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Multipartite entanglement plays an important role in quantum information processing and quantum metrol-
ogy. Here, the dressing-energy-level-cascaded four-wave mixing (FWM) processes are proposed to generate
all-optical controlled multipartite entanglement within a single device. The entanglement characteristics of
the produced states of light are characterized by applying the Duan criterion and the positivity under partial
transposition criterion. Moreover, by using an internal dressing field to modulate atomic coherence, multiple
quantum coherent channels of FWM are simultaneously constructed, which result in a great extension of
entanglement mode number and quantum information capacity. We find that the violation of the entanglement
criteria inequalities is coherent-channel dependent, and the produced states can be directly modulated via atomic
coherence. Our system can integrate the generation and modulation of the entangled states in one process. It may
help provide a compact method for realizing large-scale quantum networks.
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I. INTRODUCTION

Multipartite entanglement has garnered a lot of attention
because of its significance and potential applications in quan-
tum information processing and quantum metrology [1–5].
A mature technology for generating multiphoton entangled
states is applying multiple spontaneous parametric down-
conversion processes, which produce down-converted photon
pairs in a second-order nonlinear crystal [6–10]. Continuous-
variable multipartite entanglement can be implemented by
using multiple optical parametric oscillators [11–17]. Addi-
tionally, many alternative methods to produce multipartite
entanglement have been demonstrated, such as quantum fre-
quency combs [18,19], spatial modes [20], and temporal
entanglement [21,22]. Hitherto, multipartite entanglement has
been widely applied in quantum sensing [23–25], quan-
tum computing [26–28], and constructing quantum networks
[29,30].

In recent years, another effective method for preparing
entanglement is using the four-wave mixing (FWM) process
of atomic media. Entangled light beams have been experi-
mentally verified through a parametric amplified (PA) FWM
process in high-gain atomic media [30–33]. The FWM pro-
cess exhibits unique advantages. It has the nature of a spatial
multimode, and the produced entangled light beams are spa-
tially separated [34,35]. Also, due to the strong nonlinearity,
the optical cavity is not required, and therefore, the exper-
imental setup is simplified. With the features of scalability
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and flexibility, many methods to prepare multipartite entan-
glement using FWM have been theoretically proposed and
experimentally demonstrated, including a multipump [36,37]
and cascading atomic cells [38–41]. However, the effect of the
atomic coherence, which is important for generating and mod-
ulating multipartite entanglement in atomic ensemble, has not
been explored.

In an atomic ensemble, the nonlinear susceptibility of
FWM can be actively modulated based on atomic coherence.
The induced dressing effect can be used to reshape the para-
metric gain profile of FWM and realize coherent control of the
quantum entanglement. Moreover, via splitting atomic energy
levels with the dressing effect, the frequency modes of the
correlated photons can be extended to construct multiple co-
herent channels of FWM, and it results in hyperentanglement
and energy-time entanglement [42–44]. Also, with the con-
structive interference among different transition probability
amplitudes, the conversion efficiency of the FWM process
may increase, and therefore, the degree of squeezing states
of light can be enhanced by modulating the internal states of
a multilevel atomic system [45–47].

In this paper, multipartite entangled states of light are pro-
duced from dressing-energy-level-cascaded (DELC) FWM
in one step. This scheme employs a single device of hot
rubidium atomic medium and exhibits advantages such as
simplified experimental devices, lower optical path losses,
and fewer vacuum losses. We apply the Duan [48] and the
positivity under partial transposition (PPT) [49,50] criteria
to investigate the multipartite entanglement of the output
beams. Furthermore, we introduce the dressing field to si-
multaneously construct multiple coherent channels of FWM,
thereby realizing multimode entanglement and expanding the
quantum information capacity. In this paper, with atomic
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FIG. 1. (a) Energy-level diagram of the three-mode dressing-
energy-level-cascaded (DELC)-four-wave mixing (FWM) processes
in the rubidium atomic system. (b) The spatial distribution of the
beams. The arrows represent the signal beams. The angles are deter-
mined by the phase-matching conditions, and the intersection point
is the Rb cell. ki is the wave vector of Ei (i = 1, 2, 3, S1, S2,
S3). (c) Energy-level diagram of parametric amplified (PA)-FWM1
process. (d) Energy-level diagram of PA-FWM2 process. (e) The
tangential distribution of output signal beams. The belts indicate
quantum correlation existing between the two connected modes.

coherence, the generation and modulation of multipartite en-
tanglement can be integrated in the process of the entangled
state preparation. These results may be helpful for providing a
compact way in multimode quantum secure communication,
quantum computing, and quantum sensing.

