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In quantum photonics, threshold detectors, distinguishing between vacuum and one or more photons, such
as superconducting nanowires and avalanche photodiodes, are routinely used to measure Fock and Gaussian
states of light. Despite being the standard measurement scheme, there is no general closed form expression for
measurement probabilities with threshold detectors, unless accepting coarse approximations or combinatorially
scaling summations. Here, we present new matrix functions to fill this gap. We develop the Bristolian and the loop
Torontonian functions for threshold detection of Fock and displaced Gaussian states, respectively, and connect
them to each other and to existing matrix functions. By providing a unified picture of bosonic statistics for most
quantum states of light, we provide novel tools for the design and analysis of photonic quantum technologies.
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I. INTRODUCTION

Quantum photonic experiments can generally be described
as preparing quantum states of light, evolving them through
linear optical interferometers, and detecting the output pho-
tons. While the most common types of photonic states, Fock
states and Gaussian states, can be routinely prepared via
spontaneous processes in optical nonlinearities or (artificial)
atomic systems and processed with high-fidelity linear optical
components [1], photon number detection is typically approx-
imated via the use of threshold photon detectors. Threshold
detection, i.e., a measurement distinguishing only between
vacuum and the presence of one or more photons, is widely
available, e.g., via high-efficiency superconducting nanowires
[2] or room-temperature avalanche photodiodes [3], making
it the standard measurement apparatus in quantum photonics.
Its use in experiments, represented in Fig. 1, encompasses
many areas of quantum research, including demonstrations
of quantum advantages, e.g., in computation [4], measure-
ment sensitivity [5], and loophole-free tests of nonlocality [6].
However, threshold detection only provides a meaningful ap-
proximation of the desired Fock basis measurement projectors
in the regime of low mean photon numbers per mode. On the
other hand, as technology progresses, mean photon numbers
increase and higher fidelities are demanded [4], making this
approximation less appropriate.

To circumvent this issue, experiments can be described
directly using the output statistics of threshold detection
instead of its photon number resolving approximation.
However, despite the wide adoption of such systems, there
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are in general no closed form expressions in the litera-
ture for computing measurement probabilities of threshold
detectors. In fact, while an expression for the threshold de-
tection of zero-displaced Gaussian states is known, given
by the Torontonian matrix function [7], no analogous ex-
pressions exist for other commonly used states, e.g., Fock
or displaced Gaussian states. For example, for Fock states
with fixed photon number, threshold probabilities could be
exactly calculated by summing over all possible output
states, which lead to the given threshold detector outcome.
However, this method requires calculating a number of
probabilities scaling combinatorially with the number of
clicked detectors, rendering it impractical already for smaller-
scale experiments [8—10]. New methods are required to
describe quantum photonic technologies, which use threshold
detection.

Here, we provide such methods by developing a unified
picture to compute threshold statistics for most quantum pho-
tonic states of experimental interest. As described in Table I,
this is achieved by introducing two new matrix functions, the
Bristolian and the loop Torontonian, for threshold statistics
with Fock and displaced Gaussian states, respectively, and
demonstrating close connections between them and to other
existing matrix functions. The developed tools provide exact
simulation, design, and analysis methods for current [4,8—12]
and future quantum photonic systems that use threshold de-
tection. We wish to highlight the different challenges between
computing probabilities, known as strong simulation, which
we focus on in this work, and drawing samples from a prob-
ability distribution, known as weak simulation [13]. These
tasks often have very different complexity. For example, using
methods from Ref. [14], we can sample threshold detector
outcomes without ever calculating a threshold detection prob-
ability.

©2022 American Physical Society
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FIG. 1. Types of typical quantum photonic experiments, which
can be modeled using the results of this work. Threshold detection
statistics of Gaussian states (highlighted in red) formed by squeezing,
displacement and linear optics are captured by the loop Torontonian
matrix function. Displacement can be generated using coherent states
from lasers, squeezing can come from nonlinear processes such as
spontaneous parametric down conversion (SPDC) or spontaneous
four-wave mixing (SFWM). Linear optics can be implemented in
a variety of platforms, including bulk and integrated optics. States
created by the linear optical interference of Fock states (highlighted
in blue), as generated by (artificial) atoms, lead to threshold detection
probabilities given by the Bristolian matrix function.

II. THRESHOLD DETECTION STATISTICS
FROM VACUUM STATISTICS

Threshold detectors are described by the measurement op-
erators

1 = 10,)(0,1 . (1a)
T = 3 ksl =T —10,)(0;1. (16)
k=1

for vacuum (0) and click (1) outcomes on a mode described
by label j. We use |0) to denote the vacuum state of an opti-
cal mode, |k) = (@) 0) /m for Fock states of the optical
mode, and I is the identity operator (we will always assume
its dimension to be the same as the other operators appearing
in the equation).

We write the outcome of M threshold detectors, labeled
with j € [M]={1,2,..., M}, using a length-M bit string d,
where the jth element gives the measurement outcome of the
jth mode. Defining a set of modes that clicked, C = {j €

TABLE 1. Matrix functions for the calculation of measurement
probabilities in quantum photonics. (*) symbol is used to indicate
functions that are introduced in this work.

Detector
State number resolving threshold
Fock permanent Bristolian*
zero-mean Gaussian Hafnian Torontonian

displaced Gaussian loop Hafnian loop Torontonian*

[M] | d; = 1}, and a set for modes with the vacuum outcome,
V ={je[M] | d;j =0}, we can write the multimode mea-
surement operator as

M

AD = QA = QA —10;)(0;) Q) 10:) (0l . (2)

j=1 jeC keV

which can be rearranged to give

1"-[(07) — |6V><6V| Z (_1)\2\ |62)(6Z| 3)
ZeP(C)

Here, we use P(C) to denote the power set of C and |Z|
for the number of elements in a set Z. |6v)(6v| describes
the vacuum projector in all the vacuum outcome modes and
|6Z)(6Z| describes the vacuum projector in all modes in a
subset Z C C.

Equation (3) indicates that to calculate the threshold
detection probabilities for any state it is sufficient to cal-
culate marginal vacuum probabilities, which are used in an
inclusion-exclusion sum as described by Eq. (3). Using this

measurement operator and the Born rule p(j )= tr(ﬁ(g )p) on
some state p, we find:

pd)y= > (=% p(dy =0,

ZeP(C)

-

dz = 0), 4)

where p(dy = 0.dz = 0) = tr(|0v) Oy | ® 102)(0z| o). This
formula provides our starting point for deriving general ex-
pressions for threshold detection statistics.

