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Two strategies for modeling nonlinear optics in lossy integrated photonic structures
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We present two complementary strategies for modeling nonlinear quantum optics in realistic integrated optical
devices, where scattering loss is present. In the first strategy, we model scattering loss as an attenuation; in the
second, we employ a Hamiltonian treatment that includes a mechanism for scattering loss, such as a phantom
waveguide. These strategies can be applied to a broad range of structures and processes. As an example, we use
these two approaches to model spontaneous four-wave mixing in (i) a ring-channel system and (ii) an add-drop
system. Even for these well-understood systems, our strategies yield some additional results. We show the rates
of photon pairs, broken pairs, and lost pairs and their dependence on system parameters. We show that the
properties of lost and broken photon pairs in such structures can be related to those of the unscattered photon
pairs, which are relatively simple to measure.
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I. INTRODUCTION

Integrated photonic structures are of interest both for
fundamental research in nonlinear quantum optics and for
the development of platforms for quantum information pro-
cessing. The generation of nonclassical light in integrated
structures such as waveguides and microring resonators is now
commonplace [1–3]. These structures are being employed
in increasingly complex systems, due the stability of such
on-chip structures and the massive integration possible for
devices that consist of them [4–6]. Understanding the perfor-
mance of these components is therefore essential.

Although one can use simple methods such as coupled-
mode theory to study simple structures, such as ring res-
onators coupled to one or two waveguides, more sophisticated
approaches are required to study nonlinear quantum optics
in complex structures. For example, as we will see below,
employing the asymptotic fields formalism from scattering
theory is useful because it allows one to separate the linear
and nonlinear dynamics of a system; once the linear behavior
is obtained, which can be done numerically for complicated
structures, the nonlinear problem can easily be solved quasi-
analytically. Indeed, approaches employing asymptotic field
expansions have already been used in theoretical quantum
optics, but these treatments have neglected the presence of
loss in the structures [7–9].

In reality, loss due to the scattering of light off the chip
is a feature that plagues integrated photonic structures. This
can have both quantitative and qualitative consequences for
device performance [10–12]: For example, in photon pair
production, the rate at which photon pairs are generated can
be reduced because of pump attenuation, and as well one of a
pair of generated photons can be lost due to scattering, thereby
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destroying the sought-after quantum correlations between de-
tected photons. Clearly scattering loss must be accounted for
to realistically model integrated photonic structures. Here we
present two complementary strategies for modeling such sys-
tems quite generally.

In Sec. II we outline the two strategies in general and we
discuss their advantages and disadvantages. In Sec. III we
introduce some notation common to both. In Sec. IV we illus-
trate the first strategy by applying it to a simple system; we use
it to model a single ring coupled to a channel, obtaining results
that are consistent with those obtained using other methods in
the literature [13,14]. In Sec. V we do the same for the second
strategy. For example calculations we consider the generation
of entangled pairs of photons by spontaneous four-wave mix-
ing (SFWM). A deviation from the usual critical coupling
condition assumed to maximize the photon pair generation
rate is found and discussed. We also compare the results of
the two strategies, finding good agreement for high-finesse
systems. In Sec. IV we use both strategies to calculate photon
pair production in an add-drop structure involving a ring and
two physical channels. We summarize our results and present
our conclusions in Sec. V.

II. THE TWO STRATEGIES: OVERVIEW

Both of the strategies we introduce here employ the
asymptotic-in (asy-in) and asymptotic-out (asy-out) states fa-
miliar from scattering theory [15]. These are solutions of
the linear Maxwell equations at a definite frequency and are
illustrated in Fig. 1. The asy-in fields involve propagation
towards the interaction region through only one (input) port
and in general propagation out through all ports; the single
incoming field has the form of a field freely propagating
through the channel in the absence of any interaction region.
Similarly, the asy-out fields involve propagation away from
the interaction region through only one (output) port, with
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FIG. 1. Sketch of a system comprised of an interaction region
with four channels: (a) an asymptotic-in field with respect to channel
1 and (b) an asymptotic-out field with respect to channel 3.

the field in this region having a freely propagating form and
in general propagation towards the interaction region through
all ports [7,16,17]. In the absence of any truly bound states,
either the asy-in and asy-out states can be used to expand an
arbitrary field, but the asy-in expansion is a natural choice for
incoming fields (e.g., pump light) and the asy-out expansion
should be used to describe fields sought at the output (e.g.,
light generated by nonlinear interactions).

For realistic systems, the problem is how to calculate
the asymptotic fields in the presence of scattering losses. A
possible approach would be to model the system by using
finite-difference–time-domain or finite-elements numerical
tools, in which one could, in principle, take into account the
structure imperfections and/or disorder that lead to scattering.
Then an asy-in field would contain not only outgoing fields
propagating in the channels, but as well light propagating
away from the chip. A similar construction holds for the
asy-out fields.

If these full asy-in and asy-out fields were used to de-
scribe the pump and generated photons, then the resulting
calculation of photon generation would include the effects of
scattering. However, since even the field profile for light prop-
agating in a scattering-free channel or ring must generally be
found numerically, the full asy-in and asy-out fields would be
very difficult to construct even for small systems; on top of the
complexity inherent in an arbitrary lossless system, a more in-
tricate calculation would be required to include the scattering.
This difficulty can be avoided: The two strategies we present
in this paper are alternative approaches to understanding the
performance of realistic, lossy integrated photonic systems.

In the first strategy, the fields arising under linear evo-
lution in the structure are obtained neglecting any loss; in
general, this can be done numerically. Next, one includes the
loss present in waveguidelike components of by introducing
complex vectors associated with the propagation of the fields
in those regions. As we will illustrate in Sec. IV, for asy-in
fields, the imaginary part of the wave vector is simply the
attenuation constant that characterizes the loss of energy as
light propagates; this can be determined by a numerical cal-
culation or more conveniently using results of experiments
in the linear regime. Correspondingly, the asy-out fields are
characterized by an enhancement constant equal in magnitude
to the attenuation constant of the asy-in fields.

