

III. IMPLEMENTATION WITH SPONTANEOUS
PARAMETRIC DOWN-CONVERSION

We consider type-II spontaneous parametric down-
conversion [22] under the following conditions: (i) rotating-
wave approximation, (ii) undepleted pump approximation,
(iii) ignoring time-ordering effects, (iv) symmetric group-
velocity matching, and (v) linear phase mismatch (see
Appendix B for a discussion of the assumptions). In this
regime, the state generated by this process is

|ψ〉 = exp

(
iγ

∫
dωidωs f (ωs, ωi )â

†
H (ωi )â

†
V (ωs) − H.c.

)

× |vac〉 , (7)

where γ is the squeezing parameter and

f (ωs, ωi ) = α(ωs + ωi )φ(ωs − ωi ) (8)

is the joint spectral amplitude (JSA). The JSA is given by the
spectral profile of the pump α(ωs + ωi ) and the normalized
phase-matching function φ(ωs − ωi ) which depends on the
properties of the nonlinear material. Following the normaliza-
tion of the pump and phase-matching function in Appendix B,
the joint spectral amplitude is normalized according to∫

dωsdωi| f (ωs, ωi )|2 = 1. (9)

A. Designing the joint spectral amplitude

Our goal is to design the pump-envelope function α(ωs +
ωi ) and the phase-matching function φ(ωs − ωi ) such that
the joint spectral amplitude f (ωs, ωi ) in Eq. (8) matches the
target joint spectral amplitude h(ωs, ωi ) in Eq. (6). To achieve
this, the pump envelope function should be prepared as a
superposition of Gaussian-like functions centered at different
frequencies

α(ωs + ωi ) =
N∑

n=−N

an

(4πσ 2)1/4
e−(ωs+ωi−
p+nδω)2/8σ 2

(10)

for some set of dimensionless constants an and integers n.
The pump envelope function can be customized with various
pulse-shaping techniques (for a review of pulse shaping in
various regimes see [23–25]). Since the pump function is
square normalized, the coefficients satisfy

∑
n a2

n = 1.
The phase-matching function should also be a super-

position of Gaussian-like functions, centered at different
frequencies

φ(ωs − ωi ) =
N∑

m=−N

bm

(4πσ 2)1/4
e−[ωs−ωi−(
s−
i )−mδω]2/8σ 2

,

(11)

where bm are some set of dimensionless amplitude coefficients
that satisfy

∑
m b2

m = 1 and m is an integer. We will show
how to customize the phase-matching function using custom
poling in Sec. III B. In the meantime, we note that if the widths
of each term in the phase-matching function (PMF) and pump
are the same and we insert Eqs. (10) and (11) into Eq. (8), we
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yield the joint spectral amplitude

f (ωs, ωi ) = 1√
2

∑
n,m

an−mbn+mGn(ωs)Gm(ωi ), (12)

where for the remainder of this section the summations are
over n and m such that n − m = ±1,±2, . . . ,±N and

Gn(ωJ ) = e−(ωJ−
J−
n )2/4σ 2

(2πσ 2)1/4
, (13)

where 
n ≡ nδω/2 and J = s, i runs over the two signal and
idler frequencies. When absolute value squared, these func-
tions yield Gaussian intensity distributions, which are optimal
for such decompositions [26]. Finally, if |
n − 
m| � σ ,
then to good approximation Gn(ω) satisfies the orthogonality
condition given by Eq. (2).

Inserting the decomposition of the JSA in Eq. (12)
into the down-converted state in Eq. (7), defining γnm ≡
γ an−mbn+m/

√
2, and using the definition of the mode An in

Eq. (1) yields

|ψ〉 = exp

(∑
n,m

γnmÂ†
n,H Â†

m,V − H.c.