III. MARGINAL VACUUM PROBABILITIES FROM THE
PHOTON NUMBER PROBABILITY GENERATING
FUNCTION

For an M-mode linear optical interferometer, described by
an M x M matrix U and the operator I/, the creation operators
are transformed as

M

uat' =y " Uaj. 5)
k=1

Considering an input state |®g), the output photon number

probability distribution is then

p(m) = | (m| U | D) %, (6)

where m is a length-M list describing the photon number
in each mode at the output of the interferometer, and |) =

Qi ((@))"/y/m;1)10).

Following Ref. [15], considering the Fourier transform of
the probability distribution of photon number basis measure-
ments we define the characteristic function

M
X(@) =) exp (i Z¢,m,) pi), (7)
m j=1

which, with some manipulation (see Appendix B), can be
expressed as

X() = (Dol U Uz U | D) , ®)

043712-2



THRESHOLD DETECTION STATISTICS OF BOSONIC ...

PHYSICAL REVIEW A 106, 043712 (2022)

where Z/Ald; is the operator given by the evolution due to the
linear optical transformation

M
Uq; = @ exp(ig;). )
j=1

We can transform this into a probability generating func-
tion, G, using the substitution x; = exp(ig;):

M
G® =) (1"[ x?f)p(m (10)
o \j=1
The function G(X) has the following useful properties. To
marginalize the jth mode, we simply set x; = 1. If we set
x; = 0, this gives us the probability for n; = 0. Therefore, if
we want to calculate the probability that some subset of the
modes, V, measure vacuum and we marginalize over all other
modes, B, we can evaluate

p(iy = 0) = Gy = 0,3 = 1), (11)

where 0 (1) is a vector with 0 (1) in all entries. G(¥) is
the probability distribution generating function, so by taking
derivatives of G(X), we can find information about the photon
number basis probability distribution [15].

By using the expression for the characteristic function in
Eq. (8), we can see that this amounts to calculating the scat-
tering amplitude of |®,) to itself, through a linear optical
interferometer described by the transformation U U ;U From
again using the substitution x; = exp(i¢;) in Eq. (9), we see
that Uy physically corresponds to either zero transmission
for modes in V, or unit transmission for modes in B. As we
show in the next sections, we can use this, in conjunction with
Eq. (4) to calculate threshold detection probabilities for all the
experimental scenarios outlined in Fig. 1.

IV. FOCK STATE INPUTS

Recall that the scattering amplitudes of Fock states evolved
through a lossless interferometer are given by the permanent
matrix function [16]

RS per(Up,i
(U i) = ———, 12)

where Uj; ; is constructed from U by repeating its jth row m;
times and its jth column n; times for all j € [M].

Therefore if we have an N-photon input Fock state, |®) =
|7i), we can use Eq. (8), Eq. (10), and Eq. (12) to write

per((UTU:UT5.5)
1_[1}4:1 n;!

where Uy is formed like U, e but with diagonal matrix ele-
ments: [Uz];; = x;. For this equation to be valid, we must
have a lossless unitary transformation. However, we are free
to marginalize over modes by allowing elements of X to be set
to 1 for any mode we wish to marginalize over, including any
loss modes, as shown in Eq. (11).

Because Eq. (13) provides us with a closed form expres-
sion for marginal vacuum probabilities, and because Eq. (4)
shows us that marginal vacuum probabilities are sufficient to

GXx) = , 13)

calculate threshold detection probabilities, we can use this to
derive a matrix function for calculating threshold detection
probabilities of Fock states. For more generality, we first con-
sider a linear optical transformation with losses, described by
an M, X My, matrix T, with singular values upper bounded
by 1 [17]. In Appendix C we show that if the input state is
an Mj,-mode Fock state, 7i, then by combining Eq. (4) with
Eq. (13), we can calculate the threshold detection probability
of the outcome described by an M,,-length bit string d as:

- brs(T; 5, E(T)in)
pld) = —5———.
1_[1]‘4:1 n;!

Here we have introduced a matrix function, the Bristolian,
defined as

brs(A.E)= Y (=1)""per([AyI'Ay + E).  (15)
YeP([m])

(14)

where A is an m X n matrix and E is an n X n matrix. Ay
denotes selecting the rows of A according to the elements of
Y, and [m] = {1,2, ..., m}. We have also defined a matrix,
which accounts for the mixing with vacuum in the environ-
ment modes

ET)=1-T'T. (16)

Our naming of the Bristolian is inspired by the convention
established by the Hafnian and Torontonian matrix functions,
which are named after the cities of their discovery. By noticing
that I — T7T gives a zero matrix when 7 is unitary, the brs
function can be simplified when 7 is a unitary matrix U, only
requiring the rows of U, which correspond to modes with a
detector click, providing

- ubrs(Us; -
pliy = lis), (17)
[1 =11

Here we defined the unitary Bristolian acting on an m X m
matrix, A, as

ubrs(A) = Y (=1)" Mlper((4y1'Ay).  (18)
YeP([m])
V. DISPLACED GAUSSIAN STATE INPUTS

Gaussian states are the set of states that have a Gaussian
characteristic function. A Gaussian state p is uniquely char-
acterized by its vector of means with entries

& = tr[p;], (19)
and its Husimi covariance matrix with entries
Y= %tr([EiE} + Z,TE;],O) — G} + 58 (20)

where we have used a vector of creation and annihilation
operators

=(a,...,au,a},....4). 1)

The Husimi function Q(¥) = (| p |[F) maps displacement
vectors, 7, to probabilities, so to calculate vacuum proba-
bilities we can evaluate the Husimi function at the origin.
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Noting that we can marginalize over modes by deleting all
the corresponding elements of ¥ and &, we obtain [18]

pliy = 0) = Q(Fy = 0) (22)

_exp (—5@)[Zyv]'ay)
A/ det(zvv)

The notation Xyy and @y differs slightly here from the pre-
vious section, as now there are two basis vectors for each
mode of our system, corresponding to each mode’s & and &'
operator. We form Xyy by selecting both rows and columns of
%, which correspond to each element of V and we form &y by
selecting both elements of & corresponding to each element
of V.