Because the attenuation constant is easily determined from
linear experiments on the structure, while the general form
of the fields can be obtained numerically, this strategy is

straightforward to implement and easily generalized for many
structures. However, underlying this approach is the assump-
tion that the characteristics of the scattered light are not of
interest; otherwise, this phenomenological description of loss
would be inadequate. While this is true in many cases, one can
also envision scenarios where the properties of the scattered
light need to be better understood: One might be interested
in the rate of scattered photons or in the correlations between
scattered and unscattered photons, or one might even consider
coupling light scattered from one structure into another. For
this, we turn to a different strategy.

In the second strategy, we seek to explicitly include the
scattered photons in the system, but without a full numerical
calculation. This can be done by modeling the scattering loss
as light coupling from the lossy structure into a fictitious
output channel [18]. With the loss modeled in this way, in
principle a Hamiltonian for the system, including the scattered
photons, can be identified, and the fields throughout the sys-
tem, including regions where photons are scattered, can be
identified.

There are two important issues here. First, it is clearly un-
realistic to apply this approach to arbitrarily complex systems.
This strategy is better suited to describing simple devices or
systems composed of simple devices. Second, the approach
for constructing a Hamiltonian with a mechanism for scatter-
ing depends on the structure, so this strategy is more difficult
to generalize than the first strategy. However, once the second
strategy is applied to a particular system, one can investigate
the properties of the scattered photons and the full effects of
scattering loss on the performance of that system and similar
ones.

We will illustrate this by applying the second strategy to
a high-finesse microring resonator coupled to an arbitrary
number of waveguides (see Fig. 4). For such a resonant struc-
ture, scattering loss in such devices cannot be neglected due
to the long dwelling time of photons in the resonator. The
performance of these devices is broadly relevant; microring
resonators are employed as spectral filters [19,20], sensors
[21,22], and sources of nonclassical light [3,23,24], among
other applications [25,26]. Moreover, this system is an ex-
ample of a resonator coupled to a number of channels, and
the general approach we employ can be extended to treat that
large class of problems.

Including a phantom channel to describe loss (see Fig. 5)
[18], we adopt a coupling model for ring-channel interactions
that admits a Hamiltonian formulation and leads to an an-
alytic solution for the fields. This coupling model relies on
the assumption that the ring’s finesse is high enough that the
resonances are well separated; in practice, most applications
aim for the high-finesse regime [27–29]. Indeed, since fabrica-
tion technology has advanced to the point where high-finesse
resonators are readily available, this additional constraint is
easily fulfilled in practice [1,24,28].

We will apply the first strategy to the same type of sys-
tem, both to illustrate the approach and for comparison to
the second strategy. In the first strategy, we construct asy-in
and -out fields only in the ring and physical waveguides.
Specifically, we will use a standard approach that treats the
coupling between the channel and the ring by introducing self-
and cross-coupling coefficients [see Fig. 2(b)] [30]. When
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FIG. 2. Sketch of the coupling between a bus waveguide and
a ring resonator via a point coupler. Coefficients σ and κ are the
self-coupling and cross-coupling coefficients of the point coupler,
respectively.

studying photon pair production, we can then calculate the
rate at which pairs of photons will appear in the output channel
and the biphoton wave function that will characterize those
pairs of photons. However, this approach does not allow us to
calculate how often a pair of photons is lost to scattering or,
perhaps even more importantly, how often only one photon of
a generated pair is lost. These gaps will be filled by the second
strategy, where the phantom channel “keeps track” of the lost
photons.

III. PHOTON PAIR PRODUCTION

Here we introduce some notation common to the two
approaches. We use the results of a quantization approach
for generic integrated structures that involves the displace-
ment field as a fundamental field operator [14,31]. It will
be convenient to break up the displacement operator into its
contributions from different frequency bands J ,

D(r) =
∑

J

DJ (r), (1)

where each frequency band is centered at a frequency ωJ ; this
will be associated with a ring resonance when we specialize
to microring systems [see Fig. 2(a)].

Consider first the field in an isolated waveguide of infinite
length. Writing the DJ (r) of Eq. (1) as Dwg

J (r), we have [14]

Dwg
J (r) =

∫
dk Dwg

Jk (r)aJ (k) + H.c., (2)

where the aJ (k) and their adjoints are ladder operators that
obey the usual bosonic commutation relations

[aJ (k), a†
J ′ (k′)] = δ(k − k′)δJJ ′, (3)

provided the light associated with each band is far from any
waveguide cutoff and is well localized in frequency such that
there is no overlap between k components in distinct bands
[14]. We consider the k of interest to range over positive values
and

Dwg
Jk (r) =

√
h̄ωJk

4π
dJk (r⊥)eiks. (4)

Increasing s indicates the direction in which the field is
propagating and r⊥ indicates the two Cartesian components
perpendicular to that direction. If all the frequency bands are
narrow enough that material dispersion across each one can
be neglected, the dJk (r⊥) are normalized according to∫

d∗
Jk (r⊥) · dJk (r⊥)

ε0ε1(r⊥)
dr⊥ = 1, (5)

where ε1(r⊥) is the square of the local index of refraction in
frequency band J . This can be generalized to include material
dispersion within each frequency band [14]. Finally, ωJk is
the frequency of a field at k in frequency range J; we neglect
group velocity dispersion over each frequency range and write