)
|vac〉 . (14)

This a multimode squeezed state in the Gaussian-mode degree
of freedom and a two-mode squeezed state in the polarization
degree of freedom (indicated by the subscripts H and V ). To
eliminate the polarization degree of freedom, we pass the state
through a Mach-Zehnder interferometer with a HWP set to
45◦ in one arm. The output state is

|ψ ′〉 =
⊗
j=1,2

exp

(
(−1) j

2

∑
n,m

γnmÂ†
n, j Â

†
m, j − H.c.

)
|vac〉 ,

(15)

which consists of two copies of a multimode squeezed state,
all in the same polarization, where the subscript j = 1, 2
labels the output modes of the interferometer.

B. Customizing the phase-matching function

We now turn to designing an appropriately shaped phase-
matching function. Consider a nonlinear material whose
nonlinearity can vary along the longitudinal direction z; this
variation can be captured by a dimensionless function g(z)
[defined in Eq. (B3)]. The function g(z) can be transformed
as

�(�k(ωs, ωi )) = 1

L

∫ L/2

−L/2
dz g(z)ei�k(ωs,ωi )z, (16)

which we can think of as an unnormalized phase-matching
function. Here L is the length of the nonlinear material
and �k(ωs, ωi ) = kp(ωs + ωi ) − ki(ωi ) − ks(ωs) is the phase
mismatch, where kJ (ωJ ) = ωJnJ (ωJ )/c, with nJ (ωJ ) the re-
fractive index for the mode J , c the speed of light, and J = s, i.
The unnormalized phase-matching function �(�k(ωs, ωi )) is
related to the normalized phase-matching function φ(ωs − ωi )
via Eq. (B16). When modeling custom-poled materials, it is
easier to work with the unnormalized function �(�k(ωs, ωi ))
and then to normalize the function numerically at the end.

The target phase-matching function can then be written, in
unnormalized form, as

�(�k) =
N∑

m=−N

cme−(�k−�k0−mδk)2/8σ 2
k , (17)

where

σk = σ

2
(k′

s − k′
i ), (18)

δk = δω

2
(k′

s − k′
i ), (19)

and together with the Taylor expansion of �k(ωs, ωi ) in
Eq. (B14) is equivalent to Eq. (11).

To generate the desired phase-matching function, we must
determine the right form of g(z). In principle, one can imagine
varying g(z) continuously. Such methods, however, do not
exist for nonlinear crystals; in practice, for a given crystal, g(z)
is constrained to take on values of ±1 [27]. Experimentally,
the sign of g(z) can be alternated using a technique known
as ferroelectric poling [28–31], giving rise to individual do-
mains. In �k space, each crystal domain contributes a sinc
function with a phase that depends on the domain position and
orientation. By carefully arranging the positive and negative
domains in g(z), it is possible to interfere the sinc functions
to construct phase-matching functions with almost arbitrary
shapes. As with all quasi-phase-matching techniques, such
as periodic poling, the resulting amplitude will necessarily
be reduced when compared with intrinsically phase-matched
materials.

Several methods for designing appropriate domain con-
figurations have been developed [32–40]. Here we focus on
a variation of the algorithm originally proposed in [37] and
further developed in [40,41] (effects of experimental imper-
fections in this approach were examined by Fejer et al. [29]
and recently by Graffitti et al. [42]). In this approach, one com-
putes an amplitude function, defined as the PMF, evaluated at
a specific value of �k, along the length of the crystal, and then
selects domains (one at a time from left to right) that bring the
customized crystal’s amplitude function closer to the target
amplitude function. When the customized crystal’s amplitude
function closely approximates the target amplitude function at
all points within the crystal, the customized crystal’s PMF will
also closely approximate the target PMF. This approach was
recently demonstrated for an eight-peak PMF in potassium
titanyl phosphate (KTP) [20].

In Appendix D we derive the following constraint on cm:

c0 + 2
N∑

m=1

cm �
√

2

π

1

Lσk
. (20)

For the simple case where cm are all equal, the condition
reduces to

cm =
√

2

π

1

LσkNG
, −N � m � N, (21)

where NG is the number of Gaussian amplitudes. It is desirable
to maximize the conversion efficiency and thus to maximize
cm within these constraints.

