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Spatial-nonlocality-induced non-Markovian electromagnetically
induced transparency in a single giant atom
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The nonlocal waveguide coupling of giant atoms can bring up novel physics and applications. In this paper,
we find unconventional electromagnetically induced transparency in giant atoms that has not been reported so
far. We present a consistent theory for describing the unconventional EIT which includes a real-space scattering
method and a time-delayed master equation. Our analysis shows this phenomenon is a full quantum effect led
by a quantized interaction between the atom and the waveguide. Our theory shows that it can be observed when
the time delay between two neighboring coupling points is comparable to the relaxation time of the atom. This
phenomenon results from the inherent nonlocality of the giant atom, which physically forces propagating fields
to be standing waves in space and the atom exhibiting retardations in time.
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I. INTRODUCTION

Light-matter interaction at the single-photon level lies
in the core of modern quantum optics, which has been
well investigated in waveguide quantum electrodynamics
(waveguide-QED) systems [1,2]. In these systems, artificial
atoms based on Josephson junctions strongly couple to a
one-dimensional waveguide, which results in a low leakage of
photons into the uncontrollable degree of freedom of environ-
ments [1–3]. The main advantages of these on-chip structures
are their scalability, integration, and tunability of param-
eters, which makes waveguide-QED systems an excellent
platform to study fundamental quantum phenomena and one
of the most possible proposals to realize quantum computing
[4].

In waveguide-QED systems, artificial atoms are com-
monly treated as pointlike dipoles as their sizes are much
smaller than the wavelength of interacting fields [5,6].
However, recent progress [5,7–22] shows that such treat-
ment is not valid for the so-called artificial atoms who
are coupled piezoelectrically to acoustics or capacitively to
microwaves at several distant points. In these cases, the
effective size of the atoms can be comparable to the wave-
length of interacting fields such that the propagating time
of the field between the coupling points can no longer
be neglected [5,6,23]. Therefore, these artificial atoms are
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giant. In giant atoms, effective atom-waveguide couplings
are nonlocal due to the interferences among points, which
leads to some unconventional phenomena, such as atomic-
frequency-dependent Lamb shifts and decay rates [5,7],
decoherence-free interactions among several giant atoms with
different arrangements [8,18], nonexponential decays [12,16],
and single-photon-induced persistent oscillating bound states
[17]. Notably, the latter two phenomena are non-Markovian
effects.

The above works have revealed some special features
of two-level giant atoms, however, a full description of
three-level giant atoms is absent. For example, standard elec-
tromagnetically induced transparency (EIT) [3,24–29] has
been observed in a ladder-type giant atom with either acous-
tic couplings [30] or microwave couplings [31], but the
frequency-dependent properties and non-Markovian effects
induced by the nonlocal couplings are still not well un-
derstood. This leads to obvious discrepancies between the
experimental data and the fit calculated by a master equa-
tion without quantized atom-waveguide interactions [31].
Motivated by the above results, we study the EIT phenomena
in a single �-type giant atom. We first utilize a real-space
scattering method [32,33] to characterize the nonlocal prop-
erties in space that behave as multipeak scattering spectra.
Specifically, we find that the fields inside the outermost cou-
pling points form standing waves via interference between
bidirectional propagating modes. Besides, the undesired spon-
taneous emission can be eliminated rather than suppressed
by engineering the multiple-point-coupling structure, which
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FIG. 1. (a) Schematic of a �-type giant atom. The transition |1〉 ↔ |3(2)〉 is coupled to the waveguide A (B) via multiple coupling points
with an equal distance d (d̃ ). g31(xn) and g21(x̃m ) denote the position-dependent coupling strength. Here the waveguide B is taken as a reservoir
resulting in the undesired spontaneous emission of the atom, while we take the waveguide A as a channel for a probe field. A classical
driving with an angular frequency νc and a Rabi frequency �c is applied to the transition |2〉 ↔ |3〉 to induce EIT. (b) Schematic of a
possible realization in experiments. An artificial atom couples to two acoustic waveguides through multiple transducers which can convert
phonon modes (red lines) to photon modes (blue lines) via the piezoelectric effect, and each transducer serves as an individual coupling
point.

turns the �-type configuration into a �-type artificial atom.
This provides a possibility to engineer atomic level structures
in future quantum devices. We then present a time-delayed
master equation to analyze the nonlocal properties in time
which behave as non-Markovian retardations. These two con-
sistent methods solve the abovementioned discrepancies in the
existing work [31], which provides a more exact theory on
giant atoms.

The remainder of this paper is organized as follows: In
Sec. II we provide a theoretical model and equations of mo-
tion of a �-type giant atom utilizing a real-space scattering
method. The unconventional EIT resulting from multiple-
point couplings is shown in Sec. III, and we provide a
standing-wave explanation in Sec. IV. In Sec. V we propose a
time-delayed master equation to describe the non-Markovian
effects in the giant atom. Further discussions on the mas-
ter equation are shown in Sec. VI, including a comparison
to the master equation without considering quantized atom-
waveguide interactions in Sec. VI A and the validity of
Markovian approximation in Sec. VI B. In Sec. VII we con-
clude this work.

II. MODEL AND EQUATIONS OF MOTION
IN REAL-SPACE SCATTERING METHOD

Consider a �-type giant atom, whose level structure is
shown in the circle of Fig. 1(a). The three energy levels
are denoted by |1〉, |2〉, and |3〉 with corresponding transi-
tion frequencies ω21, ω31, and ω32, respectively. Here the
energy of the ground state |1〉 is assumed to be zero as a
reference. The transitions |3〉 ↔ |1〉 and |2〉 ↔ |1〉 are respec-
tively side coupled to waveguides A and B at multiple points
xn and x̃m with indices n = 1, 2, . . . , N, m = 1, 2, . . . , M, as
shown in Fig. 1(a). The coupling strengths at these points are
denoted as g31(xn) = g31eiαxn , g21(x̃m) = g21eiβ x̃m with wave
vectors α and β for modes in the waveguide A and B, re-
spectively. We take the waveguide A as a channel of a probe
field whose transmission is to be observed and the waveg-

uide B as a reservoir leading to spontaneous emission via
the transition |2〉 ↔ |1〉. To induce EIT, a classical driving
field with an angular frequency νc and a Rabi frequency
�c is applied to the transition |2〉 ↔ |3〉. In Fig. 1(b) we
provide a possible experimental realization of our theoretical
model. The artificial atom couples to two acoustic waveg-
uides via multiple piezoelectric transducers and each of the
transducers can be taken as an individual coupling point
[16].

Differently from the recent works in Refs. [30,31], the
probe field herein is quantized. In a rotating frame with respect
to the frequency νc, an effective Hamiltonian of the system in
real space reads

Heff = Ha + Hcon + Hw + HI , (1)

where

Ha =
(

ω21 + νc − iγ2

2

)
|2〉〈2| +

(
ω31 − iγ3

2

)
|3〉〈3|,

Hcon = (�c|3〉〈2| + H.c.),

Hw =
∑

l=L,R

∫
dx̃b†

l (x̃)

(
νc − i fl ṽg

∂

∂ x̃

)
bl (x̃)

−
∑

l=L,R

fl

∫
dxa†

l (x)

(
ivg

∂

∂x

)
al (x),

HI = g̃31

∑
l=L,R

N∑
n=1

∫
dxδ(x − xn)(|3〉〈1|al (x) + H.c.)