ωJk = ωJ + vJ (k − KJ ) + · · · , (6)

where KJ is the value of k at frequency ωJ . Despite our
neglect of material dispersion, we allow the different vJ to
be different, both because of modal dispersion and because
the different frequency ranges identified by ωJ could also be
associated with different waveguide mode profiles. We also
allow vJ and KJ to depend on the waveguide constituting each
channel, denoting the channel dependence by a superscript,
v

(X )
J and K (X )

J .
We now introduce the asymptotic-in and -out fields asso-

ciated with a general structure such as that in Fig. 1 [7,15].
We can use Eq. (1) with the DJ (r) equal to either Din

J (r) or
Dout

J (r), indicating either an asymptotic-in or -out expansion,
respectively, where

Din(out)
J (r) =

∑
X

∫
dk Din(out)(X )

Jk (r)ain(out)(X )
J (k) + H.c. (7)

The X denote the different channels and the ain(out)(X )
J (k) the

associated ladder operators. Note that for a given channel label
X both Din(X )

Jk (r) and Dout(X )
Jk (r) are in general nonvanishing for

r in all channel waveguides.
Turning now to the effects of nonlinearities, we consider

the generation of fields through a third-order nonlinear inter-
action described by the Hamiltonian

Hnl = − 1

4ε0

∫
dr 	

i jkl
3 (r)Di(r)D j (r)Dk (r)Dl (r), (8)

where i, j, k, l are Cartesian components, summed over when
repeated. The nonlinear parameter 	

i jkl
3 (r) is related to the

more familiar element of the third-order nonlinear tensor
χ3(r) by

	
i jkl
3 (r) = χ

i jkl
3 (r)

ε2
0ε

4
1 (r)

, (9)
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where for simplicity we have assumed the dielectric constant ε1(r) can be taken to be the same over all the frequency ranges of
interest [14]. If we consider only terms responsible for SFWM [32], the nonlinear Hamiltonian becomes

HSFWM = − 1

4ε0

4!

2!1!1!

∑
X,X ′

∫
dk1dk2dk3dk4KXX ′

(k1, k2, k3, k4) aout(X )†
S (k1)aout(X ′ )†

I (k2)ain(Xin )
P (k3)ain(Xin )

P (k4) + H.c., (10)

where

KXX ′
(k1, k2, k3, k4) =

∫
dr 	

i jkl
3 (r)

[
Di,out(X )

Sk1
(r)

]∗[
D j,out(X ′ )

Ik2
(r)

]∗
Dk,in(Xin )

Pk3
(r)Dl,in(Xin )

Pk4
(r). (11)

We take the integral to range over the interaction region or at
least the part of it where fields can be concentrated and the
nonlinear interaction is significant. Here we use S, I , and P
to denote the signal, idler, and pump frequency ranges and
modes, respectively; the combinatorial factor 4!/2!1!1! takes
into account that the signal and idler ranges are assumed
distinct. We have assumed that the pump fields are injected
into a single channel which we label Xin, and in general the
generated photons exit the system via different channels; we
use the first superscript in KXX ′

(k1, k2, k3, k4) to denote an
output channel for the signal photon and the second an output
channel for the idler photon.

From a standard Fermi golden rule calculation with a cw
pump, as detailed in Appendix A, we find the rate of photon
pair production with a signal photon in channel X and an idler
photon in channel X ′ to be given by

RXX ′ = 72π3

ε2
0 h̄4ω2

0

P2
P

v
(X )
S v

(X ′ )
I

(
v

(Xin )
P

)2

×
∫

dω1|JXX ′
(ω1, 2ω0 − ω1, ω0, ω0)|2, (12)

with

JXX ′
(ω1, ω2, ω3, ω4)

≡ KXX ′
(k1(ω1), k2(ω2), k3(ω3), k4(ω4)), (13)

where on the right-hand side k(ω) is written using Eq. (6).
The two strategies we introduce below differ only in the

way the asymptotic-in and asymptotic-out fields that appear
in JXX ′

(ω1, ω2, ω3, ω4) are constructed. As an example, we
will consider systems with one or more waveguides coupled
to a single resonant element; the simplest example is shown in
Fig. 2(a), where there is a single waveguide coupled to a ring
resonator through a point coupler.

IV. FIRST STRATEGY

If we employ asymptotic-in and -out expansions for the
fields when modeling a general structure, the crux of the
problem is determining these fields under the linear evolu-
tion of the system; once these are determined, writing the
nonlinear Hamiltonian is relatively trivial. In the first strat-
egy, even very complicated structures can be treated, because
the asymptotic-in and -out fields in the structure can be
determined numerically. However, to clearly illustrate the ap-
proach, here we focus on a ring-channel system as sketched
in Fig. 2, for which analytic expressions for the fields are
known [13,30,33]. We begin by reviewing the standard point

coupling model from which the linear fields can be found. We
will illustrate how the asymptotic fields are constructed from
these and how the loss is included in this approach.

If backscattering at the coupling point can be neglected,
which is typical in well-designed systems, the ring resonator
system shown in Fig. 2(a) acts as an “all pass” filter: Light
incident from the left can be coupled into the ring but is
eventually coupled out again into the waveguide. Hence both
asymptotic-in and -out fields only contain light in the waveg-
uide propagating to the right. In the standard point coupling
model, the two input field amplitudes [ f1 and f4 in Fig. 2(b)]
are connected to the two output field amplitudes ( f2 and f3)
by the linear system of equations

f2 = σ f1 + iκ f4,

f3 = iκ f1 + σ f4, (14)

where σ and κ are the self-coupling and cross-coupling coeffi-
cients of the point coupler, respectively [30]; for convenience,
they are assumed to be real, with

κ2 + σ 2 = 1. (15)

The asymptotic-in or -out field in channel (X ) is given by

Din(out)(X )
chan,Jk (r) =

√
h̄ωJk

4π
d (X )

Jk (x, y) f in(out)(X )
Jk (z)eikz (16)

[cf. Eq. (4)], where the amplitude f (X )
Jk (z) takes into account

the field distribution along z,

f in(out)(X )
Jk (z) =

{
f in(out)(X )
1 if z < 0

f in(out)(X )
2 if z > 0,

(17)

and will be different depending on whether we are specifying
an asymptotic-in or asymptotic-out field. For our problem,
where the pump is incident from the left, we will need
asymptotic-in fields for the left (z < 0) channel (X = L) and
asymptotic-out fields for the right (z > 0) channel (X = R).
Here both channels involve the same physical waveguide, so
we can set d (L)

Jk (x, y) = d (R)
Jk (x, y) ≡ dJk (x, y).