II. THEORETICAL MODEL OF DELC-FWM PROCESSES

A. Generation of three-mode outputs

We consider a double-�-type three-level |1〉-|2〉-|3〉 atomic
system, as shown in Fig. 1. One possible experimental can-
didate for the proposed system is 5S1/2, F = 2(|1〉), 5S1/2,
F = 3 (|2〉) and 5P1/2, (|3〉) in 85Rb. The atom is driven
from |1〉 to |3〉 (with an energy mismatch) with a beam
of energy E1 (frequency ω1, wave vector k1, and Rabi fre-
quency �1), from where it decays to |2〉, emitting a photon
in mode ES1. It is then again excited by the same driving
beam, from where it can decay to the ground state, emit-
ting a photon with energy E2 (ω2, k2, and �2), E2 = E(|3〉)
− E(|1〉)+ �

′
1. The atom is driven from |1〉 to |3〉 (with an

energy mismatch) with a beam of energy E3 (ω3, k3, and �3),
from where it decays to |2〉, emitting a photon with energy
ES3, ES3 = E(|3〉) − E(|2〉) + �3.

The entire process can be viewed as two PA-FWM
processes [Figs. 1(c) and 1(d)] cascaded together, which cor-
responds to two cascading Rb cells, as shown in Fig. 2. The
detuning �i is defined as the difference between the resonant
transition frequency and the laser frequency of Ei. With the
detuning of E1 tuned far away from the resonance, PA-FWM1
and PA-FWM2 will occur in the system, which can gener-
ate the quantum correlated output beams ES1, ES2 (amplified
E2), and ES3 in a single Rb cell satisfying the phase-match
conditions kS1 + kS2 = 2k1 and kS2 + kS3 = k1 + k3, respec-
tively.

FIG. 2. Schematic diagram of cascading two Rb cells to generate
three-mode entangled states. â2in is the seed input signal; â1in and
â3in are the vacuum input signals. E2 is amplified by PA-FWM1 and
injected into PA-FWM2. â1out, â2out, and â3out are three output signals.

In this DELC-FWM system, three inputs E1, E2, and E3

converge in the Rb cell and generate three spatially separated
outputs ES1, ES2 (amplified E2), and ES3 by cascading two PA-
FWM processes. Here, PA-FWM1 and PA-FWM2 processes
can be symbolized in simple terms by a phenomenological
Hamiltonian as follows [51]:

H1 = ih̄κ ′
1b̂1â†

1b̂1â†
2 + H.c., (1a)

H2 = ih̄κ ′
2b̂2â†

2b̂2â†
3 + H.c., (1b)

where κ ′
1 and κ ′

2 describe the strength of the nonlinear interac-
tion. Here, â†

1, â†
2, and â†

3 are the boson operators for the output
modes of ES1, ES2, and ES3, respectively; b̂1 and b̂2 are the
boson operators for the pump fields E1 and E3, respectively.
Also, H.c. is Hermitian conjugate. The provided pump fields
are of sufficient intensity that they may be treated classically
and as nondepleting. Therefore, Eqs. (1a) and (1b) can be
rewritten as

H1 = ih̄κ1â†
1â†

2 + H.c., (2a)

H2 = ih̄κ2â†
2â†

3 + H.c., (2b)

where κ1 = −i�1χ
(3)
1 E2

1 /2c and κ2 = −i�2χ
(3)
2 E1E3/2c; κ1

and κ2 physically depend on the central frequency of gener-
ated signals �i, the third-order nonlinear susceptibility χ

(3)
1

and χ
(3)
2 , and the intensity of the pump field, and practi-

cally depend on the atomic temperature (i.e., atomic density),
phase-matching angle of the fields, etc.

The boson-creation (annihilation) operator satisfies the
Heisenberg operator of motion in the dipole approxi-
mation. The dynamic equation of the system can be
written as dâi

dt = −i
h̄ [âi, H ], (i = 1, 2, 3), from which we

obtain

PA-FWM1 :
dâ1

dt
= κ1â†

2,
dâ2

dt
= κ1â†

1, (3a)

PA-FWM2 :
dâ2

dt
= κ2â†

3,
dâ3

dt
= κ2â†

2. (3b)

After the operation of time evolution equation, the final
input-output relations of this system are

â1out = G1â1in + g1â†
2in, (4a)

â2out = g1G2â†
1in + G1G2â2in + g2â†

3in, (4b)

â3out = g1g2â1in + G1g2â†
2in + G2â3in, (4c)
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where G1 = cosh(κ1t ) and G2 = cosh(κ2t ) are the amplitude
gain in PA-FWM1 and PA-FWM2, respectively; G2

i − g2
i = 1

(i = 1, 2). Here, t is the interaction time which can be adjusted
by changing the length and temperature of the Rb vapor in
experiment. Also, â†