+ g̃21

∑
l=L,R

M∑
m=1

∫
dx̃δ(x̃ − x̃m)(|2〉〈1|bl (x̃) + H.c.)

are the Hamiltonians of the atom, the classical control driving,
the waveguides, and the quantized atom-waveguide interac-
tions, respectively. Here we let h̄ = 1, fR = 1, fL = −1, and
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vg (ṽg) is the group velocity of the field in the waveguide A (B).
The bosonic annihilation operators a and b with subscripts R
and L are for the right- and left-going modes, respectively. The
damping rates γ2 and γ3 denote the total losses of the atom
to the nonwaveguide degrees of freedom [32], and the Dirac
δ function indicates the interacting positions. For simplicity,
we have assumed that the coupling strengths at each coupling
point g̃3(2)1 are identical, and the linear dispersion relation
holds in both waveguides. (See the derivation in Appendix A
for more details.)

To investigate EIT at the single-photon level, we as-
sume that both the waveguides and the atom are initially
prepared in their ground states |vac〉 and |1〉. A single
photon is incident from x1 to xN such that the scattering
eigenstate |�〉 in the single-excitation subspace [34,35] is

written as

|�〉 =
∫

dx
[
φα

R (x)a†
R(x) + φα

L (x)a†
L(x)

]|vac, 1〉

+
∫

dx̃
[
φ

β
R (x̃)b†

R(x̃) + φ
β
L (x̃)b†

L(x̃)
]|vac, 1〉

+e2|vac, 2〉 + e3|vac, 3〉, (2)

where e2(3) is the atomic excitation amplitude of the state
|2(3)〉. According to the interaction Hamiltonian HI , we plot
Fig. 2 to describe the scattering. The coupling at each point
acts as an individual δ potential and thus the giant atom can
be equivalently treated as a series of cascaded small atoms
[5,36]. As such, the probability amplitudes φ

α(β )
L(R) (x) can be

formally written as

φα
R (x) = eiαx

[
θ (x1 − x) +

N−1∑
n=1

tnθ (x − xn)θ (xn+1 − x) + tNθ (x − xN )

]
, (3a)

φα
L (x) = e−iαx

[
r1θ (x1 − x) +

N∑
n=2

rnθ (x − xn−1)θ (xn − x)

]
, (3b)

φ
β
R (x̃) = eiβ x̃

[ M−1∑
m=1

t̃mθ (x̃ − x̃m)θ (x̃m+1 − x̃) + t̃Mθ (x̃ − x̃M )

]
, (3c)

φ
β
L (x̃) = e−iβ x̃

[
r̃1θ (x̃1 − x̃) +

M∑
m=2

r̃mθ (x̃ − x̃m−1)θ (x̃m − x̃)

]
, (3d)

where the Heaviside step function θ (x) is used to distinguish
different intervals. The joint transmission and reflection am-
plitudes in the intervals of the waveguide A(B) are denoted
as tn(t̃m) and rn(r̃m), respectively. Note that these ampli-
tudes represent the overall scatterings under steady states,
which include higher-order scatterings resulting from multiple

reflections between every two neighboring coupling points;
see Fig. 2(b) for more details.

Substituting Eqs. (1) and (2) into the stationary
Schrödinger equation Heff |�〉 = ω|�〉 = vgα|�〉, one can
obtain the transmission amplitude tN and the excitation
amplitude e3:

tN =
(
�31 − �32 − �(M )

r + iγ2

2 + i�(M )
21

)(
�31 − �

(N )
L + iγ3

2

) − |�c|2(
�31 − �32 − �

(M )
r + iγ2

2

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
, (4a)

e3 =
(
�31 − �32 − �(M )

r + iγ2

2 + i�(M )
21

)
g̃31

∑N
n=1 e(N−n)i(�31τ+φ)(

�31 − �32 − �
(M )
r + iγ2

2 + i�(M )
21

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
(4b)

of the probe field, where the detuning frequencies are defined
as �31 = ω − ω31 and �32 = νc − (ω31 − ω21). Both of the
above equations are affected by the frequency shift

�(M )
r = �21

M∑
m=1

(M − m) sin(mωβτ̃ ) (5)

and the effective decay rate

�
(M )
21 = �21

M∑
m=1

[
M

2
+ (M − m) cos(mωβτ̃ )

]
(6)

induced by the waveguide B, where τ̃ = d̃/ṽg is a time delay

and �21 = 2g̃2
21/ṽg. Interestingly, we find that the spontaneous

emission |2〉 ↔ |1〉 can be totally eliminated, when we prop-
erly engineer the time delay τ̃ with respect to a reservoir
frequency ωβ . For example, in the case of M = 2, the de-
cay rate �

(2)
21 can be zero when ωβτ̃ = (2k + 1)π, k ∈ Z+.

Compared to traditional methods, e.g., employing a qubit with
multiple Josephson junctions [27,37], unique 3D cavities [38],
or nested polariton states [39], our elimination is realized
by properly allocating couplings using multiple capacitors or
piezoelectric transducers, which simplifies the system. In this
way, we can turn a �-type atom into a �-type one. Hereafter,
we assume that this is always the case.
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FIG. 2. Schematic of the scattering for the probe field. (a) The
total scattering process. In real space, the giant atom behaves as a
δ potential at each coupling point xn. The transmission (reflection)
amplitudes tn (rn) describe the joint scattering, which contains all
order processes due to the multiple reflections occurring at every two
coupling points. Since tN and r1 represent the scattering occurring at
the outermost points, they will contain all the phases accumulated
in the previous processes. An example of the accumulated phase
for the right-forward propagating process is given in the red box.
(b) Schematic of high-order scattering. Here we set N = 2 as an
example. The input signal is scattered at each coupling point in turn
such that scattered right- and left-going modes act as the input of the
next scattering process, as shown in subfigures 1–3. The multiple re-
flections between two coupling points induce higher-order scattering
processes, as shown in subfigure 4. Here we take the second-order
scattering as an example where the following results can be applied
to high-order scattering. Since these scattered fields only contain
left- and right-going modes, they can be jointly considered under the
steady states, e.g., the joint coefficient t2 includes t (1)

2 and t (2)
2 , and r2

includes r (1)
2 and r (2)

2 , as shown in subfigure 5.

In addition, the couplings to the waveguide A induce the
frequency-dependent Lamb shift

�
(N )
L = �31

N∑
n=1

(N − n) sin(n�31τ + nφ) (7)

and the modified decay rate

�
(N )
31 = �31

N∑
n=1

[N

2
+ (N − n) cos(n�31τ + nφ)

]
(8)

with �31 = 2g̃2
31/vg, τ = d/vg, and φ = ω31τ . The first term

in the addend of Eq. (8) denotes the joint decay rates attributed

by the N individual coupling points, while the second term is
led by the spatial nonlocal couplings. Note that when N = 2
and �c = 0, the transmission amplitude tN in Eq. (4a) reduces
to that of a two-level giant atom, which is consistent with
these in Refs. [12,16]. Also, the transmission amplitude tN
in Eq. (4a) is modified by Eqs. (7) and (8) with sinusoidals,
which indicates that the transmission spectra would be differ-
ent from those in traditional EIT. Particularly, when N = 1,
the sinusoidals vanishes such that the decay rate �

(N )
31 reduces

to a constant �31/2, i.e., the giant atom reduces to a small
atom, which is consistent with that in Refs. [32,33]. (See
Appendix B for more details.)