The form that these asymptotic fields take in the ring is

Din(out)
ring,Jk (r) =

√
h̄ωJk

4π
dJk (r⊥; ζ ) f in(out)

Jk eikζ , (18)

where ζ is the coordinate in the direction of propagation
around the ring, ranging from 0 (at the position identified
by f3) to L (at the position identified by f4), and r⊥ refers
to components in the plane perpendicular to the direction
indicated by increasing ζ [34]. Thus dJk (r⊥; ζ ) plays the role
for the ring that dJk (x, y) does for the channels. In general,
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it depends on all three coordinates because the direction in
which the field is polarized can change with the angle ζ .
However, d∗

Jk (r⊥; ζ ) · dJk (r⊥; ζ ) will be independent of ζ ,
and if the ring width and the width of the waveguide are taken
to be the same, dJk (x, y) and dJk (r⊥; ζ ) are equal to very good
approximation at ζ = 0.

In Fig. 2(b) f in(out)
Jk can be identified with f3 and we clearly

have

f4 = f3eikL. (19)

Combining Eq. (14) with (19), we can then identify the
asymptotic-in fields for the left channel by setting f1 = 1
and the asymptotic-out fields for the right channel by setting
f2 = 1. We find

f in(L)
Jk (z) =

{
1 if z < 0
σ−eikL

1−σeikL if z > 0
(20)

and

f in
Jk = iκ

1 − σeikL , (21)

the field enhancement factor inside the ring for incident fields,
while

f out(R)
Jk (z) =

{
1−σeikL

σ−eikL if z < 0
1 if z > 0

(22)

and

f out
Jk = iκ

σ − eikL . (23)

If we use f in
Jk (ζ ) and f out

Jk (ζ ) to denote the field amplitudes as
they vary with ζ inside the ring [see Eq. (18)], we have simply

f in(out)
Jk (ζ ) = f in(out)

Jk eikζ . (24)

Note that in this simple example the asymptotic-in and -out
fields differ only by a phase; for different k the asymptotic-in
fields f in(L)(z)

Jk have a fixed phase for z < 0, while for different
k the asymptotic-out fields f out(R)

Jk (z) have a fixed phase for
z > 0 [7].

Up to this point, we have done nothing to address the
presence of loss in the system. For asymptotic-in fields, the
effect of scattering is a decreasing of the field intensity as
light propagates; for a structure of the type considered here,
that effect will be most significant inside the ring resonator.
This attenuation can be described phenomenologically by in-
troducing a complex propagation wave vector

k̃n(ω) = kn(ω) + i
ξn(ω)

2
, (25)

where kn(ω) is the usual wave vector [see Eq. (A18)] and
ξn(ω) brings into effect the field intensity decay due to the
propagation losses in frequency range n [ξ3(ω) = ξ4(ω)].

For asymptotic-out states, we have f2 = 1 instead of f1 =
1, and in the solution of Maxwell’s equations we seek there is
light exiting in no other direction; the propagation in the ring
is then characterized by a complex wave vector

k̃∗
n (ω) = kn(ω) − i

ξn(ω)

2
. (26)

It should be stressed that in this way one can hope to obtain
the asymptotic-in and -out fields in the ring region, but without
any information about the field distribution outside the struc-
ture or about where light is scattered. Nonetheless, following
this approach and using Eqs. (25) and (26) in Eqs. (16) and
(18), we can use Eq. (12) to calculate the generation rate
RRR by applying the asymptotic fields we have identified in
Eqs. (11) and (13). Here there is only one output channel for
both the signal and the idler, so we can drop the superscripts
RR on RRR, JRR, and KRR. Similarly, since only one waveguide
is involved, we can drop the superscripts on vP, vS , and vI .

To evaluate J (ω1, 2ω0 − ω1, ω0, ω0) we restrict the inte-
gration to the ring, where the fields will be strongest and thus
the effect of the nonlinearity the greatest. A benign approx-
imation can be made immediately, since the mode profiles
dJk (r⊥; ζ ) are typically weak functions of k; we take

dJk (r⊥; ζ ) → dJ (r⊥; ζ ) ≡ dJKJ (r⊥; ζ ). (27)

However, to do a serious simplification we must assume that
the dJ (r⊥; ζ ) do not depend on ζ , dJ (r⊥; ζ ) → dJ (r⊥). This
will only happen if, to a good approximation, the direction
of the vector field dJ (r⊥; ζ ) points everywhere normal to the
chip. Only in this limit do the integrations over r⊥ and ζ

in J (ω1, 2ω0 − ω1, ω0, ω0) factor to two separate integrals.
Introducing a coefficient characterizing the nonlinearity,

γnl = 3ωP

4ε0v
2
P

∫
dr⊥	

i jkl
3 (r⊥)d∗i

S (r⊥)d∗ j
I (r⊥)dk

P(r⊥)dl
P(r⊥),

(28)

which involves an integral only over r⊥, from Eq. (12) we find
a generation rate of photon pairs given by