We can use this to immediately arrive at a threshold detec-
tion probability for displaced Gaussian states using Eq. (4).
However, here we must invert and compute determinants for
square matrices of size 2(|V| + |Z]). It would be preferable
if we could reduce these to matrices of size 2|Z|. It would
also be helpful conceptually to have a formula that can be
connected to other relevant matrix functions, the Torontonian
[7] and the loop Hafnian [19]. Therefore, it is of interest to
write this probability in terms of

O=1-3x7!' and 7=('a). (24)

(23)

In Appendix IX, we show how Eq. (4) can be rearranged
into the following:

p(d) = p(0)ltor(Occ, Fe), (25)

where C is given by the index of the elements of d where
d; =1, s0 Occ and yc are the matrix and vector formed
by selecting the rows and columns of O and elements of j,
which correspond to modes, which see a detector click. p(ﬁ)
is the probability of detecting vacuum in all modes, and can be
calculated using Eq. (23). We introduce the loop Torontonian,
which is defined as

exp [37411 — Oyy17' 9]
J/det(T = Oyy) ’

(26)
where O is a 2m x 2m matrix and y is a 2m-length vector.

ltor(0, p) = Y (=1

YeP([m])

VI. CONNECTIONS BETWEEN MATRIX FUNCTIONS

In the limit of no displacement & = = 0, the exponen-
tial terms in the numerator of Eq. (26) becomes 1 and thus
ltor(0, 0) = tor(0), where tor is the Torontonian function
from Ref. [7]. One can show, using the scattershot construc-
tion [20], that the Torontonian and Bristolian are related via
the following limit:

brs(T; 5, E(T)iz) = lim(e™* — 1)"tor(O(e)cc),  (27)

0 0 0 T
o eE@m* T 0
o) =¢| T 0 o | (28)
Tt 0 0 ¢ET)

where 7 is a bit string (implying that this identity is only
valid for single-photon or vacuum inputs), N = > . 7; and C

is the union of the labels of the modes in which single pho-
tons were input into the interferometer and the labels of the
modes in which clicks are registered. This relation is proven in
Appendix H.

As we show in Appendix G, the loop Torontonian can also
be used as a generating function for the loop Hafnian,

14

. 1d -
lhaf (X Occ, ¥c) = Ed—nelmf(ﬂocc, SV y=0,  (29)

where X = [(]f g] and ¢ = |C|. We use this to derive the trace

formula for the loop Hafnian, the fastest known method for
computing photon number resolved measurement probabili-
ties on displaced Gaussian states [19,21,22]. Because the loop
Hafnian of a bipartite graph is given by the matrix permanent
[21], all the matrix functions in Table I can be derived from
the loop Torontonian.

We also see a connection between the Bristolian and the
permanent when an N-photon Fock state results in NV threshold
detector clicks. In this case, each threshold detector must have
seen exactly one photon, so we can describe the measurement
operator of each threshold detector click as a single photon
projector, which leads to describing the event with perma-
nents, as given by Eq. (12). In Appendix D, we show this
link directly by first describing the unitary Bristolian for N
photon, N click events as the permanent of an N x N x N
three-tensor [23].

VII. TIME COMPLEXITIES

In Appendix I, we discuss the time complexities for the
Bristolian and the loop Torontonian. We find that, using the
formulas presented in this work, the Bristolian, brs(A, E), has
a time complexity of O(n2"*™) for an m x n matrix A and
n x n matrix E and the loop Torontonian, Itor(O, ), has time
complexity of O(m*2™) for a 2m x 2m matrix O and 2m-
length vector . For the loop Torontonian, this complexity can
be reduced using a recursive strategy, which exploits Cholesky
decomposition [24]. We also believe that the Bristolian’s time
complexity can likely be reduced, and we leave this as an open
problem.

VIII. IMPROVED ACCURACY OF A THRESHOLD
DETECTION MODEL

To assess the improvements offered by using the correct
description of threshold detection over the common approxi-
mation of single photon projective measurement, we present
two representative examples. By simulating the probability
distribution for 100 different Haar random unitaries in lossy
four-input photon Fock state Boson sampling experiments on
mode numbers from 4-12, we evaluate the total variation dis-
tance (TVD) between probability distributions from the exact
model, which uses the Bristolian, and an approximate model,
which uses a sum over matrix permanents, as discussed in
Appendix E. Although the TVD is reduced for higher numbers
of modes, the approximation is always 5%-12% removed
from the correct distribution. To test the loop Torontonian,
we use experimental data from Ref. [10]. We see that for the
two-photon distribution for different levels of displacement,
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the loop Torontonian offers a better match to the experiment
of up to 16%. See Appendix J for more detail.

IX. CONCLUSION

The methods we have derived, in particular the Bristo-
lian and the loop Torontonian functions, are useful tools to
model and analyze a wide variety of quantum photonic experi-
ments and applications. For example, the Bristolian is relevant
to applications including linear-optical quantum computing
[25-27], Boson sampling [9,28], and quantum communica-
tions [29], commonly based on threshold detection. The loop
Torontonian can be applied to applications including Gaussian
state reconstruction [10], measuring graph similarity [30], cal-
culations of vibronic spectra of molecules [31], and quantum
metrology [32], and has already been applied for evaluating
proposed quantum communication protocols [33]. To facili-
tate their use, we provide example calculations of common
experimental scenarios in Appendix A using the Bristolian
and loop Torontonian, and have made available implementa-
tions in the open-source PYTHON package THE WALRUS [34].
Details for the software implementation are provided in Ap-
pendix K. The connections that we have shown between the
Bristolian and the permanent (Appendix D), the loop Toron-
tonian and the loop Hafnian (Appendix G), and the Bristolian
and the Torontonian (Appendix H) indicate that these func-
tions can provide a useful mathematical and conceptual tool
for a deeper understanding of bosonic statistics in photonic
experiments.
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APPENDIX A: EXAMPLES

We present some examples of how to apply the unitary
Bristolian, Bristolian, and loop Torontonian to some represen-
tative situations.