III. UNCONVENTIONAL EIT

Based on the above results, one can find that the time
delay τ is an important parameter which controls the atomic
dynamics, such that a reasonable regime of the time delay
τ is critical. However, this regime relies on the realistic im-
plements of the giant atom. Actually, besides the acoustic
proposal provided in Fig. 1(b), the giant atom can be realized
in a microwave proposal, i.e., the acoustic waveguides are
replaced with microwave waveguides and the transducers are
correspondingly replaced with capacitors [18,31]. The only
difference between these proposals lies in that the time de-
lay τ in the acoustic proposal is much greater than that in
the microwave proposal. For numerical simulation, we set
N = 2 for simplicity and use the relative values calculated
from the recent experiments. For instance, in the acoustic
proposal [7,16,30], the critical parameters are ω31 � 2π ×
4 GHz, �31 = 2π × 20 MHz, �c � 2π × 10 MHz, and τ �
160ns corresponding to �31τ � 20; In the microwave pro-
posal, these parameters are almost consistent with those in
the acoustic proposal, except for τ � 0.17 ns, �31 � 2π ×
20 MHz corresponding to �31τ � 0.022 [31]. Therefore, we
set the time delay τ = 0.05/�31 to represent the microwave-
coupling regime, and τ = 3/�31 and 10/�31 to represent the
acoustic-coupling regime.

In the EIT regime, for simplicity, we plot the transmission
spectra T = |tN |2 in Fig. 3. When the time delay is suffi-
ciently small (i.e., τ = 0.05/�31) and �31 � ω31, the Lamb
shift �

(2)
L and the decay rate �

(2)
31 are mainly determined by

the phase φ such that the spectrum has a single absorption
peak determined by the frequency ω31 as shown in Fig. 3(a),
which is consistent with that in Ref. [5]. Particularly, when
φ = (2k + 1)π , we have �

(2)
L = �

(2)
31 = 0 where the system

is decoherence-free; i.e., the giant atom is totally decoupled
from the waveguide A although there still exists a nonzero
coupling �31. This is represented by the black dot line in
Fig. 3(a). Further, with a given phase φ = 200π , we in-
crease the time delay τ so that decoherence-free bands and
Lamb-shift-induced absorption peaks appear alternatively and
become increasingly dense, as shown in Figs. 3(b)–(d). This
is because the absorption peaks with a modified linewidth
�

(2)
31 appear at the single-photon resonance �31 = �

(2)
L . In

addition, since the induced transparency occurs at two-photon
resonance �31 − �32 = 0, the transparency window �w �
|�c|2/�(2)

31 is modified only by the decay rate �
(2)
31 which

depends on the initial phase φ, as shown in Fig. 3(b) and the
insets in Figs. 3(c) and 3(d). Therefore, the unconventional
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(a)

(b)

(c)

(d)

FIG. 3. Transmission spectra of the giant atom in the EIT regime.
Parameters used in plotting are N = 2, �32 = γ2 = γ3 = 0, �c =
0.1�31, and in (a) τ = 0.05/�31, in (b) φ = 200π, τ = 0.05/�31,
in (c) φ = 200π, τ = 3/�31, and in (d) φ = 200π, τ = 10/�31.
(a) With the extremely small time delay τ , the spectra have only one
peak since where both the Lamb shift �

(2)
31 and decay rate �

(2)
31 are

mainly determined by the phase φ. (b) Compared to small atoms, the
transparent window of the giant atom �w � |�c|2/�(2)

31 is modified
by the phase φ. In (c) and (d), we show the unconventional EIT
spectra with increased time delays τ when the phase φ is fixed. In
both cases, �31τ dominate the variations of �

(2)
31 and �

(2)
31 such that

absorption peaks (arrow to Lamb shift) and transparent subpeaks
(arrow to decoherence-free) appear alternately. The blue dashed lines
in the insets represent the small atom case.

EIT can be observed when the time delay between two neigh-
boring coupling points is comparable to the relaxation time
1/�31.

Note that by increasing the Rabi frequency �c, similar
solutions can also be found in the Autler-Townes splitting
(ATS) [40–44] regime, as shown in Fig. 4. However, since
the single-photon resonance (i.e., �31 = �

(2)
L ) in the ATS

regime corresponds to dressed states induced by a large Rabi
frequency �c, the periodicity of �

(2)
L is determined by the

modulation on the dressed states. This means that both the
Rabi frequency �c and the Lamb shift �

(2)
L jointly affect

both the positions and linewidths of the dressed states. When
the time delay τ is sufficiently small, compared to the small
atoms, the linewidth is still clearly modified by the decay rate
�

(2)
31 mainly determined by the phase φ, as shown in Fig. 4(a).

Analogous to EIT, the absorption peaks become dense as τ

increases, as shown in Figs. 4(b) and 4(c). However, there ex-
ists an obvious difference between the two curves in Fig. 4(b).
This is because the �

(2)
L changes the positions of two dressed

states when the time delay τ is sufficiently large. With fur-
ther increasing the Rabi frequency �c, e.g., �c = 5�31, two
dressed states split into several subpeaks due to the modifica-
tion of the Lamb shift �

(2)
L , as shown in Fig. 4(d).

Another interesting point is that a strong modification can
be obtained by increasing the number of the coupling points.
Here, we show this by comparing the transmission spectra
in the ATS regime between N = 2 and N = 3. Since the

(a) (b)

(c) (d)

FIG. 4. Transmission spectra of the giant atom in the ATS
regime. Parameters used in plotting are N = 2, �32 = γ2 = γ3 = 0,
φ = 200π , and in (a) �c = �31, τ = 0.05/�31, in (b) �c = �31,
τ = 3/�31, in (c) �c = �31, τ = 10/�31, and in (d) �c = 5�31,
τ = 10/�31. In the ATS regime, the multiple peaks are reflected
on two dressed states. Blue dot lines represent those in the case of
small atoms (N = 1). (a) The linewidths of dressed states are clearly
modified by �

(2)
31 with a small time delay τ . In (b) and (c), analogous

to EIT, as the time delay τ increases, the multiple peaks become
dense. In particular, there is an enormous difference between the two
curves in (b) because the �

(2)
L changes the positions of two dressed

states when the time delay τ is sufficiently large. (d) Compared to
(c), when the time delay τ is fixed, the larger Rabi frequency �c

dominates the dressed states such that two main absorption peaks
split into several subpeaks due to the small modification on the Lamb
shift �

(2)
L .

maximum values of �
(3)
L = 4�31 sin(�31τ + φ) cos2( �31τ+φ

2 )
and �

(3)
31 = 2�31[ 1

2 + cos(�31τ + φ)]2 are greatly enhanced
compared to �

(2)
L = �31 sin(�31τ + φ) and �

(2)
31 = �31[1 +

cos(�31τ + φ)], the variations of the spectra with N = 3 is
more sensitive to the detuning �31 and the time delay τ , as
shown in Fig. 5. As the time delay τ increases, the multiple ab-
sorption peaks also become dense in the spectra with N = 3,
as shown in Figs. 5(a)–5(c).