R = 1

2π

( |γnl|PP

ωP

)2
v2

P

vSvI

∫
dω1ω1(2ω0 − ω1)

× |J (ω1, 2ω0 − ω1, ω0, ω0)|2. (29)

Here J (ω1, 2ω0 − ω1, ω0, ω0) captures the effect of the vari-
ation over the ring of the fields in Eq. (24), namely,

J (ω1, ω2, ω3, ω4)

=
∫ [

f out
Sk̃∗

1 (ω1 )(ζ ) f out
Ik̃∗

2 (ω2 )(ζ )
]∗

f in
Pk̃3(ω3 )(ζ ) f in

Pk̃4(ω4 )(ζ )dζ

= (
f out
Sk̃∗

1 (ω1 ) f out
Ik̃∗

2 (ω2 )

)∗
f in
Pk̃3(ω3 ) f in

Pk̃4(ω4 )

ei(�k̃)L − 1

i(�k̃)
, (30)

since the integral over ζ runs from 0 to L, with

�k̃ = k̃3(ω3) + k̃4(ω4) − k̃1(ω1) − k̃2(ω2). (31)

In Fig. 3 we plot the generation rate of photon pairs as a
function of the coupling constant σ , assuming the ξ j (ω) are
the same for all j and independent of frequency and assuming
that indeed the vector field dJ (r⊥; ζ ) points everywhere nor-
mal to the chip so that the reductions made above are valid.
We find that although the maximum of the intensity inside a
ring resonator is known to be reached at critical coupling, the
maximum of the generation rate occurs when the system is
slightly overcoupled.
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FIG. 3. Plot of the generation rate calculated using the first ap-
proach vs the self-coupling coefficient of the point coupler. The
under- and overcoupling domains are highlighted in blue and red;
the green line indicates the critical coupling condition (σ = a, where
a = e−ξL and 1 − a is the round-trip field enhancement attenuation).
The black arrow indicates the maximum of the generation rate. In
this simulation, the ring has a radius of 10 μm and the loss is fixed
at ξ = 26 dB/cm (a = 0.9814 and Q(int) ≈ 2 × 104). The effective
index of the waveguide is 2.4, the group velocity is vg = 1 × 108 m/s,
and the nonlinear power factor is γnl = 100 (W m)−1.

V. SECOND STRATEGY

In the second strategy we define a linear Hamiltonian for
the structure which explicitly includes a loss mechanism; the
asymptotic fields for the lossy structure are determined by
referring to the equations of motion produced by this Hamil-
tonian. We illustrate this for a ring resonator coupled to an
arbitrary number of waveguides, one of these being a phantom
waveguide, which we introduce to model scattering losses
from the resonator [18]; with this, the asymptotic fields will
explicitly include the scattered photons. This approach is more
complex than others that have been used to model this type
of system, but unlike other approaches, this strategy makes it
simple to study the properties of the scattered photons and to
consider an arbitrary number of physical bus waveguides.

A. Fields and Hamiltonian

We begin by outlining the free propagation of fields in the
waveguides and in the ring, and the method used to describe
the coupling between the ring and a given waveguide. For
each waveguide field, as introduced in Sec. III, we take the
coordinate z to label the direction of propagation, with the
components of r⊥ then being x and y. As indicated in Fig. 4,
for each waveguide the coupling point with the ring is located
at z = 0 for that particular waveguide. We introduce the terms
input region and output region to refer to the parts of the
waveguide before and after the coupling point, respectively.
The input region is then defined by z < 0 and the output region
by z > 0. We introduce

ψJ (z) =
∫

dk√
2π

aJ (k)ei(k−KJ )z, (32)

FIG. 4. Sketch of a ring-waveguide system for N = 4 waveg-
uides. Solid lines indicate physical waveguides; the dotted line
indicates the phantom waveguide.

and the linear Hamiltonian for an isolated waveguide can be
written as

Hwg
L =

∑
J

h̄ωJ

∫
ψ

†
J (z)ψJ (z)dz

− 1

2
ih̄vJ

∫ (
ψ

†
J (z)

∂ψJ (z)

∂z
− ∂ψ

†
J (z)

∂z
ψJ (z)

)
dz,

(33)

provided the frequency bands are narrow enough that to a
good approximation we can set h̄ωJk ≈ h̄ωJ and dJk (x, y) ≈
dJ (x, y) ≡ dJKJ (x, y) [14]. Under this approximation, we also
have from Eq. (2)

DJ (r) =
√

h̄ωJ

2
dJ (x, y)eiKJ zψJ (z). (34)

Using our earlier definition of dJ (r⊥; ζ ) in Eq. (27), the
field in an isolated ring can be written as [14]

D(r) =
∑

J

√
h̄ωJ

2

dJ (r⊥; ζ )√
L

bJeiκJ ζ + H.c., (35)

where

[bJ , b†
J ′ ] = δJJ ′ , (36)

with κJ = 2πmJ/L, where mJ is the index of the mode. The
linear Hamiltonian for the ring modes is

H ring
L =

∑
J

h̄ωJb†
JbJ . (37)

Finally, we treat the coupling between the ring and a waveg-
uide by introducing different coupling coefficients associated
with each mode of the isolated ring. Unlike in the standard
point-coupling model described in Sec. IV, here we model the
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coupling with

H coupling
L =

∑
J

(h̄γJb†
JψJ (0) + H.c.), (38)

where γJ is a constant characterizing the strength of the
coupling between the discrete ring mode and the continuous
channel mode at frequency band J . Equation (38) is valid
provided the ring resonances are well separated (high finesse)
so that these distinct modes J are well defined and can be
identified [18]. This is an important distinction between the
two strategies; the standard point-coupling model used in
Sec. IV is not constrained by this assumption and can describe
low-finesse structures. In practice, the high-finesse regime is
usually of interest and Eq. (38) is appropriate [27–29].