Our implementation of the algorithm uses domain widths
equal to the crystal’s coherence length. As a result, the
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FIG. 1. (a) Five-peak target phase-matching function as defined
in Eq. (17) (with cm = √

2/
√

πLσk5, σk = 2.5/L, and δk = 24σk)
and corresponding custom phase-matching function generated by
the custom-poled crystal shown in (b). We took σk = 2.5/L to en-
sure that the target nonlinearity profile fits within the length of
the crystal. The custom-poled crystal has N = 1073 domains of
width w = 18.63 μm. The domain width was chosen to match the
phase-matching conditions of type-II KTP in the symmetric group-
velocity-matched regime.

phase-matching function is constrained to be real and the
coefficients should satisfy cm ≈ c−m (the approximation in
this equality comes from a slight bias in the PMF discussed
in Appendix C). These restrictions would be lifted if a sub-
coherence-length version of the algorithm was implemented
[40]. In the next section we demonstrate how to apply this
technique to a specific example.

IV. EXAMPLE: 15-MODE SQUEEZED STATES

As an example, we customize a 2-cm KTP crystal to gen-
erate a PMF with five Gaussian peaks centered at �k0 − mδk,
where m = (0,±1,±2) and δk = 24σk . We set σk = 2.5/L
to ensure that the target nonlinearity profile fits within the
length of the crystal. The target PMF is given by Eq. (17)
with N = 2. Figure 1 shows the generated PMF compared to
the target PMF, as well as the resulting domain configuration
g(z). Notice the expected slight bias in the generated PMF
discussed in Appendix C.

We design a pump function with five peaks centered at
ω = 
p − nδω, where n = (0,±1,±2). As with the PMF,
we take all coefficients cm to be real, equal, and given by
the restriction in Eq. (21). We take σ = 2σk/(k′

p − k′
s), and

to ensure that the spacing is the same as for the PMF we take
δω = 24σ . Then using Eq. (18) and σk = 2.5/L, the pump
bandwidth in frequency is σ/2π = 0.127 THz and in time is
on the order of 7 ps. The resulting JSA with corresponding
PMF and pump is shown in Fig. 2. Each peak in the JSA cor-
responds to a term in Eq. (14). Notice that there is a slight bend
in the PMF due to dispersion (for these plots, we used the full
Sellmeier equations rather than the first-order approximation

FIG. 2. (a) Five-peak phase-matching function as defined by
Eq. (11) with σ and δω related to σk and δk in Fig. 1 via Eqs. (18)
and (19). (b) Five-peak pump function as defined in Eq. (10) with the
same σ and δω as the PMF. (c) Resulting joint spectral amplitude as
defined in Eq. (8).

of �k). Too much dispersion will reduce the effectiveness of
this technique, but in the example shown here, the effect on
the JSA is negligible.

It is possible to tune the amplitudes γnm to some extent
by tuning the height of the peaks in the pump function (the
height of the peaks in the PMF are fixed for a given crystal).
Tuning the peak of the pump function is equivalent to scaling
the height of the modes that lie along the same antidiagonal in
the JSA.

The JSA in Fig. 2 has 25 peaks, but it corresponds to a
15-mode squeezed state because the PMF is symmetric in its
amplitudes. The JSA is also symmetric along the line ωs = ωi.
There are ten amplitudes above the line ωs = ωi which are all
centered at different frequencies and thus correspond to two-
mode squeezing terms. Each amplitude along the diagonal is
centered at the same center frequency and thus corresponds to
each of the five single-mode squeezing terms.