1. Lossless Hong-Ou-Mandel

Our first example is Hong-Ou-Mandel interference [35] of
single photons on a lossless 50/50 beam splitter. Here, the
input state is 7 = (1, 1) and

1 /1 1
U= ﬁ<1 _1). (AD)

The probability of detecting a coincidence is given by

pd = (1, 1)) = ubrs(V). (A2)

So, C = {1, 2}. We expand the ubrs function as
ubrs(U) = per(U'U) (A3)
— per(lU\1'U) — per([U-]'Un), (A4)

with U, = (1, 1)/+/2 and U, = (1, —1)/+/2 being the first
and second rows of U, respectively. We also use that
per(UTU) = per(I) = 1, and calculate

1 1
e

1 - 1
per((Lal'U) = per[i (—11 11” B

giving p((_i = (1,1)) =0, as expected. Here, we have not
included the term where Y is the empty set. In this case, we
are considering the permanent of the all zeros matrix, which
is zero and so does not contribute.

We can also see that p(g =(1,0)) = per([Ul]TUl) =1/2,
and similarly p(ﬁ = (0, 1)) = 1/2. These are due to the (2,0)
and (0,2) photon number output terms.

(A5)

(A6)

2. Three-mode zero transmission law

The zero transmission law (ZTL) tells us that many output
states of a Fourier transform interferometer are suppressed
due to multiphoton interference. Using w = exp(—2im /3), the
three-mode Fourier transform interferometer is given by

(111
U=—|1 o ). (A7)
ﬁ 1 o o

We consider7i = (1, 1, 1). According to the ZTL, all permuta-
tions of the output /1 = (2, 1, 0) should be suppressed, and so
d= (1,1,0), due to m = (2, 1,0) and m = (1, 2, 0), is also
expected to be suppressed. The probability of this threshold
detector outcome is given by

pd=(1,1,0) = ubrs(Uy ), (A8)
where
ubrs(Uj ;) = per([Ua.2)]"Uq 2))
= per([U1]'U1) = per([Ua]'W). (A9
By evaluating these permanents, we find
ubrs(Uj; ;) = 2 2 =0, (A10)
: 9 9 9

showing a suppression as expected. We can also calculate
p(d = (1,1,1)) = ubrs(U) = 1, (AT1)

which agrees with the prediction that ubrs(U) = |per(U )2
when U is square, since per(U) = —1/+/3.
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3. Lossy Hong-Ou-Mandel

The Hong-Ou-Mandel effect is preserved under balanced
loss. In contrast to the previous examples, in this example, the
loss means that we need to use the Bristolian, as the unitary
Bristolian is no longer valid. We consider a transmission ma-
trix defined like U in Eq. (A1), but with transmission 7, giving
T = /nU. In this case

p(d = (1,1)) = brs(T, E), (A12)

where E = (1 — n)I. We evaluate the Bristolian to find

brs(T, E) =per(T T +E)
— per(IT\]'Ty + E) — per([]'T> + E)

+ per(E)
=1-20—n+n*/)+ 1 —2n+n")
=0, (A13)

which confirms that the coincidence event is still suppressed
under balanced loss.

4. Lossy zero transmission law

When there is loss, we start to witness threshold detector
outcomes, which were suppressed in the lossless case. We
repeat the example in Sec. A2 but adding a transmission
n < 1.So, T = ,/qU for U defined in Eq. (A7).

Using the Bristolian, we find

pd=(1,1,0) = brs(75 ;. E(T )i, (A14)

where E(T) = (1 — n)I, and this gives

brs(T; ;. E(T i) = per([Tu.2)] T2y + E(T))
—per(IT\]' Ty + E(T )z
—per(IB)' T + E(T )iz
+per(E(T )i i
= n°(1—n)/3.

(A15)

(Al6)

We can check this problem intuitively by considering all the
losses to be applied just before the measurement. In this
picture, the outcome d= (1,1,0) can only occur when we
have the state 7 = (1, 1, 1) before the losses, then the first two
photons are transmitted and the last photon is lost. Therefore
we expect the probability found in Eq. (A16). The factor 1/3
comes from Sec. A 2, where p(m = (1, 1, 1)) = 1/3 before
any loss is applied.

For our final Bristolian example calculation, we consider
a case where we have to repeat columns more than once.
Consider the same T as above, but with the input state 7i =
(1,2,0). We calculate the probability of d= (0,1,1) (so
C = {2, 3}), denoting the elements of T" as # .

pd=0,1,1) = %brs(T(;ﬁ, E(T)i) (AL7)

where,
Iy I 13
T-. = Al8
. <f32 133 f33) (A1)
_ e @ w?
Vi3l o w
1 0 0
ET)y=1-ml0 1 0 (A19)
0 0 1
1 0 O
ETys=0-m[0 1 1], (A20)
0 1 1
and finally,
brs(T; ;. E(T)an)
= per([T5 ;1" T3 ; + E(T i)
—per([Ti] T + E(T )i z)
—per([Ts5] T i + E(T iz
+ per(E(T )i.i)- (A21)

Here: Tgﬁ = (t22, 13, 1r3) and Ti%,ﬁ = (132, 133, 133). We will
not symbolically evaluate this expression, but in the interest
of providing simple test cases for future software imple-
mentations, we see numerically that p(j) =0.222... for
n=1, p(d)=0.189 for n = 0.9 and p(d) = 0.069444 ...
for n =0.5.

5. Using the loop Torontonian

When performing calculations using the loop Torontonian,
we need to know the matrix O and the vector y for our
state. Tools such as STRAWBERRY FIELDS [36] allow for con-
veniently computing the real means vector, ji, and covariance
matrix, o, of a Gaussian state’s Wigner function. To use o
and ji to find O and y, we can use functionality from THE
WALRUS [34]. We can convert from o to X by using the
Qmat function (THE WALRUS uses a different ordering for
Z and so we also apply a complex conjugate to match our
definition of ¥), and similarly convert from fi to & using
complex_to_real_displacements. These can be used to find
O=1-X'andy = (T~ 'a)".