One can introduce

	J = |γJ |2
2vJ

, (39)

where we will see that 	J characterizes the rate at which in-
tensity in the ring can decay as it couples into the waveguide;
if the waveguide were coupled only to a single waveguide,
	J would identify the resonance linewidth. In the high-finesse
limit, this parameter can be related to the self-coupling con-
stant σ in the standard point-coupling model used in Sec. IV
by

	J = (1 − σ )vJ

L (40)

[14], under the assumption that the ring and the waveguide are
made of the same material have the same cross section and
thus in particular the same vJ , but this can be generalized.

As in the simpler scenario of Fig. 2(a), in the scenario of
Fig. 4 there are twice as many channels as waveguides. For the
direction of light propagation indicated, half of the channels
will have asymptotic-in states of interest associated with them
(those in the region of their waveguide with z < 0) and we
call them in-channels. The other half will have asymptotic-out
states of interest associated with them (those in the region of
their waveguide with z > 0) and we call them out-channels.
We denote the waveguide with which channel X is associated
by X̄ .

With an arbitrary number of waveguides, one being a phan-
tom waveguide, the linear Hamiltonian is given by

HL = H ring
L +

′∑
X

Hwg(X̄ )
L +

′∑
X

H coupling(X̄ )
L , (41)

where the prime on the sums indicates a sum over in-channels,
resulting in a sum over waveguides, and the terms in the
Hamiltonian are given by (33), (37), and (38), respectively,
for each waveguide; for the waveguide X̄ associated with an
in-channel X we introduce a set of operators ψ

(X )
J (z), group

velocities v
(X )
J , and coupling constants γ

(X )
J . The associated

decay rate due to each channel X is labeled 	
(X )
J [related to

γ
(X )

J by Eq. (39)] and the resonator’s total linewidth is given
by

	̄J =
∑

X

	
(X )
J . (42)

The total linewidth and each waveguide’s contribution to it
can be expressed in terms of quality factors as

	̄J = ωJ

2Q(load)
J

, (43)

	
(X )
J = ωJ

2Q(X )
J

, (44)

where Q(load)
J is the loaded quality factor and Q(X )

J is the
coupling quality factor associated with each waveguide; for
example, if X labels the phantom waveguide, Q(X )

J is the
resonator’s intrinsic quality factor. We will also refer to the
escape efficiency from the ring into channel X , defined as

η
(X )
J = 	

(X )
J

	̄J
. (45)

B. Asymptotic fields

To derive the asymptotic field amplitudes, we use the
Heisenberg equation with (41) to find the equations of motion
that the fields must satisfy and we impose the appropriate
boundary conditions for the asymptotic fields; the details of
the calculation are given in Appendix B. We find that for an
in-channel X the associated asymptotic-in field amplitudes are
given by

Din(X )
Jk (r) =

√
h̄ωJ

4π
d (X )

J (x, y)eikz

(r ∈ input region of waveguide X̄ )

= 0

(r ∈ input region of all other waveguides)

= −
√

h̄ωJ

4π
dJ (r⊥; ζ )eiκJ ζ F (X )

J− (k)

(r ∈ ring)

=
√

h̄ωJ

4π
d (X )

J (x, y)

(
1 +

√
L iγ (X )

J

v
(X )
J

F (X )
J− (k)

)
eikz

(r ∈ output region of waveguide X̄ )

=
√

h̄ωJ

4π
d (Y )

J (x, y)

(
iγ (Y )

J

v
(Y )
J

√
LF (X )

J− (k)

)
eikz

(r ∈ output region of all other waveguides Ȳ 
=X̄ ).

(46)

We have introduced

F (X )
J± (k) = 1√

L

( (
γ

(X )
J

)∗

v
(X )
J (K (X )

J − k) ± i	̄J

)
, (47)

the complex field enhancement factors that arise in this res-
onant structure, linking the field in the ring to the input in
asymptotic-in fields [see Eq. (46) above] and the field in
the ring to the output in asymptotic-out fields [see Eq. (48)
below]. For an out-channel X the associated asymptotic-out
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field amplitudes are given by

Dout(X )
Jk (r) =

√
h̄ωJ

4π
d (X )

J (x, y)eikz

(r ∈ output region of waveguide X̄ )

= 0

(r ∈ output region of all other waveguides)

= −
√

h̄ωJ

4π
dJ (r⊥; ζ )eiκJ ζ F (X )

J+ (k)

(r ∈ ring)

=
√

h̄ωJ

4π
d (X )

J (x, y)

(
1 −

√
L iγ (X )

J

v
(X )
J

F (X )
J+ (k)

)
eikz

(r ∈ input region of waveguide X̄ )

=
√

h̄ωJ

4π
d (Y )

J (x, y)

(
−

√
L iγ (Y )

J

v
(Y )
J

F (X )
J+ (k)

)
eikz

(r ∈ input region of all other waveguides Ȳ 
=X̄ ).