However, the on-resonance absorption efficiency greatly
increases at the single-photon resonance when N = 3. This is
because a large N leads to an enhancement of the modified
decay rate �

(N )
31 when �31 and τ are fixed, which means

that the effective coupling between the atom and the waveg-
uide is amplified. Moreover, when the Rabi frequency �c is
comparable to �31, there exists a transition from the trans-
parency to the absorption at two dressed states �31 = ±�c,
i.e., |t3|2 � 0 and |t2|2 � 0.995 in Fig. 5(b), and |t3|2 � 0.37
and |t2|2 � 0.919 in Fig. 5(c). This is because the increas-
ing N changes the bands when decoherence is suppressed.
However, as �c increases (e.g., �c = 5�31), two spectra show
a good agreement at �31 = ±5�c, as shown in Fig. 5(d)
where |t3|2 � 0.054 and |t2|2 � 0.018. This is because the
changes of two dressed states induced by the Lamb shift
�

(N )
L is too small compared to that induced by a large Rabi

frequency �c.
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FIG. 5. Transmission spectra of the giant atom when N = 2
and N = 3 in the ATS regime. Parameters used in plotting are
�32 = γ2 = γ3 = 0, φ = 200π , and in (a) �c = �31, τ = 0.05/�31,
in (b) �c = �31, τ = 3/�31, in (c) �c = �31, τ = 10/�31, and in
(d) �c = 5�31, τ = 10/�31. A stronger modulation can be realized
by increasing the number of coupling points N . (a) When the time
delay τ is small enough, two spectra are approximately the same
and the positions of two dressed states occur at �31 = ±�c. (b),
(c) As the time delay τ increases, the multipeak property becomes
much clearer in both spectra. However, there exists a transition from
transparency to absorption at two dressed states �31 = ±�c between
the spectra N = 3 and N = 2, i.e., in (b) |t3|2 � 0 and |t2|2 � 0.995,
in (c) |t3|2 � 0.37 and |t2|2 � 0.919. (d) Compared to (c), for a fixed
time delay τ , the above transition at two dressed states �31 = ±5�c

is vanished by a larger Rabi frequency �c, i.e., |t3|2 � 0.054 and
|t2|2 � 0.018.

IV. STANDING WAVE INSIDE
THE SCATTERING INTERVALS

In Sec. III we have discussed the unconventional EIT with
multipeak properties which are governed by the Lamb shifts
�

(N )
31 (8) and the effective decay rates �

(N )
31 (9). The result-

ing sinusoidal form of Eqs. (7) and (8) is caused by the
boundary condition of standing waves, i.e., the interference
between bidirectional propagating waves form standing waves
inside each scattering interval. This can be treated as the
time-delayed coherent feedback [45] where the output signal
is guided back to the system through a transmission line after
a time delay and each round of feedback can be considered as
that the input interacts with the system at another position.
The obtained results show that the final output spectra can
also exhibit a multiple-peak property if the modes in the
transmission line are discrete.

From a different point of view, the giant atom acts as
mirrors cutting the entire waveguide into several cascaded
cavities. For a right-forward propagating field, the incident
single photon picks up a phase eni(�31τ+φ) when it passes
through a cavity formed by two coupling points. Correspond-
ingly, the photon accumulates a conjugate phase e−ni(�31τ+φ)

during the propagation in the opposite direction. For instance,
the photon accumulates a phase ei(�31τ+φ) from x1 to x2;
From x1 to x3, the photon accumulates phases 2ei(�31τ+φ)

and e2i(�31τ+φ). The phase 2ei(�31τ+φ) results from the sum of
two individual phases accumulated in x1 → x2 and x2 → x3,
while e2i(�31τ+φ) results from the phase directly accumulated
in x1 → x3, as shown in the red box of Fig. 2. This process
exists only in the giant atom, and it is described by the joint
transmission and reflection amplitudes in the scattering in-
tervals. To show this process, we plot the scattering spectra
T̃ = |t1|2 and R̃ = |r2|2 with

t1 =
(
�31 − �32 + iγ2

2

)(
�31 − �

(2)
L
2 + iγ3

2 + i�(2)
31
2

) − |�c|2(
�31 − �32 + iγ2

2

)(
�31 − �

(2)
L + iγ3

2 + i�(2)
31

) − |�c|2
, (9a)

r2 = − i�31

2

[
ei(�31τ+φ) + e2i(�31τ+φ)

](
�31 − �32 + iγ2

2

)
(
�31 − �32 + iγ2

2

)(
�31 − �

(2)
L + iγ3

2 + i�(2)
31

) − |�c|2
(9b)

inside the intervals when N = 2 in Fig. 6. As we mentioned
before, the standing wave comes from the interference be-
tween bidirectional modes such that it requires a nonzero
T̃ and R̃. In addition, the normalization property of wave
functions requires T̃ + R̃ = 1 in principle. Therefore, those
unnormalized points of T̃ + R̃ should be attributed to the in-
terference between the bidirectional propagating modes inside
the scattering intervals. The only difference between these
two terms lies in that there exist multiple reflections inside
the scattering interval, as shown in Fig. 2(b). The multiple
reflections make the emitted fields inside the interval coherent
but in opposite directions, thus these fields could interfere
with each other (both the enhancement and destruction occur).
On the contrary, T + R represents the scattering outside the
outermost coupling points, such that the emitted fields are

unidirectional, i.e., the transmission is right-forward (denoted
by T ) and the reflection is left-forward (denoted by R). There-
fore, there does not exist a field in opposite direction to
interfere with the emitted fields. This difference makes T̃ +
R̃ 	= 1. Hence, the interference between bidirectional propa-
gating waves attributes to the sinusoidal form such that the
standing waves therein lead to the multiple peaks in Figs. 3
and 4.

V. TIME-DELAYED MASTER EQUATION

In Sec. III we have discussed the unconventional EIT
induced by the nonlocal couplings, which behaves as the
scattering spectra possessing multiple peaks. Actually, it also
describes a non-Markovian effect satisfying a time-delayed
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(a)

(b)

(d)

FIG. 6. Transmission and reflection spectra inside the scattering
interval. The parameters in the plots are N = 2, γ2 = γ3 = �32 =
0, φ = 200π , and in (a) �c = 0.1�31, τ = 0.05/�31, in (b) �c =
0.1�31, τ = 3/�31, in (c) �c = 0.1�31, τ = 10/�31, and in (d),
�c = �31, τ = 10/�31. T̃ + R̃ (black dashed lines) is not always
normalized except for two-photon resonance. The unnormalized
points indicate an enhancement of interference between bidirectional
modes, while the normalized points T̃ = 1 and R̃ = 0 (T̃ = 0 and
R̃ = 1) correspond to the local maximum (minimum) of interference.

master equation

ρ̇q
a (t ) = −i

[
V c(t ), ρq

a (t )
] + LLocρ

q
a (t )

+
N∑

n=1

LA
Dρq

a (t − nτ ) +
M∑

m=1

LB
Dρq

a (t − mτ̃ ), (10)

where ρ
q
a (t ) is the reduced density operator of the atom. Here

the superscript q labels the quantities in the full quantum
case, which distinguishes the quantities with a superscript c
in a classical theory, i.e., without considering the quantized
atom-waveguide interactions. The interaction Hamiltonian

V c(t ) reads

V c(t ) =
(

N∑
n=1

�pe−i�31t+iαxn |3〉〈1| + H.c.