To show how to select the appropriate rows and columns
for calculating threshold detector outcome probabilities, we
will consider a five-mode experiment, with the outcome d=
(1,0,1,0,0),s0C = {1, 3}. This state can be represented by a
10 x 10 matrix O, with elements o j, and a ten-element vector
¥ with elements y;. To evaluate the loop Torontonian, we form
OCC and )7C:

011 013 016 018 Vi
031 033 03 033 - V3
Occ = Ve = (A22)
061 063 O66 068 V6
081 083 086 088 V8

This assumed the basis vector ordering convention specified
by Eq. (21), where mode j corresponds to basis vectors j and
Jj + M, as is used in THE WALRUS [34].
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APPENDIX B: DERIVATION OF THE
CHARACTERISTIC FUNCTION

We start from the photon number probability distribution
in Eq. (6) and the definitions of the characteristic function in
Eq. (7) and rearrange terms

M
X(@) =) exp (iZ¢in,»>| AU Do) > (BI)
nM i=1
=) exp (i Zm) (DolU™ |7) (| U | Do) (B2)
i A i=1 y A
= (ol U" Y " exp (iZm) i) @lU | o). (B3)

i=1

Notice that we can define an operator, u 55 which acts like

M
Uy Iii) = exp (i Z«bin,-) 1), (B4)
i=1

as the operator given by the linear optical transformation Uy

M
Us = ED exp(iy). (BS)
i=1
If we include this in our expression above, we find
X(@) = (ol UUz > " |ii) (7| U |®o) (B6)
= (@0l U'UsU | Do) , (B7)

where we have used the resolution of the identity to arrive at
the answer.

APPENDIX C: DERIVATION OF THE BRISTOLIAN

The unitary Bristolian has a slightly simpler derivation than
the Bristolian, so we will begin by considering this case. We
start by combining Eq. (13) with Eq. (4):

M -1
p(d) = (1_[ n,-!) > (=) per(lU Uz 2y Ul a)-
j=1

ZeP(C)
(CDH

Uzv,z) is formed by defining Uz withx; = 0if j e Vorj € Z,
and x; = 1 otherwise. Since Uy(y,z) contains only zeros on the
rows and columns given by the elements of V and Z, this is
equivalent to deleting the rows and columns of U and U,
respectively, according to the elements of V and Z. Therefore,
we can write the sum above as

> =D per(L(Uy) Uy Js ). (C2)

YeP(C)

Here, we sum over the modes, which are marginalized, instead
of summing over the modes being projected into the vacuum
state. This corresponds to using the substitution Z for ¥ =
C\ Z, and noticing that the sumover Y =C\Z: Z € P(C)
is the same as the sum over Z € P(C). We use Uy to denote
selecting only the rows of U according to the elements in the
set Y. Note that since we delete rows when all their elements

are set to all zeros, the permanent when Y is the empty set
should be zero, as it corresponds to the permanent of an all
zeros matrix, rather an empty matrix.

Because Eq. (C2) contains an inclusion (exclusion) for-
mula, like that of Ryser’s permanent formula [37], it could be
viewed as a three-dimensional permanent, similar to those that
appear elsewhere in quantum photonics [23,38]. However, we
note that to compute the probability for input state |7), inter-
ferometer transformation U and threshold detector pattern d,
it is sufficient to know only the rows of U, which correspond
to nonzero elements of d and columns of U given by 7i.
Therefore the input to this problem is a matrix, so we chose
to write this probability in terms of a new matrix function, the
unitary Bristolian

- ubrs(Uj )

We construct U; - from U as described under Eq. (12). The
unitary Bristolian, ubrs, is a matrix function, which acts on
some m X n matrix, A:

ubrs(A) = Z (—1)"Mper([Ay]'Ay), (C4
YeP(Iml)

(C3)

which is the form this is reported in Eq. (18).

Now, we are ready to derive the more general formula for
the Bristolian. Unlike the permanent, the Bristolian can be
generalized for calculating marginal detection probabilities.
Consider that we wish to calculate the probability of observing
detector clicks for modes in C, vacuum in modes V, and
marginalize over modes in B, so the union of C, V, and B
is [M]. We can write this probability as

pldc =1,dy =0)
M -1
= (Hni!) > =DM per([(Uyup) Uyusliz)-
i=1 YeP(C)

(C5)

Here Uy is constructed by selecting rows of U according to
the elements of Y and B. We could also write the summation
in Eq. (C5) as

|
e 1%

YeP(C)

where (g; ) is the augmented (Y| 4 |B|) x N matrix formed
by stacking the matrices Uy ; and Up 7, where N = ) PN The
notation Ug j is used to show that we take rows of U according
to the set C and repeat the columns of U according to #, and
equivalently for Ug ;.

A counterintuitive feature of this formula is that it depends
on matrix elements of the linear transformation that are ig-
nored by our measurements. In an experiment, changing the
elements of Up should have no impact on p(c?c = T, JV = (3).
Following this argument, we propose that we only need to
know Ug, and we can construct Ug by performing a unitary
dilation. This is particularly helpful for lossy experiments,
where we typically do not have an understanding of the full
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unitary transformation acting on the both the experiment’s
(lossy) modes and the loss modes of its environment.

Any open quantum dynamics can be expressed as unitary
evolution on of a larger system via unitary dilation. For a
nonunitary transformation given by a rectangular matrix, T,
with singular values all <1, we can write the unitary dilation

i 1/2
T q-=7TH ) )

uir) = ((]1 _ i) _rt

With this, we are now ready to write down the probability
for the general case of a Fock state input, linear optical exper-
iment. We consider that we have Mj, input modes, initialized
in the state 7i. These propagate through a nonunitary linear
transformation, 7', before being detected by M,y threshold
detectors, which give an outcome d , which is a length-M
bit string. So T is given by an Moy x Mj, matrix.

First, we dilate T according to Eq. (C7), giving an (M;, +
Myt )-dimension unitary matrix. In this construction, Ue = T
and Uy is given by (I — T7T)!/2. We also notice that we
can explicitly write out the multiplication of the augmented

matrices:
A\'(a\ _ t
(R) <R> =A'"A+R'R. (C8)

Combining these observations with Eq. (C5) and Eq. (C6), we
can write down the probability of measuring a click pattern d
on a Fock state # evolving through a nonunitary transforma-
tion T as
- brs(T; .., E(T )z 5)
p(d) = dM—' (C9)
[1 j=11"

Where we have introduced a new matrix function, the Bristo-
lian, brs

brs(A,E) =y (=1)" "lper([Ay]'Ay + E),
YeP([m])

(C10)

wherem =) ; dj = |C],is the total number of clicks. We also
define the matrix

E(T)=1-T'T. (C11)

To arrive at this equation, we have used
R(T).5 =[A—-T'T)"15 (C12)
[R(T). 1" R(T). . = E(T)yz, (C13)

-

where the subscript notation :, 7i means that we select the
columns according to 7.