1in, â†
2in, and â†

3in (â1in, â2in, and â3in) are
the creation (annihilation) operators of inputs E1, E2, and E3,
respectively; and â1out, â2out, and â3out are the annihilation
operators of the outputs ES1, ES2, and ES3, respectively. The
amplitude and phase quadrature operators are defined as X̂ =
â + â† and P̂ = i(â†−â). A vector of canonical quadrature
operators is defined as r = (X̂1, P̂1, · · · , X̂n, P̂n). The evolu-
tion equations of the three output modes can be written as
rout = Utririn, where the transform operation matrix Utri is

Utri =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1 0 g1 0 0 0

0 G1 0 −g1 0 0

g1G2 0 G1G2 0 g2 0

0 −g1G2 0 G1G2 0 −g2

g1g2 0 G1g2 0 G2 0

0 g1g2 0 −G1g2 0 G2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

The quantum correlations of multimode Gaussian states
generated by a quadratic Hamiltonian can be fully character-
ized by its covariance matrix (CM). The elements of the CM
are defined as follows:

σi j = 1
2 〈r̂i r̂ j + r̂ j r̂i〉 − 〈r̂i〉〈r̂ j〉. (6)

According to the definition of the CM, we can reconstruct
the CM as σ = UtriUT

tri based on Eq. (5) with the inputs of
coherent or vacuum states. Note that there does not exist
cross-correlation between the amplitude and phase quadrature
in this system, and the CM is positive and symmetric.

B. Generation of four-mode outputs

The relevant energy level to generate four-mode Gaus-
sian states in the Rb atomic system is the same as that in
the three-mode case, but the pump field E3 (ω3, k3, and
�3) drives the transitions |1〉 → |3〉 and |2〉 → |3〉 with fre-
quency detuning �3 and �

′
3, respectively. This four-mode

DELC-FWM system contains an eight-wave mixing process,
as shown in Fig. 3, which satisfies the phase-match condition
2k1 + 2k3 = kS1 + k2 + kS3 + kS4 and four FWM processes
that satisfy 2k1 = kS1 + k2, k1 + k3 = k2 + kS3, k1 + k3 =
kS1 + kS4, and 2k3 = kS3 + kS4, respectively. One of the sim-
plified methods to obtain the input-output relations is to view
the system as three PA-FWM processes cascaded, which cor-
responds to cascading three Rb cells, as shown in Fig. 4 [52].
The outputs of PA-FWM1, amplified E2 and Ev0, are injected
into PA-FWM2 and PA-FWM3, respectively. The interaction
Hamiltonian of these three PA-FWM processes can be ex-
pressed as

H1 = ih̄κ1â†
1â†

2 + H.c., (7a)

H2 = ih̄κ2â†
2â†

3 + H.c., (7b)

H3 = ih̄κ3â†
1â†

4 + H.c. (7c)

FIG. 3. (a) Energy-level diagram of the four-mode dressing-
energy-level-cascaded (DELC)-four-wave mixing (FWM) processes
in the rubidium atomic system. (b) The spatial distribution of the
beams. The arrows represent the signal beams. The angles are de-
termined by the phase-matching conditions. (c)–(e) Step breakdown
energy-level diagram of the subsystem. Three of the four parametric
amplified (PA)-FWM processes can compose the four mode DELC-
FWM processes. (f) The tangential distribution of output signal
beams. The belts indicate quantum correlation existing between the
two connected modes.

The amplitude gain and interaction strength are as follows:

G1 = cosh (κ1t ), κ1 = − i�1χ
(3)
1 E2

1

2c
, (8a)

G2 = cosh (κ2t ), κ2 = − i�2χ
(3)
2 E1E3

2c
, (8b)

G3 = cosh (κ3t ), κ3 = − i�3χ
(3)
3 E2

3

2c
. (8c)

Using a method like the three-mode system, we can obtain
the final input-output relations and then obtain the CM. The
transform operation matrix Uquad in this four-mode system can

FIG. 4. Schematic diagram of cascading three Rb cells to gen-
erate four-mode entangled states. â2in is the seed input signal; â1in,
â3in, and â4in are the vacuum input signals. The amplified E2 and
amplified Ev1 via the PA-FWM1 process are injected into PA-FWM2
and PA-FWM3, respectively. â1out , â2out, â3out , and â4out are four
output signals.
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be written as

Uquad=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1G3 0 g1G3 0 0 0 g3 0
0 G1G3 0 −g1G3 0 0 0 −g3

g1G2 0 G1G2 0 g2 0 0 0
0 −g1G2 0 G1G2 0 −g2 0 0

g1g2 0 G1g2 0 G2 0 0 0
0 g1g2 0 −G1g2 0 G2 0 0

G1g3 0 g1g3 0 0 0 G3 0
0 −G1g3 0 g1g3 0 0 0 G3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

III. MULTIPARTITE ENTANGLEMENT

In this section, Duan and PPT criteria are used to investi-
gate the multipartite entanglement of the generated quantum
Gaussian states. The inequalities of the Duan criterion using
the quantum correlations of the associated modes are defined
as follows:

Di j = V (X̂i − X̂ j ) + V (Ŷi + Ŷj ) � 4, (10)

where V (X̂i − X̂ j ) is the variance of the difference of the
amplitude quadratures, and V (Ŷi + Ŷj ) is the sum of the phase
quadratures. The values Di j suggest the amount of the insepa-
rability. The bipartite entanglement between modes âi and â j

can be demonstrated by the violation of the inequalities.
The PPT criterion can be used to characterize the entan-

glement of two subsystems which consist of one or several
modes, and the smaller symplectic eigenvalue suggests the
inseparability. It is a sufficient and necessary criterion for the
case of 1 vs n modes (1-n) and only sufficient for the case of
m-n. For bipartite entanglement of σAB, the partial transposi-
tion operation on part A is equivalent to the transformation
through matrix TA = [⊕m

k=1diag(1,−1)]A ⊕ IB, where the
first factor is its mirror reflection in phase space, and the
second factor represents the other subsystems. The criterion
will lead to the following uncertainty: σ̃AB + i� � 0, where
σ̃AB = TAσABTA, and � is the symplectic form with the
same dimensions as σ̃AB. The existence of negative symplectic
eigenvalues directly means the presence of entanglement.

A. Three-mode outputs

The Duan criterion can be applied to verify any two modes
of the three produced modes â1, â2, and â3. In the three-mode
system, the values of the Duan criterion D12, D13, and D23 are
given by

D12 = 4
[
G2

1

(
G2

2 + 1
) − 2G1G2

√
G2

1 − 1 − 1
]
, (11a)

D13 = 4G2
1G2

2, (11b)

D23 = −4G2
1

(
2G2

√
G2

2 − 1 − 2G2
2 + 1

)
. (11c)

The expressions show the dependence of D12, D13, and
D23 on the gains G1 and G2. The region plots are shown in
Fig. 5. The amount of the inseparability Di j > 4 means no
entanglement. The entanglement regions of modes â1 and â2

(D12 < 4) are the blue regions I and III in Fig. 5(a). The
entanglement between modes â1 and â2 is very sensitive to
G2. They entangle when G2 is smaller because only beam
â2 is amplified with the second PA-FWM process, which

leads to their quantum noise unbalance. Here, D13 > 4 for
any G1 > 1 and G2 > 1 in Fig. 5(c). This is because modes
â1 and â3 do not interact with each other in the Hamiltonian
in Eqs. (2a) and (2b), and thus, there is never entanglement
existing between modes â1 and â3. The entanglement regions
of modes â2 and â3 (D23 < 4) are the orange regions II and III
in Fig. 5(a). The entanglement of modes â2 and â3 is limited
by bigger G1, that is, a bigger G1 is not helpful in the presence
of the entanglement.

The PPT criterion is also verified in this three-mode system
as shown in Fig. 6. The PPT criterion can be used to charac-
terize the bipartite and tripartite entanglement. The value of
the PPT criterion <0 directly means the presence of entangle-
ment. The results of the bipartite entanglement characterized
by the PPT criterion are like the Duan criterion. The PPT
value of â1 − â3 > 0 for any G1 > 1 and G2 > 1, which is
consistent with previous analysis. The entanglement exists in
all 1–2 mode types. We find the trends of tripartite entangle-
ment â1−{â2â3} and â3−{â1â2} are like the entanglement of
â1 − â2 and â2 − â3, respectively, i.e., the conjugate beam â1

FIG. 5. Bipartite entanglement for the three-mode dressing-
energy-level-cascaded (DELC)-four-wave mixing (FWM) processes
using the Duan criterion. (a) Only D12 is <4 in region I. Only D23 is
<4 in region II. D12 and D23 are both <4 in region III. (b)–(d) Duan
values of D12, D13, and D23 with different values of the gains G1

and G2.
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FIG. 6. Positivity under partial transposition (PPT) values of
the three-mode dressing-energy-level-cascaded (DELC)-four-wave
mixing (FWM) processes. (a)–(c) Bipartite and (d)–(f) tripartite en-
tanglement region plots.

or â3 added with the probe beam â2 becoming {â1â2} or {â2â3}
can only quantitatively change the amount of entanglement
and does not change the dependence on parameters G1 and
G2.