)

+ (�ce−i�32t |3〉〈2| + H.c.) (11)

denoting the evolution under the probe field labeled by �p

and the control field labeled by �c. The superoperator

LLocρ
q
a (t ) =

∑
i=2,3

γ
φ

i D[|i〉〈i|]ρq
a (t ) + γ32D[|2〉〈3]ρq

a (t )

+ (γ31 + N�31)D[|1〉〈3|]ρq
a (t )

+ M�21D[|1〉〈2|]ρq
a (t ) (12)

in the first line describes a local dissipation related to the
nonwaveguide decoherence rate γ31(2) and the pure dephasing
rate γ

φ

2(3). The summations in the second line of Eq. (10)

LA
Dρq

a (t − nτ ) = −i�′
L[|3〉〈3|, ρq

a (t − nτ )]

+ 2�′
31D[|1〉〈3|]ρq

a (t − nτ ), (13a)
LB

Dρq
a (t − mτ̃ ) = −i�′

r[|2〉〈2|, ρq
a (t − mτ̃ )]

+ 2�′
21D[|1〉〈2|]ρq

a (t − mτ̃ ), (13b)

respectively, represent the nonlocal evolution related to the
waveguide A and B with the damping rates �′

31 = �31(N −
n) cos(nω31τ ) and �′

21 = �21(M − m) cos(ω21τ̃ ), and the
frequency shifts �′

L = �31(N − n) sin(nω31τ ) and �′
r =

�21(M − m) sin(ω21τ̃ ). These delayed terms describe a non-
Markovian effect, i.e., the waveguides are not memoryless.
Here D[O]ρ(t ) is the standard Lindblad superoperator for an
arbitrary operator O. (See the derivation in Appendix C.)

The time-delayed differential equation (11) can be ex-
panded in a matrix element form. Here we focus on two
coupled elements ρ

q
31 and ρ

q
21 since ρ

q
31 represents the exci-

tation and dispersion of the atom for the probe field and it
is equivalent to the excitation e3 in Eq. (4b) in real-space
scattering method. The equations of motion with respect to
ρ

q
21 and ρ

q
31 read

˙̄ρq
21(t ) = i

(
�31 − �21 + i�21

M

2
+ iγ2

2

)
ρ̄

q
21(t ) − �21

M∑
m=1

(M − m)emiωβ τ̃ ρ̄
q
21(t − mτ̃ ) − i�∗

c ρ̄
q
31(t ), (14a)

˙̄ρq
31(t ) = i

(
�31 + i�31

N

2
+ iγ3

2

)
ρ̄

q
31(t ) − �31

N∑
n=1

(N − n)eni(�31τ+φ)ρ̄
q
31(t − nτ ) − i�cρ̄

q
21(t ) − i

N∑
n=1

�peiαxn , (14b)

where γ2 = γ
φ

2 and γ3 = γ31 + γ32 + γ
φ

3 are the total loss
rates to the nonwaveguide degrees of freedom, as the same
as we defined in Eq. (1). Here, ρ̄

q
21(t ) = ρ

q
21(t )ei(�31−�32 )t and

ρ̄
q
31(t ) = ρ

q
31(t )ei�31t denote the slowly varying quantities. In

the derivation, we have considered ω − νc = ωβ and the atom
evolves adiabatically such that the populations at the level |i〉

remain the same, i.e., ρq
11(0) = ρ

q
11(t ) = 1, ρ

q
22(0) = ρ

q
22(t ) =

ρ
q
33(0) = ρ

q
33(t ) = 0 [46]. Since we are interested in the ex-

citation properties under the steady states, the above coupled
equations can be solved by performing a Fourier transforma-
tion and let the frequency introduced by the transformation be
zero. Finally, the steady-state solution reads

ρ̃
q
31 =

∑N
n=1 2πδ(0)�pe(N−n)i(�31τ+φ)

(
�31 − �32 − �(M )

r + i�(M )
r + iγ2

2

)
(
�31 − �32 − �

(M )
r + i�(M )

r + iγ2

2

)(
�31 − �

(N )
L + i�(N )

31 + iγ3

2

) − |�c|2
. (15)
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Note that Eq. (15) is consistent with the excitation e3 (4b)
under the replacement g̃31 → �p. Notably, the time de-
layed terms induced by the spatial nonlocality LA

Dρ
q
a (t − nτ )

and LB
Dρ

q
a (t − mτ̃ ) are now embedded in the sinusoidals of

Eqs. (7) and (8), such that the non-Markovian effect in fre-
quency domain behaves as the dependence of �

(N )
31 on the

input frequency �31 which exhibits a multipeak property in
transmission spectra (cf. Figs. 3 and 4). Besides, this type of
non-Markovian effects results from the inherent nonlocalities
rather than the spectral property of interacting environments,
which is different from common non-Markovian dynamics
[47–49].

VI. FURTHER DISCUSSION Of THE MASTER EQUATION

Traditionally, the EIT phenomenon is commonly described
by a master equation under Born-Markovian approximation
without considering the quantized atom-waveguide interac-
tions [26]. However, this treatment is not applicable to giant
atoms. In this section, we start from this type of master equa-
tion and show why the quantized interactions are needed in
giant atoms in Sec. VI A. We then discuss the validity of
Markovian approximation in Sec. VI B.

A. Comparison with the master equation used
in Ref. [31]

In Ref. [31] the authors also consider EIT in a �-
type transmon qubit coupled to a waveguide at multiple
points but the observed results show that there exists a
discrepancy between the data and the fit calculated by a
master equation without considering the quantized atom-
waveguide interactions in Fig. 8 of Ref. [31], although
they have applied a rotation to take the phases into ac-
count. Given this, we provide the following derivation to
show why this type of master equation is not suitable for
giant atoms.

According to the Ref. [31], the dynamics of the λ-type
giant atom is governed by the Lindblad master equation

ρ̇c
a (t ) = −i[V c(t ), ρc

a (t )] + L0
locρ

c
a (t ), (16)

where

L0
locρ

c
a (t ) =

∑
i=2,3

γ
φ

i D[|i〉〈i|]ρc
a (t ) + γ32D[|2〉〈3|]ρc

a (t )

+(γ31 + �31)D[|1〉〈3|]ρc
a (t ).