APPENDIX D: UNITARY BRISTOLIAN REDUCTION TO
THE PERMANENT FOR CLICKS EQUAL TO PHOTONS

When the number of input photons is equal to the number
of threshold detector clicks, the unitary Bristolian has a square
matrix as an input. To see N clicks for an N photon input
state, we know that each threshold detector must have detected
exactly one photon, and so this event could also be modeled
by using photon number projectors instead of the click mea-
surement operator, and we can use Eq. (12) to calculate its
amplitude. Therefore, we expect that the Bristolian of a square

matrix should reduce to the absolute square of the permanent
of the same matrix.

For a square N x N matrix, A, with elements aj;, we can
write the unitary Bristolian as

ubrs(A) = > (=1 Mlper(lAy]'Ay).
YeP(IN])

(DD
Then we can expand the permanent using Ryser’s formula

N
per((AyI'Ay) = Y (=D"AT]D 1A Ar]; (D2)

ZeP(IN]) i=1 jez
N
S DRCTIE1) ) BT
ZeP(IN]) i=1 jeZ key
This gives
N
ubrs(A) = Z (—1)'Y‘+‘Z|1_[Zaziakj, (D4)
Y.ZeP(IN1) i=1 jez
keY

which is the Ryser-style formula for the three-tensor perma-
nent, as defined in Ref. [23]

N
ubrs(A) = per(B) = Z Hbia(i)p(i)v (D3)

o,peSy i=1

with ¢ and p being elements of the permutation group Sy.
However, this three-tensor, B, with elements b;j; = ajfax;
is very structured. This kind of structure is discussed in
Ref. [23], where it is shown that it allows us to factor this
expression into

ubrs(A) = per(A*)per(A) = per(A)*per(A) (D6)

= |per(A)|*. (D7)
APPENDIX E: COMPUTING THE BRISTOLIAN AS A SUM
OVER FOCK STATE PROBABILITIES

In the absence of our expression for the Bristolian in
Eq. (15), the only known way in the literature to compute
probabilities for Fock states measured with threshold detec-
tors is to consider all possible events that could lead to the
witnessed outcome, and sum all their corresponding probabil-
ities.

To provide an example for how the complexity of this
method compares to the Bristolian, we consider an M mode
experiment with uniform transmission, 1, N input photons and
n clicks (with n < N). For interferometers with imbalanced
losses, we must consider losses at both the input and output
of the interferometer. However, here we are considering bal-
anced loss, which allows us to consider that any photon loss
occurs before the photons reach the interferometer, as bal-
anced loss commutes with linear optics. Because any number
of photons between n and N can be transmitted through this
loss channel and lead to an 7 click event, we must consider all

Z?;,, (7) possible configurations for how these photons could
have been transmitted. For each input configuration, we then

need to consider all the ways that these photons can bunch
within the detectors. We know that at least one photon must
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arrive in each detector, which leaves j — n photons left, which
can be configured in any arrangement. There are (X+;/ B 1)

ways of arranging Y photons into X modes, and here we have

Jj — n photons, which can arrive in n modes, meaning we
n+n—1) _ (j—l

need to calculate (/ in i—n

) permanents for each

input configuration. This results in a total of Zy:n(]}])(;:i)
permanents.

Each permanent for a j photon configuration has a time
complexity of j2/, giving an overall time complexity, which
is lower bounded by (ilv)nZ”. By comparison, the Bristolian

complexity of n2>" provides a superexponential speedup when
N and N — n are large.

APPENDIX F: DERIVATION OF THE LOOP
TORONTONIAN

We start with some definitions. For a Gaussian state with
complex Husimi covariance matrix £ and complex vector of
means « we define

o=1-3x71, (F1)
y=E"ay, (F2)

which uniquely specify the photon number statistics of the
Gaussian state [22] via loop Hafnians [21]. Given a photon
number outcome 7 = (ny, ..., ny) its probability is given by

p(i) = p(O)haf(X Oz 7, 7»), (F3)

where p(f)) is the vacuum probability, X = [(]% g] and Oj j
and y; are submatrices of O and y, found by using n; rep-
etitions of the rows and columns corresponding to mode j
[recalling that each mode j corresponds to two rows and
columns of O]. We will now show that the threshold proba-
bilities can also be written in terms of the quantities defined in
Eq. (F1) and Eq. (F2).

By ordering our basis vectors such that modes that see a
click (C) are arranged to be before modes, which see vacuum
(V), the matrix O can be written in block form

Occ  Ocvy
0= : F4
<0vc 0vv> )

then, using Schur complements, we can see that
Occ =1 = [Zcc = Bev[Syv] ' Zyel ™. (FS)

We are now ready to investigate threshold probabilities. We
start with Eq. (4), which we write as

p(d) = p(0) Z (_1)|Z|P(’712 =0, My, = 0).

= (Fo)
ZeP(C) p(0)

For a given Z, the term inside the sum can be written as in
Eq. (23). Note that the argument inside the exponential in said
equation can be rewritten as

aly [Zwwl ™ dw =7y Sww Py
+ PwEwy % + Py Srw i
+ Wy ZywlSwwl ™ Swrdy,  (FD)

where W denotes the union of sets Z and V, and Y denotes

the modes not included in W. Here we have used that @y =
T

Swwyw + Zwr Py, Zyw = Zww, and E;VY = Yyw. We can
similarly write the argument of the exponential in p((j) as
a'[=17'a = P'9* = P, Sww iy + Py Zwr iy
+ W Sywiy + Wy Zrrdy. (F8)

With these two expressions we can then write

piy =0) | det(X)
p0) \ det(Sww)

1 - S %
X exp |:§V§[EYY — Zyw[Zww] 1EWY]Vyi|

_exp [37411 — Oyy 17" 9]
N Vet — Oyy)

In the last equation we used the result in Eq. (F5), together
with factorizing the determinant

(F9)

det(X) = det(Sww)det(Syy — Syw[Zwwl ' Zwy), (F10)

to show
) ety — Sywl Sl Swr) (LD
det(Zww)
= det([I — Oyy]™") (F12)
= ; (F13)
det(I — Oyy)
This  corresponds to the identity det(Zyw) =

det(Z)det([Z~']yy) from Ref. [39]. With these observations
we can write the sought-after probability as
p(d) = pOltor(Occ, Fe),

where C is the set of modes with threshold detector clicks, and
Itor stands for the loop Torontonian defined as

(F14)

)m_|y\ exp [%37)5[]1 - OYY]_I)-};F]
Jdet(I — Oyy)
(F15)

ltor(0, 7) = Z (-1

YeP([m])

for a 2m x 2m matrix O, and a 2m-length vector y.