B. Four-mode outputs

In the four-mode system, all possible two-mode permuta-
tions of the Duan criterion are verified, and the dependence
of Duan values on the gains G1, G2, and G3 are shown in
Eqs. (12a)–(12e). The corresponding contour plots are shown
in Fig. 7, where we set the gain of the first PA-FWM process
as 1.1:

D12 = 4
(
G2

1G2
2 + G2

1G2
3 − 2G1G2G3

√
G2

1 − 1 − 1
)
, (12a)

D13 = D24 = 4G2
1

(
G2

2 + G2
3 − 1

)
, (12b)

D14 = 4G2
1

(
2G2

3 − 2G3

√
G2

3 − 1 − 1
)
, (12c)

D23 = 4G2
1

(
2G2

2 − 2G2

√
G2

2 − 1 − 1
)
, (12d)

D34 = 4

(−2G2
1 + G2

1G2
2 + G2

1G2
3

−2G1

√
G2

1 − 1
√

G2
2 − 1

√
G2

3 − 1 + 1

)
. (12e)

The values of D12, D13, D24, and D34 all go up with the
increasing G2 and G3, suggesting that stronger G2 and G3 do
not help in enhancing the entanglement for a fixed G1. More-

FIG. 7. Bipartite entanglement for the four-mode dressing-
energy-level-cascaded (DELC)-four-wave mixing (FWM) processes
using the Duan criterion. (a)–(f) Contour plot of D12, D13, D14, D23,
D24, and D34 with different values of gains G2 and G3 at G1 = 1.1.

over, D14 (D23) changes with the gain G1 and G3 (G1 and G2)
because modes â1 and â4 (modes â2 and â3) never participate
in the PA-FWM2 (PA-FWM3) process, and therefore, gain G2

(G3) does not contribute to the entanglement between these
two modes.

The dependence of the PPT criterion on gain G1 in the
four-mode system is shown in Fig. 8. Here, we set the values
G2 = 1.3 and G3 = 1.1. The PPT values of â1 − â3, â2 − â4,
and â3 − â4 are not negative when G1 > 1, meaning the ab-
sence of entanglement, which are like the Duan criterion.
The modes â1 and â2 do not entangle when G1 is small
because the interaction of these two modes is not strong
enough in the Hamiltonian in Eq. (7a). The entanglement
of the three-mode subsystem in the four-mode system is all
verified in Figs. 8(b)–8(d). Here, â3−{â1â4} and â4−{â2â3} do
not entangle and therefore are not given in this figure. This is
because mode â3 (â4) does not interact with any one mode of
modes {â1â4} ({â2â3}) in this symmetrical structure. The PPT
values of 1-3 modes and 2-2 modes are all <0 when G1 > 1.
However, increasing G1 slightly decreases the entanglement
of {â1â2} − {â3â4}, â3−{â1â2â4}, and â4−{â1â2â3}.

IV. COHERENT CHANNELS WITH DRESSING EFFECT

In this section, we turn our attention to the atomic co-
herence control. We will start from the Hamiltonian of the
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FIG. 8. PPT values of the four-mode DELC-FWM processes with increasing G1 at G2 = 1.3 and G3 = 1.1. (a) Bipartite entanglement.
(b)–(d) Tripartite entanglement. (e) and (f) Quadripartite entanglement (two types of 1-3 and 2-2 modes).

system and finally obtain the third-order density matrix ele-
ment, which is the microscopic expression of the third-order
nonlinear susceptibility.

As an example, the effective Hamiltonian Heff of the PA-
FWM1 process is as follows:

Heff = h̄

⎛
⎜⎜⎜⎜⎝

0 0 − 1
2�∗

1 − 1
2�∗

S2

0 �1 − �S1 − 1
2 i
2 − 1

2�∗
S1 − 1

2�∗
1

− 1
2�1 − 1

2�S1 �1 − 1
2 i
3 0

− 1
2�S2 − 1

2�1 0 �1 − �S1 + �′
1 − 1

2 i
4

⎞
⎟⎟⎟⎟⎠. (13)

According to the Heisenberg-Langevin equation:

∂

∂t
ρ = 1

ih̄
[HI , ρ] − �ρ, (14)

where ρmn is the density matrix element and can be ex-
panded using the series expansion ρmn = ρ (0)

mn + ρ (1)
mn + · · · +

ρ (r)
mn + · · · , HI represents the corresponding interaction Hamil-

tonian, and � is the transverse relaxation rate; we can obtain
the equation of motion of each order density matrix element.

The derivative process of three output signals ES1, ES2,
and ES3 in the three-mode system can be described by the
perturbation chains:

PA-FWM1 : ρ (0)
11

ω1−→ ρ
(1)
31

ωS1−→ ρ
(2)
21

ω1−→ ρ
(3)
31(S2),

PA-FWM1 : ρ (0)
22

ω1−→ ρ
(1)
32

ω2−→ ρ
(2)
12

ω1−→ ρ
(3)
32(S1),

PA-FWM2 : ρ (0)
11

ω3−→ ρ
(1)
31

ωS3−→ ρ
(2)
21

ω1−→ ρ ′(3)
31(S2),

PA-FWM2 : ρ (0)
22

ω1−→ ρ
(1)
32

ω2−→ ρ
(2)
12

ω3−→ ρ
(3)
32(S3).