Here, the symbols are as same as those we defined in Sec. V,
and �31 is introduced to phenomenally consider the decoher-
ence to the waveguide A. Following the same procedure in
Sec. V, the solution reads

ρ̃c
31 =

∑N
n=1 2πδ(0)�pe(N−n)i(�31τ+φ)

(
�31 − �32 + iγ2

2

)
(
�31 − �32 + iγ2

2

)(
�31 + i�31

2 + iγ3

2

) − |�c|2
.

(17)

In contrast to the excitation e3 (4b), the decay rate �31 here
is a constant since it is phenomenally introduced without
considering the multiple-point couplings between the atom
and the waveguide A, such that it cannot induce the frequency-
dependent Lamb shift and modified decay rate [cf. Eqs. (7)

FIG. 7. The excitation spectra of the giant atom obtained by the
semiclassical master equation and by the real-space method when
N = 2. Parameters used in plotting are �32 = γ2 = γ3 = 0, φ =
200π , and in (a) |�c| = 0.1�31, τ = 0.05/�31, in (b) |�c| = 0.1�31,
τ = 3/�31, in (c) |�c| = 0.1�31, τ = 10/�31, and in (d) |�c| = �31,
τ = 10/�31. Here the superscript c in Eq. (17) is neglected for
brevity. With the absence of effective decay rate �

(N )
31 , the master

equation always provides standard EIT or ATS spectra, as plotted
as blue dotted lines. However, as the time delay τ increases, the
multipeak property becomes much denser in the full quantum theory,
as plotted as red solid lines.

and (8)]. As a result, ρ̃c
31 cannot exhibit a multipeak absorption

spectra. To show this, we compare the excitation properties
between ρ̃c

31 (17) and e3 (4b) in Fig. 7, where both the fac-
tors �p

∑N
n=1 e(N−n)i(�31τ+φ) and g̃31

∑N
n=1 e(N−n)i(�31τ+φ) are

divided in normalization. One can see that this type of master
equation always provides standard EIT or ATS spectra, as
plotted in blue dotted lines. However, as the time delay τ

increases, the multipeak property of e3 becomes much denser,
as plotted in solid red lines.

The differences in Fig. 7 indicate that the this type of
master equation cannot well explain the special features of
giant atoms. This is because the quantized interaction between
the atom and the waveguide is neglected in this theory (see
Appendix C for more details). Indeed, if a classical input en-
ters the system from a waveguide, it can be decomposed into
two parts: (1) classical amplitudes denoted by Rabi frequen-
cies and (2) quantized noise input resulting from the quantized
system-waveguide coupling, which is denoted by creation and
annihilation operators of the waveguide [50–53]. Therefore, if
the classical amplitude with multiple-point couplings is con-
sidered, the quantized noise input should also be considered
in a similar way. Although in most cases, the theory with-
out considering the second point (2) is in good agreements
with experiments, it does not apply to giant atoms since the
multipeak properties and non-Markovian effects therein are
quantum effects that requires point (2).

B. The validity of Markovian approximation

In Ref. [5] the authors analyze the dynamics of a gi-
ant atom utilizing a full-quantum master equation under
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Markovian approximation. The obtained results show that the
Lamb shifts and modified decay rates only depend on the
atomic frequencies, i.e., the �31τ part is missing in both �

(N )
L

(8) and �
(N )
31 (9). As we discussed in Sec. III, this treatment

is valid only when the time delay τ is so small that it hardly
affects the dynamics of the atom. Indeed, Markovian approx-
imation is a local transformation which manually eliminates
the nonlocality, i.e., if we perform a Markovian approximation
ρ

q
a (t − nτ ) → ρ

q
a (t ) and ρ

q
a (t − mτ̃ ) → ρ

q
a (t ), Eq. (10) then

becomes

ρ̇qm
a (t ) = −i

[
V c(t ), ρqm

a (t )
] + Lqm

Locρ
qm
a (t ) (18)

with

Lqm
Locρ

qm
a (t ) =

∑
i=2,3

γ
φ

i D[|i〉〈i|]ρqm
a (t )

+ γ32D[|2〉〈3]ρqm
a (t ) + γ31D[|1〉〈3|]ρqm

a (t )

+ 2�
qm
31 D[|1〉〈3|]ρqm

a (t ) − i�qm
L

[|3〉〈3|, ρqm
a (t )

]
+ 2�

qm
21 D[|1〉〈2|]ρqm

a (t ) − i�qm
r

[|2〉〈2|, ρqm
a (t )

]
,

where

�
qm
31 = �31

N∑
n=1

[
N

2
+ (N − n) cos(nφ)

]
, (19a)

�
qm
L = �31

N∑
n=1

(N − n) sin(nφ), (19b)

�qm
r = �21

M∑
m=1

[
M

2
+ (M − m) cos(mω21τ̃ )

]
, (19c)

�qm
r = �21

M∑
m=1

(M − m) sin(mω21τ̃ ). (19d)

Here the superscript qm means the quantities derived from a quantum theory under Markovian approximation. Following the
procedure we used before, the solution reads

ρ̃
qm
31 =

∑N
n=1 2πδ(0)�pe(N−n)i(�31τ+φ)

(
�31 − �32 − �

qm
r + i�qm

r + iγ2

2

)
(
�31 − �32 − �

qm
r + i�qm

r + iγ2

2

)(
�31 − �

qm
L + i�qm

31 + iγ3

2

) − |�c|2
. (20)

One can see that the frequency-dependent properties herein
are localized at the atomic frequencies, as same as those in
Ref. [5]. In the real-space scattering method, the Markovian
approximation behaves as eiαx → eiω31x/vg [54,55], and one
can obtain the excitation amplitude e3 having a similar form
(20).

Comparing Eq. (10) and Eq. (18), one can conclude that the
dynamics under the quantized atom-waveguide interaction is
governed by the decay of N individual points and the interfer-
ences between these points, respectively. The improper using
of Markovian approximation destroys the non-Markovian re-
tarding effects that are supposed to be present in the system.

VII. CONCLUSION

In conclusion, we discovered unconventional EIT and ATS
in a single giant atom. Also, we presented a time-delayed
master equation approach to observing the unconventional
EIT and the corresponding results are consistent with those
calculated by the existing real-space scattering method. This
interesting phenomenon is a typical quantum effect, and our
theory indicates that it cannot be characterized in the absence
of quantized atom-waveguide interactions [30,31]. To observe
it in an experiment, the time delay between two neighboring
coupling points must be comparable to the relaxation time,
and this is why it has not been experimentally observed so
far. Also, the physics behind this phenomenon is the inher-
ent nonlocality of giant atoms which leads to the standing
waves in space and retardations in time. More importantly,
in a recent review [23], giant atoms are defined by the ratio
between the atomic size and the wavelength of the interacting
fields, however, this definition is improper. When a transmon
qubit couples to the acoustic waves via a single interdigitated

transducer [30], the transmon qubit is “giant” in this sense.
However, the observed phenomenon is as same as those in
small atoms. Thus, giant atoms should be defined as atoms
who are coupled to the waveguides at multiple points, since
the nonlocality resulting from this structure is the core for the
all of unconventional effects therein.