V. EXTENSION: TUNABLE HYBRID SQUEEZED STATES

In this section we introduce and describe the generation of
hybrid squeezed states, which have features of single-mode
and two-mode squeezed vacuum states. Consider the special
case of the multimode squeezed state [Eq. (A3)] restricted to
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FIG. 3. (a) Three-peak target phase-matching function as defined
in Eq. (17) (with c0 = √

2/
√

πL5σk and c1 = c−1 = 3c0/2) and
corresponding custom phase-matching function generated by the
custom-poled crystal shown in (b). The parameters σk , δk, N , and
w are the same as in Fig. 1. (c) Resulting joint spectral amplitude
as defined in Eq. (8) for a three-peak phase-matching function and
a three-peak pump function with σ and δω the same as in (a).
(d) The JSA in (c) with a filter applied to both the signal and idler
modes, with a transmission function {1 − exp[−(ωs − 
s )2/4σ 2

f )}
{1 − exp[−(ωi − 
i )2/4σ 2

f ]}, where σ f = 2σ .

two modes

|THSS〉 = e(β11/2)â†
1 â†

1+β12 â†
1 â†

2+(β22/2)â†
2 â†

2−H.c. |vac〉 , (22)

where we restricted β12 = β21. We can tune the constants
to continuously move between a single-mode squeezed state
(β12 = β22 = 0), a two-mode squeezed state (β11 = β22 = 0),
or a product of two single-mode squeezed states (β12 = 0).
We call this a tunable hybrid squeezed state (THSS).

Using the pulse-mode encoding introduced in Sec. II, a
JSA corresponding to a THSS has four amplitudes located at,
say, (
−1,
−1), (
−1,
1), (
1,
−1), and (
1,
1), each
corresponding to a squeezing term in Eq. (22). To generate
such a JSA, we create a three-peak PMF and a three-peak
pump function, to produce a nine-peak JSA show in Fig. 3.
The JSA in Fig. 3 has extra squeezing terms located at 
0.
However, the full state generated from the JSA in Fig. 3 can
be written as a product of two squeezing operators acting on

the vacuum state given by

|ψ〉 =
[

exp

(
γ11

2
Â†

1Â†
1 + γ−11

2
Â†

−1Â†
1

+ γ−1−1

2
Â†

−1Â†
−1 − H.c.

)]

×
[

exp

(
γ−20Â†

−2Â†
0 + γ00

2
Â†

0Â†
0

+ γ20Â†
2Â†

0 − H.c.

)]
|vac〉 . (23)

We can always decompose the state in this way because the
modes are orthogonal and thus [An, A†

m] = δnm. This is crucial
because it means the state corresponding to Fig. 3 can be
written as |ψ〉 = |THSS〉 ⊗ |φ〉 and thus |φ〉 can be traced out
without degrading the purity of the desired modes. To trace
out the state |φ〉 in practice, we can pass the nine-peak JSA
state through a spectral filter that blocks frequencies around

0. The resulting JSA is shown in Fig. 3(d).

This hybrid squeezed state can be tuned in real time by tun-
ing the amplitude of each term in the pump function. This is
because each term in the pump function uniquely corresponds
to terms in the squeezing operator; specifically, each peak
centered at (
n,
m) corresponds to the squeezing term asso-
ciated with the AnAm operators in (23). The middle peak in the
pump amplitude generates two JSA amplitudes at (
−1,
1)
and (
1,
−1), but these both contribute to the same ampli-
tude in the squeezed state. Since the pump is a function of
three center frequencies with no overlap we can independently
vary the amplitude of all three and thus tune the squeezing
parameters of the final squeezed state independently.

VI. CONCLUSION

We have proposed a method for generating multimode
squeezed states of light encoded in Gaussian-like fre-
quency modes. This method differs from related methods
[10,12,13,15–19] in several ways that might make it advan-
tageous, depending on the application.

The proposed method relies on customizing the joint
spectral properties of light generated via spontaneous
parametric down-conversion, which requires two independent
ingredients. The first is the spectral engineering of light
incident on the crystal, which we took as a given. The second
is the engineering of the nonlinear crystal to have desired
phase-matching properties (captured by the phase-matching
function), for which we used an algorithm [40] that takes
as an input the target phase-matching function and outputs
a binary string that defines poles in a ferroelectrically poled
crystal [43].