The first step ρ
(0)
11

ω1−→ ρ
(1)
31 expresses that an atom in the

ground state ρ
(0)
11 absorbs a pump photon ω1 and transitions

to the excited state ρ
(1)
31 . The second and third steps can be

understood similarly. Assume that the atoms are at energy
level |1〉 initially; therefore, the initial conditions are ρ

(0)
11 = 1,

and other zero-order density matrix elements are all zero.
Under the steady-state approximation and the weak field ap-

proximation (i.e., the amplitude of the signal field is far less
than the pump field), the third-order density matrix element
can be solved according to the perturbation chains as follows:

PA-FWM1 : ρ (3)
31(S2) = − i�2

1�S1

d31d21d ′
31

, (15a)

PA-FWM1 : ρ (3)
32(S1) = − i�2

1�2

d32d12d ′
32

, (15b)

PA-FWM2 : ρ ′(3)
31(S2) = − i�1�3�S3

d ′′
31d ′

21d ′′′
31

, (15c)

PA-FWM2 : ρ (3)
32(S3) = − i�1�2�3

d32d ′
12d ′′

32
, (15d)

where �i = μEi/h̄ is the Rabi frequency of field
Ei. Here, d31 = 
31 + i�1, d21 = 
21 + i(�1 − �S1),
d ′

31 = 
31 + i(�1 − �S1 + �′
1), d32 = 
32 + i�′

1,
d12 = 
12 + i(�′

1 − �S2), d ′
32 = 
32 + i(�′

1 − �S2 + �1),
d ′′

31 = 
31 + i�3, d ′
21 = 
21 + i(�3 − �S3), d ′′′

31 =

31 + i(�3 − �S3 + �′

1), d ′
12 = 
12 + i(�′

1 − �′
S2),

and d ′′
32 = 
32 + i(�′

1 − �′
S2 + �3). Also, �S1, �S2, and

�S3 represent the frequency detuning of the signals ES1,
ES2, and ES3. Furthermore, �1 and �′

1 are the frequency
detuning of the fields E1 from the transitions |1〉 → |3〉 and
|2〉 → |3〉, respectively, defined as the difference between the
resonant transition frequency and laser frequency, and �3 is
the frequency detuning of the fields E3.

Due to the frequencies ωSi of generated photons with
small quantum deviations δi around the corresponding central
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TABLE I. Resonance frequencies of the coherent channels in the three-mode DELC-FWM processes.

Resonance frequencies of the coherent channels

Coherence channels δ1 δ2 δ′
2 δ3

C1 δ1 = −�′
1 δ2 = �′

1 δ′
2 = �′

1 δ3 = −�′
1

C2 δ1 = �1+
√

�2
1+4
21
23+4�2

1
2 δ2 = −�1+

√
�2

1+4
21
23+4�2
1

2 δ′
2 = −�1+

√
�2

1+4
21
23+4�2
1

2 δ3 = �1+
√

�2
1+4
21
23+4�2

1
2

C3 δ1 = �1−
√

�2
1+4
21
23+4�2

1
2 δ2 = −�1−

√
�2

1+4
21
23+4�2
1

2 δ′
2 = −�1−

√
�2

1+4
21
23+4�2
1

2 δ3 = �1−
√

�2
1+4
21
23+4�2

1
2

frequency �Si, ωSi can be written as ωSi = �Si + δi (i = 1,
2, 3) with the limitation of |δi| 	 �Si. Considering quantum
deviation δ1, the frequency detuning of the signals ES1 can be
expressed as �S1 = ω32 − ωS1 = ω32 − (�S1 + δ1) = �1 −
δ1. According to the conservation of energy in PA-FWM1
and PA-FWM2, δ2 = −δ1 and δ3 = δ1, which show the fre-
quency correlation of the triphoton state in this three-mode
energy-level-cascaded system. Different quantum properties
of the triphoton state can also be reflected by focusing on
these photon deviations. In the resonance conditions of cou-
pling fields, the third-order density matrix element ρ

(3)
31(S2) in

Eq. (12b) with the expression of �S1 can be rewritten as
follows:

ρ
(3)
31(S2) = −i�2

1�S1

(
31 + i�1)(
21 + iδ1)(
31 + iδ1 + i�′
1)

. (16)

The third-order density matrix element ρ (3) is propor-
tional to the third-order nonlinear susceptibility χ (3), which
determines the strength of the nonlinear interaction and
therefore affects the gain of the nonlinear process accord-
ing to Eqs. (8a)–(8c). Using atomic coherence, parametric
gain properties of this quantum interplay can be directly
adjusted by modulating the dressing effect. A laser field,
especially from the same laser as pump field E1, is added
as a dressing field to modulate the energy levels involved
in the PA-FWM process. When we consider the dressing
effect of E1, the perturbation chain of ES2 can be expressed
as

ρ
(0)
11

ω1−→ ρ
(1)
31

ωS1−→ ρ
(2)
2�1±

ω1−→ ρ
(3)
31(S2)D.