The proposed time-delayed master equation describes the
non-Markovian dynamics of the giant atom in time domain,
based on which we can further consider quantum control
of giant atoms. Also, our work has established a theoretical
basis for giant atoms, which can be used to explore possi-
ble applications in future quantum devices, such as filters
[56–58], switches [3,33], memories [59], slowing/stopping
light [60–62], lasers without inversion [63–65], and frequency
convertors [34]. Besides these traditional applications, a more
interesting direction is utilizing giant atoms to design quantum
sensors [53]. In Ref. [53] the authors find that the giant-cavity
(i.e., cavities couple to the waveguide with multipoint cou-
plings) -based proposal can build up an inherent nonreciprocal
coupling due to the multipoint coupling structure, and the
sensing performance can be greatly enhanced compared to
the small-cavity-based proposal. Especially, their output noise
can remain at the shot noise level. These results show great
values of giant atoms in quantum sensing, therefore, a future
direction is to apply giant atoms to quantum sensing.
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APPENDIX A: MATHEMATICS ON DERIVATIONS
OF HAMILTONIAN AND SCATTERING AMPLITUDES

The original Hamiltonian of the system in Fig. 1 is given
by

Ho = ω21|2〉〈2| + ω31|3〉〈3| +
∫

dα ωαa†
αaα

+
∫

dβ ωβb†
βbβ + (�ce−iνct |3〉〈2| + H.c.)

+
N∑

n=1

∫
dα[g31(xn)|3〉〈1|aα + H.c.]

+
M∑

m=1

∫
dβ[g21(x̃m)|2〉〈1|bβ + H.c.], (A1)

where we define the coupling strengths as g31(xn) = g31eiαxn

and g21(x̃m) = g21eiβ x̃m . Rotating the system with U =
exp(iνct |2〉〈2| + iνct

∫
dβ b†

βbβ ), we then can obtain a time-
independent Hamiltonian

H = (ω21 + νc)|2〉〈2| + ω31|3〉〈3| +
∫

dα ωαa†
αaα

+
∫

dβ (ωβ + νc)b†
βbβ + (�c|3〉〈2| + H.c.)

+
N∑

n=1

∫
dα[g31(xn)|3〉〈1|aα + H.c.]

+
M∑

m=1

∫
dβ[g21(x̃m)|2〉〈1|bβ + H.c.]. (A2)

Here we assume that the entire frequency range of interest is
far away from the cutoff frequencies of the waveguides such
that the linear dispersion relation holds, i.e., ωα = vgα,ωβ =
ṽgβ. Also, only modes in a very narrow frequency interval
around ω31 and ω21 can efficiently interact with the atom, and
thus the waveguide modes can be treated as two distinct ones
[32], i.e., ∫

dα ωαa†
αaα =

∫
dαR ωαR a†

αR
aαR

+
∫

dαL ωαL a†
αL

aαL , (A3a)∫
dβ (ωβ + νc)b†

βbβ =
∫

dβR (ωβR + νc)b†
βR

bβR

+
∫

dβL (ωβL + νc)b†
βL

bβL , (A3b)

where left- and right-going modes are labeled by the
subscripts L and R. To transfer the Hamiltonian (A2)
into real space, we define the Fourier transformations aαR =∫

dx aR(x)e−iαRx, a†
αL

= ∫
dx a†

L(x)eiαLx, bβR = ∫
dx̃ bR(x̃)

e−iβRx̃, b†
βR

= ∫
dx̃ b†

R(x̃)eiβRx̃, and substituting Eqs. (A3a) and
(A3b) into Eq. (A2), we then have

Heff =
(

ω21 + νc − iγ2

2

)
|2〉〈2| +

(
ω31 − iγ3

2

)
|3〉〈3| + (�c|3〉〈2| + H.c.)

−
∑

l=L,R

fl

∫
dxa†

l (x)

(
ivg

∂

∂x

)
al (x) +

∑
l=L,R

∫
dx̃b†

l (x̃)

(
νc − i fl ṽg

∂

∂ x̃

)
bl (x̃)

+g̃31

∑
l=L,R

N∑
n=1

∫
dxδ(x − xn)(|3〉〈1|al (x) + H.c.) + g̃21

∑
l=L,R

M∑
m=1

∫
dx̃δ(x̃ − x̃m)(|2〉〈1|bl (x̃) + H.c.), (A4)

with g̃3(2)1 = √
2πg3(2)1. Note that we additionally introduce iγ2(3) to describe the nonwaveguide loss of the atom, which can be

obtained by writing down the full system-environment Hamiltonian and eliminating the variables of environments [32].
Substituting Eq. (1) and Eq. (3) into the stationary Schrödinger equation Heff |�〉 = ω|�〉, one can obtain the following

differential equations:

(
− ivg

∂

∂x
− ω

)
φα

R (x) + e3g̃31

N∑
n=1

δ(x − xn) = 0,

(
ivg

∂

∂x
− ω

)
φα

L (x) + e3g̃31

N∑
n=1

δ(x − xn) = 0,

(
− iṽg

∂

∂ x̃
+ νc − ω

)
φ

β
R (x̃) + e2g̃21

M∑
m=1

δ(x̃ − x̃m) = 0,

(
iṽg

∂

∂ x̃
+ νc − ω

)
φ

β
L (x̃) + e2g̃21

M∑
m=1

δ(x̃ − x̃m) = 0,

e2(ω21 + νc − ω) + e3�
∗
c + g̃21

M∑
m=1

[
φ

β
R (x̃m) + φ

β
L (x̃m)

] = 0, e3(ω31 − ω) + e2�c + g̃31

N∑
n=1

[
φα

R (xn) + φα
L (xn)

] = 0, (A5)

where φ
α(β )
R(L) are defined in Eqs. (3a)–(3d). The Dirac δ functions demonstrate that the wave function is discontinuous at the

scattering point xn(x̃m). Therefore, we can divide the whole scattering into several intervals, i.e., the scattering for the giant atom
can be considered as that for a series of cascaded small atoms. This is the reason for the Fig. 2.
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The corresponding solutions of Eq. (A5) can be obtained by taking integrations over the interval x ∈ [x−
n , x+

n ], x̃ ∈ [x̃−
m , x̃+

m ]
such that the scattering amplitudes read

tN =
(
�31 − �32 − �(M )

r + iγ2

2 + i�(M )
21

)(
�31 − �

(N )
L + iγ3

2

) − |�c|2(
�31 − �32 − �

(M )
r + iγ2

2 + i�(M )
21

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
, (A6a)

e3 =
(
�31 − �32 − �(M )

r + iγ2

2 + i�(M )
21

)
g̃31

∑N
n=1 e(N−n)i(�31τ+φ)(

�31 − �32 − �
(M )
r + i�(M )

21

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
, (A6b)

t̃M = − i�∗
c

ṽg

g̃21
∑M

m=1 e−(M−m)iωβ τ̃ g̃31
∑N

n=1 e(N−n)i(�31τ+φ)(
�31 − �32 − �

(M )
r + i�(M )

21

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
, (A6c)

r̃1 = − i�∗
c

ṽg

g̃21
∑M

m=1 e(M−m)iωβ τ̃ g̃31
∑N

n=1 e(N−n)i(�31τ+φ)(
�31 − �32 − �

(M )
r + i�(M )

21

)(
�31 − �

(N )
L + iγ3

2 + i�(N )
31

) − |�c|2
, (A6d)

where �(M )
r , �

(M )
21 , �

(N )
L �

(N )
31 are defined in Eqs. (6)–(9). The

first two equations are Eqs. (4a) and (4b), and the last two
equations denote the scattering in the waveguide B. Notably,
if we choose M = 1, N = 2 and �c = 0, the transmission
amplitude tN reduces to that of a two-level giant atom [12,16].