We used this method to design two kinds of squeezed
vacuum states. The first is an N-mode squeezed vacuum
state, which could generalize various quantum information
protocols [7–9]. The second is a tuneable hybrid squeezed
vacuum state, which could make good resource states for the
generation of non-Gaussian states via postselection, particu-
larly in situations where mode tunability is desired, e.g., to
compensate for loss.

Future work could investigate the effects of time ordering
on the JSA [44], suppression of modes within the crystal using
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photonic stop bands [45], and possible applications in other
areas of research such as multiparameter quantum metrology
[7] and multichannel quantum imaging [8]. We expect that
exploring new quantum states of light, encoded in new degrees
of freedom, such as those proposed here, will be a key element
in developing future quantum technologies.

The JUPYTER notebook used to generate the results in this
paper can be found in [46].
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APPENDIX A: REVIEW OF SQUEEZED STATES

Here we briefly review single-mode, two-mode, and mul-
timode squeezed states. A squeezed state prepared in a single
mode â0 can be written as [47]

|SMSV〉 = eβ00 â†
0 â†

0/2−H.c. |vac〉 , (A1)

where β00 is the complex single-mode squeezing parameter.
If we define the uncertainty of an operator Â by (�A)2 =
〈SMSV| (Â − 〈A〉)2 |SMSV〉, the single-mode squeezed state
has the property that it minimizes the uncertainty relation
below the quantum noise limit. This is taken advantage of
in quantum sensing experiments, where one decreases the
phase uncertainty to measure changes in distance beyond the
quantum noise limit [48,49].

A two-mode squeezed state prepared in modes â0 and â1

can be written as [47]

|TMSV〉 = eβ01â†
0 â†

1−H.c. |vac〉 , (A2)

where β01 is the complex two-mode squeezing parameter.
If one considers the effect that the squeezing operator has
on the variance of the sum and difference of each mode’s
conjugate variables, one finds a squeezing effect similar to that
for the single-mode state. For the two operators Â and B̂, the
two-mode squeezed state minimizes the uncertainty relation
between the conjugate variables Â − B̂ and Â + B̂ below the
quantum noise limit. The reduction in noise between Â − B̂
generates a high degree of correlation, and in the limit when
|β01| → ∞, two-mode squeezed states are the continuous-
variable extension of maximally entangled Bell states [50].
The entanglement properties of two-mode squeezed state can
be used for various quantum information protocols such as
quantum teleportation and quantum cryptography [1,2].

The squeezed states above can be generalized to N-partite
entangled states as

|MMSV〉 = exp

(
1

2

∑
n,m

βnmâ†
nâ†

m − H.c.

)
|vac〉 , (A3)

where the double sum in the exponential ranges from n, m =
−N,−N + 1, . . . , 0, . . . , N − 1, N and due to symmetry we
take βnm = βmn. These multimode squeezed states can be used
to generalize various quantum information protocols [51,52].

APPENDIX B: SPONTANEOUS PARAMETRIC
DOWN-CONVERSION

In this Appendix we review the nonlinear-optical process
known as spontaneous parametric down-conversion (SPDC).
In a SPDC process the input photons, typically called pump
photons, are each down-converted into two daughter photons,
called the signal and idler. The signal and idler photons satisfy
energy and momentum conservation with the pump photon
given by

ωp = ωs + ωi, kp(ωp) = ks(ωs) + ki(ωi ), (B1)

where ωJ and kJ (ωJ ) are the frequency and wave vectors. The
three fields of interest are labeled by J = p, s, i, denoting the
pump, signal, and idler, respectively. A detailed derivation of
SPDC was given in [53], which we follow.