The subscript 1 of ρ
(2)
21 is replaced by �1±, which indicates

that dressing fields E1 dress the level |1〉 and influence the
identical coherence between states |1〉 and |3〉. The third-order
density matrix element in Eq. (16) with a single dress can be
rewritten as follows:

ρ
(3)
31(S2)D = −i�2

1�S1[
(
31 + i�1 )

(

21 + iδ1 + �2

1

23+iδ1−i�1

)
(
31 + iδ1 + i�′

1 )

] . (17)

By maximizing the denominator of the third-order den-
sity matrix element, we can obtain the resonance positions
as shown in Table I. Figure 9 shows the third-order den-
sity matrix element in the perturbation chains under different
conditions and exhibits the resonance positions of small
quantum deviations window δi, which is the frequency cor-
responding to the coherent channels. The first and second
rows are the Stokes and anti-Stokes signals of PA-FWM1,

respectively. The third and fourth rows are the Stokes and
anti-Stokes signals of PA-FWM2, respectively. A set of lon-
gitudinal resonance positions corresponds to one coherent
channel and a single FWM mode. The dressing field E1 cre-
ates the dressed states |1±〉 from |1〉, as shown in Fig. 10.
It results in two coexisting PA-FWM coherent channels, and
the output signals thus have two modes of different fre-
quencies, and therefore, the number of coherent channels
are increased. In Fig. 9, with the dressing effect, peak (II)
split into two peaks (IV) and (V) denoted by the dress-
ing term in Eq. (16). Three coherent channels coexist (IV,
V, and VI), all satisfying the energy conservation condition
δ1 + δ2 + δ′

2 + δ3 = 0. The quantum information capacity, ex-
pressed as n3, where n represents the number of coherent
channels, is greatly expanded to 33 in this single dressing
system.

Subsequently, the Duan and PPT criteria in each coherent
channel are investigated in the three- and four-mode DELC-
FWM system. According to Eq. (16), we can obtain the
dressing-modulated optical gain, and then the entanglement
characteristics can be actively and directly controlled in the
process of preparing the entangled sources. Figure 11 shows
the values of criteria vs δ1, where the gain of the first PA-FWM
is modulated by the dressing field E1. Here, we set G2 = 1.2
in the three-mode system and G2 = 1.3 and G3 = 1.1 in the
four-mode system. The red areas, where the Duan are not
violated or the PPT values are not negative, indicate the ab-
sence of entanglement. The unentangled modes are not given
in this figure, including â1 − â3 in the three mode and â1 − â3,
â2 − â4, â3 − â4, â3−{â1â4}, and â4−{â2â3} in four mode.
The black dashed areas correspond to the coherent channels,
where the gains are stronger. Also, the gains in channels are
independent and do not interfere with each other, so the values
of the criteria are different.

V. DISCUSSION AND CONCLUSIONS

In addition to the case of the second-order density ma-
trix element ρ

(2)
21 dressed by the field E1 mentioned above,

it can also be expanded to many other dressing cases. The
first-order density matrix element ρ

(1)
31 under the condition

of the energy level |1〉 dressed by the field E1 can be
written as Eq. (18), which is obtained by the perturbation
chain: ρ

(0)
11

ω1−→ ρ
(1)
3�1±

ωS1−→ ρ
(2)
21

ω1−→ ρ
(3)
31(S2)D.

ρ
(3)
31(S2)D = −i�2

1�S1(

31 + i�1 + �2

1

33

)
(
21 + iδ1)(
31 + iδ1 + i�′

1)
.

(18)
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FIG. 9. Theoretically calculated normalized third-order density matrix where the dressing effect acts on the second-order density matrix
element ρ

(2)
21 . The conditions of three columns are different. The conditions of the first column are �1 = �

′
1 = 0, without the dressing effect.

The conditions of the second column are �1 = 13 MHz and �
′
1 = 20 MHz, without the dressing effect. The conditions of the third column are

�1 = 13 MHz and �
′
1 = 20 MHz, with the dressing effect of field E1.

The resonance positions of the coherent channels are δ1 =
0 and δ1 = −�′

1. The number of coherent channels is still 2,
and the resonance peaks are not split by the dressing effect,
which is shown in Fig. 12. The third-order density matrix
element ρ

(3)
31 dressed by the field E1 at energy level |1〉 can

be written as Eq. (19), which is obtained by the perturbation
chain: ρ

(0)
11

ω1−→ ρ
(1)
31

ωS1−→ ρ
(2)
21

ω1−→ ρ
(3)
3�1±(S2)D.