(48)

C. Spontaneous four-wave mixing

With the asymptotic-in and -out fields in hand, restricting
as usual the integral in Eq. (11) to range over the ring, we find

KXX ′
(k1, k2, k3, k4) = h̄2ε0

(
v

(Xin )
P

)2

12π2

√
ωSωI γ̄nl LF (X )∗

S+ (k1)

× F (X ′ )∗
I+ (k2)F (in)

P− (k3)F (in)
P− (k4), (49)

where we have introduced the nonlinear parameter

γ̄nl = 3ωP

4ε0
(
v

(in)
P

)2L

∫
dr⊥dζ	i jkl (r⊥)

× d∗i
S (r⊥; ζ )d∗ j

I (r⊥; ζ )dk
P(r⊥; ζ )dl

P(r⊥; ζ )ei�κζ (50)

and we have introduced �κ = 2κP − κS − κI , the wave-
number mismatch in the ring. Note that if the polarization of
the profiles dP(r⊥; ζ ) are everywhere normal to the chip and if
(�κ )L � 1 (the latter can be expected if the signal, idler, and
pump resonances are closely spaced), then we have γ̄nl → γnl

[see Eq. (28)]. Putting Eq. (49) in (12), we find

RXX ′ =
√

ωSωI

ω0

(
v

(Xin )
P

)2

v
(X )
S v

(X ′ )
I

(γ̄nlL)2 1

h̄ω0
P2

PPvac

× ∣∣F (in)
P− (k0)

∣∣4∣∣F (X )
S+ (KS )

∣∣2∣∣F (X ′ )
I+ (KI )

∣∣2
, (51)

where again k0 and ω0 are the wave number and frequency of
the cw pump, which can be detuned from resonance. We have
identified

Pvac = h̄

2

√
ωSωI 	̄S	̄I (	̄S + 	̄I )

(2ω0 − ωS − ωI )2 + (	̄S + 	̄I )2
, (52)

the fluctuating vacuum power [29]. This can be written in
terms of the ring’s loaded quality factors using (43); we will
do this for the sample calculation in Sec. V D. The quantity is
independent of the channels through which the photons exit;

this is expected, since here the vacuum power only relates to
the generation of the photons in the resonator.

By inspecting Eq. (51) and recalling the definition of
F (X )

J± (k) in Eq. (47), we see that the rate of generation of signal
and idler photons in any pair of channels X and X ′ can be
related to the rate of generation of signal and idler photons in
another pair of channels Y and Y ′ by

RXX ′

RYY ′ = 	
(X )
S

	
(Y )
S

	
(X ′ )
I

	
(Y ′ )
I

= η
(X )
S η

(X ′ )
I

η
(Y )
S η

(Y ′ )
I

, (53)

where the escape efficiency η
(X )
J is defined in (45). With (53),

one can infer the rates in all sets of channels, given the rate
of photons in one arbitrary pair of channels and the relative
coupling constants between the channels and the ring. For
example, one could take Y = Y ′ as the pair of channels where
the rate is known so that the rate could be approximated by
coincidence measurements in channel Y . From this quantity
the rates of broken and scattered pairs can be inferred.

If we consider an incident pump pulse sufficiently weak
that at most a pair of photons is generated, we can calcu-
late the biphoton wave function [the joint spectral amplitude
(JSA)] that characterizes the pair; we again use the interaction
Hamiltonian defined in Eq. (10), but in taking the limit of a
classical pump we use a(Xin )

P (k) → αφ(k), where α is the field
amplitude and the pulse function φ(k) is normalized according
to ∫

|φ(k)|2dk = 1. (54)

Equation (10), in the interaction picture, then becomes

H (I )
SFWM(t )

= − h̄2

4π2

(
v

(Xin )
P

)2√
ωSωI γ̄nlLα2

∑
X,X ′

∫
dk1dk2dk3

× dk4e−i[ωP (k4 )+ωP (k3 )−ωI (k2 )−ωS (k1 )]t

× F (X )∗
S+ (k1)F (X ′ )∗

I+ (k2)F (Xin )
P− (k3)F (Xin )

P− (k4)φ(k3)

× φ(k4)a(X )†
S (k1)a(X ′ )†

I (k2) + H.c. (55)

To first order, the ket that results after the pump pulse passes
is

|�〉 ≈ |vac〉 − i

h̄

∫ ∞

−∞
dt ′H (I )

SFWM(t ′)|vac〉 + · · · (56)

= |vac〉 + β
∑
X,X ′

|XX ′〉 + · · · (57)

(see Appendix A), with

|XX ′〉 = ∫
dk1dk2φ

XX ′
(k1, k2)a(X )†

S (k1)a(X ′ )†
I (k2)|vac〉, (58)

where again the first superscript X refers to the signal output
channel and the second superscript X ′ to the idler output chan-
nel and φXX ′

(k1, k2) is a biphoton wave function, normalized
according to ∑

XX ′

∫
dk1dk2|φXX ′

(k1, k2)|2 = 1. (59)
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We assume that β � 1 such that higher-order terms are negli-
gible, and so |β|2 is approximately the probability that a pair
of photons is generated. We have

φXX ′
(k1, k2) = α2

β

ih̄

2π

√
ωSωI

(
v

(Xin )
P

)2
γ̄nlL

× F (X )∗
S+ (k1)F (X ′ )∗

I+ (k2)g(k1, k2), (60)

where

g(k1, k2) =
∫

dk3dk4F (Xin )
P− (k3)F (Xin )

P− (k4)φ(k3)φ(k4)

× δ(ωP(k4) + ωP(k3) − ωI (k2) − ωS (k1)) (61)

is determined by the shape of the pump pulse and |β|2 can be
determined by using Eq. (59) with (60). Using Eq. (60), we
can relate the joint spectral amplitude associated with a pair
of channels X, X ′ to the JSA associated with another pair of
channels Y,Y ′; recognizing that the field enhancement factor
in Eq. (47) can be rewritten using

ω(k) = ωJ + v
(X )
J

(
k − K (X )

J

)
, (62)

we can see that

φXX ′
(k1, k2) = γ

(X )
S γ

(X ′ )
I

γ
(Y )

S γ
(Y ′ )

I

φYY ′
(k1, k2), (63)

which can be written in terms of more familiar parameters
using Eqs. (39), (43), and (45).