For a type II down-conversion process [in the rotating-
wave approximation, assuming the material is in an effective
one-dimensional (1D) structure where the field does not vary
in the orthogonal direction of area A (for a review of effec-
tive 1D structures see [53–57]), with a nonlinear coefficient
χ (2)(z) that varies along the longitudinal direction z] the non-
linear Hamiltonian in the interaction picture is

ĤI (t ) = − h̄
∫ ∞

0
dωpdωidωsĉV (ωp)â†

V (ωi )â
†
H (ωs)

× ei(ωs+ωi−ωp)t 2L

√
h̄ωpωiωs

(4π )3ε0Ac3np(ωp)ns(ωs)ni(ωi )

× 1

L

∫ L/2

−L/2
dz χ (2)(z)ei(kp(ωp)−ki (ωi )−ks (ωs ))z + H.c.

(B2)

For nonlinear materials we will be considering, χ (2)(z) is con-
stant over a specified domain length and given by χ (2)(z) =
±χ (2). We find it useful to define

g(z) = χ (2)(z)

χ (2)
(B3)

to be the scaled nonlinearity function which has two values
given by g(z) = ±1. If we take the initial ket |ψ (−∞)〉 to be
a coherent state in the pump mode and the signal and idler
vacuum, then in the undepleted pump approximation (where
we assume the pump light is unchanged with the removal of a
photon) we can make the substitution

ĉV (ωp) → √|αp|α(ωp), (B4)

where α(ωp) is the normalized frequency distribution of the
pump laser, which satisfies∫

|α(ω)|2dω = 1, (B5)
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and |αp|2 is the number of photons in the pump. Then the Hamiltonian is given by

ĤI (t ) = − h̄
∫ ∞

0
dωpdωidωsA(ωi, ωs, ωp)α(ωp)�(ωs, ωi, ωp)â†

V (ωi )â
†
H (ωs)ei(ωs+ωi−ωp)t + H.c., (B6)

where we set

A(ωs, ωi, ωp) = 2Lχ (2)

√ √|αp|h̄ωpωiωs

(4π )3ε0Ac3np(ωp)ns(ωs)ni(ωi )
, (B7)

define

�(�k(ωi, ωs, ωp)) = 1

L

∫ L/2

−L/2
dz g(z)ei�k(ωp,ωs,ωi )z (B8)

to be the phase-matching function, and set �k(ωp, ωs, ωi ) =
kp(ωp) − ki(ωi ) − ks(ωs) to be the phase mismatch.

In the interaction picture the states evolves according to
interaction Hamiltonian given by [58]

ih̄
d |ψ (t )〉

dt
= ĤI (t ) |ψ (t )〉 , (B9)

which has a formal solution of

|ψ (∞)〉 = T
[

exp

(−i

h̄

∫ ∞

−∞
dt ĤI (t )

)]
|ψ (−∞)〉 , (B10)

where T is the time-ordering operator and |ψ (∞)〉 is the
final state. Since the interaction Hamiltonian does not com-
mute with itself at different times, we cannot in general
drop the time-ordering operator. It was shown in [44] that
the time ordering leads to nontrivial effects but only in the
high-pump-power regime. For this work, we will assume low
pump powers and not worry about these time-ordering effects,
i.e., we drop the time-ordering operator. Then integrating
the interaction Hamiltonian with respect to t introduces an
energy-conserving delta function δ(ωs + ωi − ωp) which we
use to evaluate the ωp integral. Then the state is given by

|ψ〉 = exp

(
i
∫

dωsdωiA(ωi, ωs)α(ωi + ωs)�(�k(ωi, ωs))â†
H (ωi )â

†
V (ωs) + H.c.

)
|vac〉 , (B11)

where we made the simplifications A(ωs, ωi, ωi + ωs) →
A(ωs, ωi ) and �(�k(ωi, ωs, ωi + ωs)) → �(�k(ωi, ωs))
with

�k(ωi, ωs) = kp(ωi + ωs) − ki(ωi ) − ks(ωs) (B12)

the phase mismatch and kJ (ωJ ) = ωJnJ (ωJ )/c. Finally, for
the frequency range of interest, to a good approximation
we can evaluate the frequency-dependent term A(ωs, ωi ) ≈
A(
s,
i ) = A, where 
s and 
i are the center frequencies
of the signal and idler.