According to Eqs. (A6c)–(A6d), one can always find a
condition

∑N
m=1 exp[(M − m)iωβτ̃ ] = 0 for a given M such

that t̃M = r̃1 = 0, which means that the incident single photon
cannot be detected in the waveguide B, i.e., the system does
not involve frequency conversions [34,35]. For instance, if
we choose M = 2 (the case we discussed in the main text),
this condition becomes ωβτ̃ = (2k + 1)π , which is also the
condition of eliminating the undesired spontaneous transition
|1〉 ↔ |2〉.

APPENDIX B: STANDARD EIT IN A SMALL ATOM

According to Eq. (4a), the giant atom reduces to a small
atom when N = 1. Therefore, the system can exhibit a
standard EIT or ATS phenomenon depending on the Rabi
frequency �c [32,33], as shown in Fig. 8 with

t1 =
(
�31 − �32 + iγ2

2

)(
�31 + iγ3

2

) − |�c|2(
�31 − �32 + iγ2

2

)(
�31 + iγ3

2 + i�31
2

) − |�c|2
. (B1)

As �c increases from zero, the system gradually enters
from the resonance absorption to the EIT and then to the ATS
regimes, as shown in Fig. 8(a). Both EIT and ATS phenomena
can be well explained by dressed states. The strong control
field �c makes the bare level |3〉 split into two dressed states
|3+〉 and |3−〉 which are spaced by 2�c. Therefore, there exist
two excitation pathways for the transition |1〉 → |3〉 pumped
by the probe field �p: (1) |1〉 → |3+〉 → |3〉 pathway and (2)
|1〉 → |3−〉 → |3〉 pathway. These two pathways have equal
but opposite probability amplitudes. In the EIT regime, de-
structive interference occurs between two pathways, making
the atom transparent for the probe field [24–26]. Thereby, the
spectrum exhibits a sharp transparent peak at two-photon res-
onance �31 = �32, shown as the red dashed line in Fig. 8(a)
and Fig. 8(b). However, destructive interference does not oc-
cur in the ATS regime [40]. Hence the spectrum exhibits
two absorption peaks corresponding to the dressed states at
the single-photon resonances �31 = ±�c, shown as the black

dotted line in Fig. 8(a). Figures 8(c) and 8(d) show the in-
fluences of nonwaveguide loss γ2 and γ3 in the EIT regime.
As the loss γ2 increases, the transparency peak gradually
decreases until disappears, as shown in Fig. 8(c). This is
because the increasing γ2 breaks the strong field condition
�c  √

�31γ2/2, which is necessary for EIT. In addition, the
increase of loss γ3 induces a decrease in absorption, as shown
in Fig. 8(d). This is because the loss γ3 presents in the term of
single-photon resonance, and thus it represents the loss of the
absorption. The above discussions also apply to giant atoms;
we do not provide it in the main text for brevity.

(a)
(b)

(c) (d)

FIG. 8. Transmission spectra for a small atom (N = 1). Param-
eters used in plotting are in (a) �32 = γ2 = γ3 = 0, in (b) �c =
0.1�31 and γ2 = γ3 = 0, in (c) �c = 0.1�31 and �32 = γ3 = 0, and
in (d) �c = 0.1�31 and �32 = γ2 = 0. (a) As Rabi frequency �c in-
creases, the system gradually enters the resonance absorption regime
(blue solid line), EIT regime (red dashed line), and ATS regime
(black dotted line). (b) The influence of the detuing �32. Since the in-
duced transparency occurs at two-photon resonance, the transparency
peak is shifted by the detuning �32. (c) The influence of the loss γ2.
As the loss γ2 increases, the transparency peak gradually decreases
until disappear. This is because a large loss γ2 breaks the strong
field condition �c  √

�31γ2/2. (d) The influence of the loss γ3. The
efficiency of absorption decreases as the loss γ3 increases.
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APPENDIX C: DERIVATION OF MASTER EQUATIONS

In contrast to the original Hamiltonian (A1), we consider
a classical input �p with position-dependent phase exp(iαxn)
describing the propagation effects enters the atom from the
waveguide A, such that the Hamiltonian of a �-type giant
atom is then given by

H� =
3∑

i=1

ωi|i〉〈i| +
N∑

n=1

(�pe−iωt+iαxn |3〉〈1| + H.c.)

+ (�ce−iνct |3〉〈2| + H.c.)

+
∫

dα ωαa†
αaα +

∫
dβ ωβb†

βbβ

+
N∑

n=1

∫
dα[g31|3〉〈1|aαeiαxn + H.c.]

+
M∑

m=1

∫
dβ[g21|2〉〈1|bβeiβ x̃m + H.c.], (C1)

where the frequencies of level |i〉 is ωi. Thus the interaction
Hamiltonian in the interaction picture takes the form

V (t ) = V c(t ) + V q(t ),

where V c(t ) is defined in Eq. (12) and

V q(t ) = g31

N∑
n=1

∫
dα (|3〉〈1|aαe−i�αt+iαxn + H.c.)

+g21

M∑
m=1

∫
dα (|2〉〈1|bβe−i�β t+iβ x̃m + H.c.)

with detunings �α = ωα − ω31 = ωα − (ω3 − ω1) and �β =
ωβ − ω21 = ωβ − (ω2 − ω1). Here we also assume ω1 = 0 as
the reference.

The dynamics of the giant atom is governed by the follow-
ing Born master equation:

ρ̇a(t ) = −i[V c(t ), ρa(t )] − itrw[V q(t ), ρa(0) ⊗ ρw(0)]

− trw

∫ t

0
dt ′ [V q(t ), [V q(t ′), ρa(t ′) ⊗ ρw(0)]]

+Ln−w
Loc ρa(t ), (C2)

where ρa(t ) is the atomic density operator in a generic
form and ρw(0) is the density operator of two waveguides
in the initial states. The superoperator Ln−w

Loc ρa(t ) =
γ31D[|1〉〈3|]ρa(t ) + γ32D[|2〉〈3|]ρa(t ) + γ

φ

2 D[|2〉〈2|]ρa(t ) +
γ

φ

3 D[|3〉〈3|]ρa(t ) denotes evolution governed by the
loss to the nonwaveguide degrees of freedom. Notably,
the terms related to V q(t ) have been neglected in
Sec. VI A.

After taking traces over the variables of waveguides,
Eq. (C2) reduces to Eq. (11). Notably, if we perform a
Markovian approximation ρa(t ′) → ρa(t ), Eq. (C2) reduces
to Eq. (19). One can examine that this replacement is equiv-
alent to ρ

q
a (t − nτ ) → ρ

q
a (t ) and ρ

q
a (t − mτ̃ ) → ρ

q
a (t ) in

Sec. VI B.
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