In arriving at this formula, we have swapped the summa-
tion over Z for a summation over Y, as we did in Eq. (C2).
This is the form that the equation appears in the main text.

APPENDIX G: GENERATING THE LOOP HAFNIAN
FROM THE LOOP TORONTONIAN

Just like the Torontonian [7], the loop Torontonian has an
interesting interpretation of being a generating function for
photon number probabilities of Gaussian states (now with
nonzero displacement).

To this end, recall that a threshold probability can be ob-
tained as a sum (coarse graining) of many photon number
events. For any d, we can write

pd) _pli=d)
p(0) p0)
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Itor(Occ, ]7c) = lhaf(XOJ,J, }7{})

+ Z haf(X O g4, @iy Visr)
EECJ

(G2)

where C; is the set of all vectors of integers that have zero in
the positions where d has zero and strictly positive integers
in all the other positions. Note that any element k in the set
satisfies K = Zf\il k; > 0. We now recall that loop Hafnians
satisfy the following scaling property [21]

thaf ((nA)s 5, (/v )a) = 0™ Ihaf (As 5, vi),
with N =} . n;. This allows us to write

ltor(nOcc, /N7c)
= n'“haf (X 0 7. 77)

Cl+K -
+ Z 0! Ihaf (X O sty d+hy Yid+h))-
EECJ

(G3)

(G4)

If we set £ = |C| we can derive a formula for the loop Hafnian

. 1 dt
lhaf(X Oy 7, v7) = E'd éltor(nOdd,fyd)ln o (G5)
> DOy, ), (G6)

YeP([m])
where we define
1 4t .
F(0.7) = 41 7740 Ply=o (G7)
0.7) = exp [ 5/17'[1 —n01™" /77"] G8)
i /3t —30) '

One way of interpreting f(O, y) is that it selects the £th
coefficient of the polynomial expansion of g. Therefore, we
do not require knowledge of ¢(O, y) beyond order £. Using
the Mercator series, we expand the denominator in Eq. (G7)
as

S k Nk
det(l — n0)™? = exp [Z %} (@
k=1

so we can combine the denominator into the exponent. We
also notice that we can use a binomial expansion, (1 —
x)’.1 = > 20X/, to supstitute [T —no1~' =372 (nO)—1.
This gives us an expression

o0 Ok St Ok—l =%
k=1

which we Taylor expand up to order ¢ to obtain

XK: [u(ok) .\ ?’(Ole)?}nk)J
— 2k 2

(G11)
We have used that * = Xy . This gives us the exact form of
the trace formula algorithm for the loop Hafnian as presented
in Ref. [21] (bar some typos in the referenced paper). It is
interesting that this derivation uses various arguments, which
rely specifically on O and y being formed by a Gaussian

14

>

J=0

9(0.7) =

|01) I~ d:
|02) B~ d>
. T .
[0ar) —r—~— dn
|Oar+1) p——1
|0az+2) p—1
|0221) 1

FIG. 2. Scattershot construction. Gates between modes, symbol-
ized by vertical lines with dots at the ends, show weak two-mode
squeezing. The two-mode squeezing operator between modes i and
jis given §; ;(t) = exp(r[aja); — aa;)).

state covariance matrix [in particular Eq. (G1) and Eq. (G2)],
however, the trace formula algorithm that we are able to derive
here is applicable to arbitrary symmetric matrices.

APPENDIX H: CONNECTING THE BRISTOLIAN
AND THE TORONTONIAN

In this Appendix we provide a formal link between the
Bristolian and the Torontonian. Concretely, we show that the
Bristolian associated with the threshold detection of a multi-
mode Fock state with single photon or vacuum inputs can be
evaluated as a certain limit of a Torontonian.

The starting point of our derivation is the scattershot Bo-
son sampling construction shown in Fig. 2 and introduced
in Ref. [20]. The diagram represents M two-mode squeezed
vacuum states where the first half of the modes (the heralded
modes) are sent into an interferometer with transmission ma-
trix 7', and the second half of the modes (the heralding modes)
are sent into threshold detectors.

For each individual two-mode squeezed vacuum with
squeezing parameter f, it is straightforward to show that con-
ditioned on a click in the heralding mode, the state of the
heralded mode collapses to [40]

pr =11 1|+Z( ") ), D)

where 7 = sinh? ¢ is the mean photon number of either mode
of the two-mode squeezed vacuum. The probability of herald-
ing the state p, is given by

n .
_ = ¢ with ¢ = tanhz.
1+n

Py = (H2)

Note that as ¢ — 0 the fidelity between p, and a single
photon Fock state approaches one, but at the same time the
probability of heralding the state approaches zero.

We can now study the covariance matrix X of the Gaussian
circuit in Fig. 2. After some algebra, it can be shown that the
matrix O =1 — X! dictating the threshold probabilities of
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the Gaussian state is given by

0 0 0 T
0 eE(M* T 0
0 T* 0 0
Tt 0 0 €E(T)

O(s)=¢ (H3)

We now want to calculate the probability that a subset of the
first M modes clicks conditioned on all the modes on the
second half clicking. We specify the modes that clicked in the
first half by d and then can write the click pattern for the 2M
modestobe é=d @1 where, recall, 1 is the all ones vector
of length M. We can now write the conditional probability as

(H4)
For the probability in the numerator of the right-hand side in

the last equation we can use Eq. (25). The vacuum probability
of the 2M-mode state is given by

p(0) = /det(I — O(¢)) = (1 — e2)M. (H5)
‘We can now write
- (1—e*M
pld|1ly) = ——,—tor(0(e)cc), (H6)
£

where C is the union of the {M + 1, ..., 2M} heralding modes
and the modes that have a one in the vector d , 1.e., the modes
that click in the first half.

As explained at the beginning of this section, in the limit
where ¢ — 0 we know that the conditional state of the input
heralded modes becomes a product of single photons in each
mode, and thus in this same limit we can write

brs(T7 7, E(T)17) = !i_r)r})(fz — DWMtor(O(e)ce).  (HT)
Note that we have so far only considered the case where
single photons are input in all the modes of the interferometer.
The more general case where vacuum is fed into some of
the modes can be dealt with by applying a loss channel with
zero transmission to the relevant modes. This is equivalent to
setting to zero the columns of 7 where vacuum is fed. Using
this argument we find that for cases where i is a bit string, i.e.,
we only allow single photons inputs, and setting N = ), 7i;
we can write

brs(7; (H8)

.’