To push the equations further, we expand the phase
mismatch �k to first order around the center frequencies

s,
i,
p = 
s + 
i such that

�k(ωi, ωs)=�k0 + k′
p(ωp − 
p)−k′

i (ωi − 
i )−k′
s(ωs − 
s),

(B13)
where we set �k0 = kp(
s + 
i ) − ki(
i ) − ks(
s), the first-
order derivatives are k′

j = ∂k j (ω j )/∂ω j |ω j=
 j , and energy
conservation ensures that ωp = ωi + ωs and 
p = 
i + 
s.
Next we work in the symmetric group-velocity matching
regime such that k′

p = (k′
s + k′

i )/2. Then with these choices
we are left with

�k(ωi, ωs) = �k0 + k′
s − k′

i

2
[(ωi − 
i ) − (ωs − 
s)].

(B14)

We note that �k(ωi, ωs) is now a function of the vari-
able ωi − ωs so we take �k(ωi, ωs) → �k(ωi − ωs) and
therefore �(�k(ωi, ωs)) → �(ωi − ωs), which for typical

phase-matching functions will be peaked along the diagonal.
Calculating the square integral of �(ω), we find it is not yet
normalized and set its value to be N 2 for some N , then

∫
dω|�(ω)|2 = N 2. (B15)

To normalize �(ω) we define

φ(ω) = 2

N �(ω). (B16)

Then the squeezed state is given by

|ψ〉 = exp

(
iγ

∫
dωsdωi f (ωs, ωi )â

†
H (ωi )â

†
V (ωs) + H.c.

)
× |vac〉 , (B17)

where we defined the squeezing parameter γ to be γ =
AN /2 and defined the JSA as

f (ωs, ωi ) = α(ωi + ωs)φ(ωi − ωs), (B18)

which due to the normalization in Eqs. (B5) and (B16) satis-
fies the normalization∫

dωsdωi| f (ωs, ωi )|2 = 1. (B19)
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APPENDIX C: BIAS IN THE PMF

For a crystal of length L the approximate phase-matching
function is given by

�a(�k) = 1

L

∫ L/2

−L/2
dz ga(z)ei�kz, (C1)

where ga(z) is the approximate nonlinearity function specified
by the poling algorithm and is either ±1. The phase-matching
function can be written as a coherent sum by expanding the
integral over z into each domain by

�a(�k) = 1

L

n=N∑
n=0

gn

∫ −L/2+(n+1)lc

−L/2+nlc

ei�kzdz, (C2)

where lc is the coherence length, Nlc = L, and gn ≡ ga[− L
2 +

nlc � z � − L
2 + (n + 1)lc] is the nonlinearity within each

domain. Then evaluating the integral and simplifying the ap-
proximate phase-matching function, we obtain

�a(�k) = lc
L

sinc

(
�klc

2

)
ei�klc/2e−i�kL/2

n=N∑
n=0

gnei�klcn. (C3)

Since the algorithm we are using to determine gn is only for
real phase-matching functions we know the imaginary part
will sum to zero and the nonzero contribution is only from
the real part, which is given by

�a(�k) = lc
L

sin( �klc
2 )

( �klc
2 )

n=N∑
n=0

gn cos

(
�klc

2
(2n + 1 − N )

)
,

(C4)
which is manifestly symmetric about �k = 0. However,
the phase-matching function we are designing has peaks at
�k = �k0 ± mδk, which are centered at �k0, ensuring the
nonlinear generation is phase matched. Evaluating the ap-
proximate phase-matching function in this vicinity leads to
a 1/(�k0 ± mδk) dependence which is no longer symmetric

and leads to a bias on the left and right sides of �k0 shown in
Fig. 1.