ρ
(3)
31(S2)D = −i�2

1�S1[(
31 + i�1 )(
21 + iδ1 )(

31 + iδ1 + i�′

1 + �2
1


33+iδ1+i�′
1−i�1

)] . (19)

The resonance positions of the three coherent
channels are δ1 = 0, δ1 = (�1−2�′

1 + √
�)/2,

and δ1 = (�1−2�′
1−

√
�)/2, where � =

(�1−2�′
1)2−4(�′2

1 − �1�
′
1−�2

1 − 
31
33), which is
like Fig. 9, but the frequency difference of the latter two
peaks is

√
�. The phenomenon of split resonance peaks

observed in the experiment is generally caused by the
dressed second-order density matrix element ρ (2) because the

detuning of deriving ρ (2) is smaller, with stronger dressing
effect, than deriving ρ (3).

Moreover, the pump field E3 can also be used as a dressing
field. The second-order density matrix element ρ

(2)
21 dressed

by the field E3 at energy level |1〉 can be written as Eq. (20),
which is obtained by the perturbation chain: ρ

(0)
11

ω1−→ ρ
(1)
31

ωS1−→
ρ

(2)
2�3±

ω1−→ ρ
(3)
31(S2)D.

ρ
(3)
31(S2)D = −i�2

1�S1[
(
31 + i�1 )

(

21 + iδ1 + �2

3

23+iδ1−i�3

)
(
31 + iδ1 + i�′

1 )

] . (20)

Here, the resonance positions and the optical gains of the
coherent channels depends on the Rabi frequency �3 and fre-
quency detuning �3 of the dressing field E3. The three coher-
ent channels are at δ1 = (�3 +

√
�2

3 + 4
21
23 + 4�2
3)/2,

δ1 = (�3−
√

�2
3 + 4
21
23 + 4�2

3)/2, and δ1 = −�′
1.

In summary, the DELC-FWM processes are proposed to
produce the three- and four-mode quantum entangled states
in Rb atomic vapors in one step. We apply the Duan and
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FIG. 10. The energy-level diagram in the dressed-state picture.
(a) Three-mode system. (b) Four-mode system. The energy levels
|1±〉 are created from |1〉. Multiple coherent channels of four-wave
mixing (FWM) are constructed because of the strong dressing effect
of the field E1.

PPT criteria to characterize the multipartite entanglement po-
tentially existing in this cascaded system and theoretically
investigate the dependence of criteria on the system param-
eters. Furthermore, the dressing field is introduced to produce
and coherently control the multimode multiplexed entangle-
ment via constructing multiple coherent channels of FWM.
The properties of the entanglement among output beams are

coherent-channel dependent and can be well controlled using
the dressing effect of atoms and many optical parameters in
our system, without need of extra control (e.g., beam split-
ters) after the quantum interplay. In our scheme, using atomic
coherence, the generation and modulation of multipartite en-
tanglement can be integrated in the process of the entangled
states preparation. These results may be helpful for multimode
quantum secure communication, quantum routing, and quan-
tum coherent control.

ACKNOWLEDGMENTS

This paper was supported by the National Key R&D
Program of China (Grants No. 2017YFA0303700 and No.
2018YFA0307500), National Natural Science Foundation of
China (Grants No. 61975159, No. 11904279, No. 12174302,
No. 62022066, No. 12074306, and No. 12074303), and Key
Scientific and Technological Innovation Team of Shaanxi
Province (Grant No. 2021TD-56).

APPENDIX

The three- and four-mode DELC-FWM systems corre-
spond to cascade Rb cells in terms of obtaining multiple
entangled states, as shown in Figs. 2 and 4. As DELC-FWM
only requires a single Rb cell, it introduces fewer vacuum
losses. Moreover, this method is phase insensitive without the
need for a complicated phase-locking technique.

Figure 12 shows the resonance positions of the small quan-
tum deviations window δi under the condition of the dressed
first-order density matrix element ρ (1) [Eq. (18)]. Since the
process of deriving ρ (1) is independent of the quantum devia-
tion, the resonance peak does not split because of the dressing
effect acting on ρ (1).

FIG. 11. Entanglement criteria in three coherent channels with single dressing effect. (a) Three-mode Duan criterion. (b) and (c) Three-
mode positivity under partial transposition (PPT) criterion. (d) Four-mode Duan criterion. (e)–(i) Four-mode PPT criterion. The red areas
indicate no entanglement. The black dashed areas show the criterion in each channel.
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FIG. 12. Theoretically calculated normalized third-order density matrix element where the dressing effect acts on the first-order density
matrix element ρ

(1)
31 . The conditions of three columns are different. The conditions of the first column are �1 = �

′
1 = 0, without the dressing

effect. The conditions of the second column are �1 = 13 MHz and �
′
1 = 20 MHz, without the dressing effect. The conditions of the third

column are �1 = 13 MHz and �
′
1 = 20 MHz, with the dressing effect of field E1.
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