E(T)iz) = ling)(s‘z — DV tor(O(e)cc),

where now C is the union of the labels of the modes in which
single photons were input into the interferometers and the
labels of the modes in which clicks are registered. It is inter-
esting to consider that one could potentially derive the form
of the Bristolian in terms of sums of permanents by using the
connection between permanents and determinants provided
by the MacMahon Master theorem [41]. Finally, note that one
can also write circuits to herald multiphoton Fock states using
only threshold detectors as shown in Appendix D of Ref. [40].

APPENDIX I: TIME COMPLEXITIES

To calculate a marginal vacuum probability for a Fock state
evolved through a linear interferometer, we can compute a

permanent, as given in Eq. (13). If we are detecting vacuum in
modes given by V and marginalizing over all other modes,
given by B, then the matrix [UTU;CU]M has rank < |B|,
so its permanent can be computed in time O(N?(BD) using
the algorithm introduced in Sec. III of Ref. [42]. If we are
marginalizing over many modes, and therefore |V| is small,
we can instead consider using the algorithm introduced in
Sec. IV. A of Ref. [15] to compute the permanent in time
0 ( N2W|+l )

For a general permanent of an n x n matrix, Ryser’s al-
gorithm [37] has the best known complexity of O(n2"). For
computing the Bristolian, to calculate the permanents inside
the summation in Eq. (15), we may sometimes be able to
use the faster algorithms above, however, the dominant com-
plexity for this formula would still come from computing the
intermediate cases, when neither of the faster algorithms are
applicable, where Ryser’s algorithm may be the fastest option.
This is upper bounded by O(n2") and there are O(2™) terms
in the sum. Therefore, a Bristolian of an m x n matrix A, and
n X n matrix E has a time complexity of O(n2"*").

We do not claim that these complexities are optimal. The
structure of this matrix function may be exploited to reduce
the complexity, for example by using methods similar to those
for low rank permanents [42], exploiting recursion [24], and
using Laplace expansions [43]. However, we leave it as an
open problem to find faster algorithms for the Bristolian.

For the loop Torontonian, we find a comparable complexity
to the original algorithm for the Torontonian, with complexity
O(m*2™) for a 2m x 2m matrix O and 2m-length vector 7.
In each step, we must compute a matrix inverse and a matrix
determinant, both having m3-time algorithms. However, these
steps can make use of the Cholesky decomposition of O, so we
can improve the polynomial prefactor, following the methods
described in Ref. [24].

Both of these methods see a quadratic penalty as com-
pared to the fastest methods for calculating photon number
probabilities of pure states. This can be understood as be-
ing caused by the threshold detection operators in Eq. (1b)
having high rank, whereas the photon number operators are
rank-1 projectors. For Gaussian state calculations, we also see
a quadratic cost for calculating photon number probabilities
when the state is mixed [22,44], so we can also understand
this quadratic penalty as being a result of introducing mixture
into the projected state. This differs from the case of sampling,
where it was shown that sampling threshold detector clicks
can be simulated with the same complexity as single photon
measurements [14]. If we accept approximate expressions,
accurate to additive error, we can efficiently compute the prob-
abilities presented in this work using Monte Carlo phase space
methods [45]. However, for events with small probability,
these methods can quickly become impractical due to a large
relative error.

APPENDIX J: ACCURACY IMPROVEMENTS OF A
THRESHOLD DETECTION MODEL OVER A SINGLE
PHOTON PROJECTION APPROXIMATION

To provide a quantitative demonstration of the accuracy
improvements of an exact model of threshold detection versus
the typical approximation of using single photon projection,
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FIG. 3. Total variation distance (TVD) between a simulation of
a threshold detection based, four-photon, Fock state boson sam-
pling experiment and an approximate model, which uses Fock state
projection. For each number of modes, 100 Haar random unitary ma-
trices are sampled and the full probability distribution is calculated.
Threshold detection calculations are performed using the Bristolian,
Fock state projection calculation uses a formula based on matrix
permanents, as discussed in Appendix E.

we calculate the full probability distribution for a four-photon
Fock state boson sampling experiment [28] using the Bristo-
lian with the number of modes ranging from 4-12, choosing
a transitivity of n = 0.6. We also find the probability dis-
tribution given by zero- or one-photon Fock state projective
measurement. We calculate the total variation distance (TVD)
between these distributions for 100 different Haar random
linear optical interferometers for each number of modes. The
results, shown in Fig. 3, show that even as we approach the
M = N? regime, we do not see a convergence between these
two distributions. In particular, we see that the TVD for all the
experiments lies typically within the range of 5%—12%. This
highlights the importance of using the correct mathematical
description of the experiment in order to best understand the
results.

We also performed an analysis of data from a recent ex-
periment of displaced Gaussian boson sampling [10], which
used a two-mode squeezed vacuum and a single coherent state
as input states. Here, we look at the two-photon probability

= = |haf
\ === ltor

0.030 A \

RN ———— -
0.025 1 R T

0.040{
0.035 -

TVD

0.020 -
0.015
0.010
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FIG. 4. Total variation distance (TVD) of two-photon displaced
Gaussian boson sampling distributions from the experiment reported
in Ref. [10] against a threshold detector model, using the loop Toron-
tonian (Itor, dotted line), and a Fock state projection model, using the
loop Hafnian (lhaf, dashed line). This is calculated for different mean
photon numbers of the input coherent state (n,).

distribution as estimated using the experiment for different
levels of displacement, as labeled by the mean photon number
of the input coherent state, (n,), in Fig. 4. For each proba-
bility distribution, we compare the TVD to a model that uses
threshold detection, using the loop Torontonian, and a model
that assumes Fock state projections, using the loop Hafnian.
The experiment of Ref. [10] uses threshold detection, and
we see that the model that uses loop Torontonians provides
a more accurate model of the experiment. For the largest
displacements, when looking at the ratio of the TVD, the loop
Torontonian gives a probability distribution, which is 16%
closer to the experimental data.

APPENDIX K: SOFTWARE IMPLEMENTATION

For an efficient and parallelizable implementation of the
Bristolian and loop Torontonian, we use just-in-time compi-
lation provided by NUMBA [46]. Our code is available in the
open-source PYTHON package THE WALRUS [34,48] in releases
from 0.19.0 onward, and were contributed in pull requests
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