Although the phase-matching function bias for large or
smaller values of �k leads to less accurate PMFs, by de-
creasing the coherence length the affect of the bias is lessened
and the PMF is better approximated. We can understand why
this necessarily follows in two ways. First we decrease the
coherence length the sinc function prefactor in Eq. (C4) be-
comes more broad and is therefore constant for larger values
of �k, minimizing the bias. Second, by decreasing the coher-
ence length we are increasing the “resolution” of our tracking
algorithm, which increases the accuracy of the approximated
PMF. To further increase the accuracy of the generated PMFs
we can move to subcoherence domain engineering, which was
discussed in detail by Graffitti et al. in [40].

APPENDIX D: DESIGN CONSIDERATIONS

Quasi-phase-matched periodically poled crystals are
known to generate amplitudes reduced by a factor of 2/π

when compared with their phase-matched counterparts [37].
For example, if the unnormalized phase-matching func-
tion for a phase-matched crystal of length L is �(�k) =
1
L

∫ L/2
−L/2 e−i�kzdz = sinc(�kL/2), then for a periodically

poled crystal it is �(�k) ≈ (2/π )sinc(�kL/2). This is due to
the interference behind the quasi-phase-matching effect. The
phase-matching function is at its maximum value of 2/π at the
phase-matching condition (�k = 0). The amplitude along the
longitudinal direction z is 2z/Lπ , which defines the maximum
slope for the amplitude inside the crystal.

We can use the maximum slope restriction to put bounds
on the coefficients cn that scale each Gaussian peak in the
target PMFs by making sure that the gradient of the amplitude
function satisfies

d

dz
At (z,�k0) � d

dz

(
2z

πL

)
= 2

πL
. (D1)

FIG. 4. (a) Real part and (b) imaginary part of the five-peak target phase-matching function as defined in Eq. (17) (with cm = √
2/

√
πL5σk ,

σk = 2.5/L, and δk = 24σk) and (c) real part and (d) imaginary part of the corresponding amplitude function. We took σk = 2.5/L to ensure that
the target nonlinearity profile fits within the length of the crystal. The custom-poled crystal has N = 1073 domains of width w = 18.63 μm.
The domain width was chosen to match the phase-matching conditions of type-II KTP in the symmetric group-velocity-matched regime.
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The amplitude of the PMF for a given �k0 throughout the
crystal is given by

At (z,�k0) = 1

L

∫ z

−L/2
dz′gt (z

′)ei�k0z′
. (D2)

Figures 4(c) and 4(d) shows an example amplitude function
for the 5-peak PMF in Figs. 4(a) and 4(b). Then the target
nonlinearity function gt (z) can be found by inverting Eq. (16):

gt (z) = L

2π

∫ ∞

−∞
d (�k)�t (�k)e−i�kz. (D3)

We now pick a specific form for the target PMF �t (�k) with
NG = 2N + 1 Gaussian amplitudes,

�t (�k) =
N∑

m=−N

cme−(�k−�k0−mδk)2/8σ 2
k , (D4)

and insert it into (D3) to give

gt (z) ≈2Lσk√
2π

e−2z2σ 2
k e−i�k0z

(
c0 + 2

N∑
m=1

cm cos(mδkz)

)
,

(D5)

where we used the approximation that the amplitudes of the
PMF are symmetric (cm = c−m). Now inserting (D5) into (D2)
and taking the derivative with respect to z, we find that the
coefficients must satisfy

2σk√
2π

e−2z2σ 2
k /2

(
c0 + 2

N∑
m=1

cm cos(mδkz)

)
� 2

πL
. (D6)

If the inequality holds for z = 0, it holds for all z. Then taking
the inequality at z = 0, the amplitude coefficients cm must
satisfy

c0 + 2
N∑

m=1

cm �
√

2

π

1

Lσk
. (D7)

If we ensure that the prefactor coefficients satisfy the above
inequality, we guarantee that the target PMF amplitude can al-
ways be tracked by changing the domains of the crystal. More
sophisticated treatments can be made to determine the optimal
choice of constants cm by considering different choices of
z but as a first consideration we stop with the inequality in
Eq. (D7).
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