As we discussed for Eq. (65), here again one can define
a reference pair of channels for which the biphoton wave
function is known and infer all the other terms of the biphoton
wave function using escape efficiencies and group velocities
for the different channels. For example, the biphoton wave
function associated with lost pairs and broken pairs can be
inferred from the JSA associated with photons pairs in a
particular channel; the latter can be obtained either from a
simpler model such as the first strategy or from coincidence
measurements.

From Eq. (63) we see that the shape of the biphoton wave
function associated with each pair of channels is the same;
this in turn implies that for this type of system, scattering
has no effect on the system’s full biphoton wave function
beyond its contribution to the total linewidth 	̄J . This is easily
understood: Since the nonlinear effects are confined to the ring
and the ring-channel coupling is frequency independent, the
spectral properties of the photon pairs do not depend on which
channels they couple into. The amplitude associated with each
pair of channels depends on the coupling constants γ

(X )
J , as

expected.

D. Ring-channel system

We now apply these general results to the simple case of
a lossy ring coupled to a bus waveguide [Fig. 5(a)]. Since we
model the ring’s scattering loss as a coupling to a phantom
waveguide, here the labels X and X ′ range over two channels
[18].

We use the label O to denote the out-channel of the bus
waveguide and P to denote the out-channel of the phantom
waveguide, as indicated in Fig. 5(a); photons that exit via
channel O can be detected, whereas photons that exit via

FIG. 5. Sketches of (a) a ring-channel system and (b) an add-
drop system. In both cases, a phantom channel is included to account
for scattering losses when using the second approach.

channel P are scattered and lost. We then have four scenarios,
each with an associated rate: Both photons can appear at the
output (ROO), the signal can appear at the output while the
idler is lost (ROP ), the idler can appear at the output while the
signal is lost (RPO), or both photons can be lost (RPP ). We
predict the rate of pairs arriving at the output to be

ROO =
√

ωSωI

ωP

(
v

(Xin )
P

)2

v
(X )
S v

(X ′ )
I

(γ̄nlL)2 1

h̄ωP
P2

PPvac

× ∣∣F (Xin )
P− (KP + δKP )

∣∣4∣∣F (O)
S+ (KS )

∣∣2∣∣F (O)
I+ (KI )

∣∣2
. (64)

Using Eq. (53) we have

ROP =
(

1 − ηI

ηI

)
ROO,

RPO =
(

1 − ηS

ηS

)
ROO, (65)

RPP =
(

1 − ηS

ηS

)(
1 − ηI

ηI

)
ROO.

In Eq. (65) we refer only to the escape efficiency for the
physical channel ηJ ≡ η

(O)
J ; there are only two channels, so

η
(P)
J = 1 − η

(O)
J . All the rates are equal at critical coupling,

where ηJ = 0.5.
We now provide a sample calculation for the rates, as-

suming system parameters that are compatible with current
fabrication technology and consistent with those used in

FIG. 6. Rates of photon pairs exiting via each pair of channels
as a function of the escape efficiency η. Here the X = P, X ′ = O
configuration is omitted because it is identical to the X = O, X ′ = P
case.
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FIG. 7. Pair generation rate calculated using the first strategy
(black solid line) and the second strategy (red dashed line) for a ring
coupled to a single channel, as a function of resonator finesse. The
parameters summarized in Fig. 3 are again used here.

Sec. IV. We assume the pump to be on resonance and we
assume that 2ωP ≈ ωS + ωI . Then we have

ROO =
√

ωSωI

ωP

(
v

(Xin )
P

)2

v
(X )
S v

(X ′ )
I

(γ̄nlL)2 1

h̄ωP
P2

PPvac

× ∣∣F (Xin )
P− (KP )

∣∣4∣∣F (O)
S+ (KS )

∣∣2∣∣F (O)
I+ (KI )

∣∣2
, (66)

with

Pvac = h̄

2

√
ωSωI

	̄S	̄I

	̄S + 	̄I

= h̄

4

(ωSωI )3/2

ωSQ(load)
I + ωI Q

(load)
S

. (67)

For example, with Q(int)
I ≈ Q(int)

S = 2 × 104, ηI ≈ ηS = 0.5,
and λI ≈ λS = 1550 nm, we have Q(load)

I ≈ Q(load)
S = 1 × 104

and Pvac = 1.9 nW.
For the field enhancement factors, having taken the pump

to be on resonance, we have

∣∣F (X )
J± (KJ )

∣∣2 = 1

L

∣∣γ (X )
J

∣∣2

	̄2
J

= 4v
(X )
J ηJQ(load)

J

2πRωJ
, (68)

where R is the radius of the ring. Taking v
(X )
J = 108

m/s and R = 10 μm, we have |F (X )
J± (KJ )|2 = 26.2. We as-

sume that the resonances in question are spectrally close,
such that these parameters are representative of each res-
onance, so that |F (X )

P± (KP )|2 ≈ |F (X )
S± (KS )|2 ≈ |F (X )

I± (KI )|2 ≈
26.2. Taking γ̄nl = γnl = 100 (W m)−1 and PP = 1 mW, we
estimate ROO = 1.08 × 104 pairs per second. In addition,
from Eq. (65), at critical coupling we expect the same rate
for each of the three other possible trajectories.

In Fig. 6 we plot the rate of photon pairs exiting from each
pair of channels as the ring-channel coupling is increased,
assuming the system parameters listed above. The rates are
equal at the critical coupling point. As noted in Sec. IV, the
rate of photon pairs at the output is maximized with the system
slightly overcoupled (η = 0.6); here we see that the other rates
decrease as the coupling is increased past the critical coupling
point. A slightly overcoupled system is thus favorable in two
ways: First, the rate of pairs at the output is maximized, and

FIG. 8. Plots of (a) the modulus squared and (b) the phase of
one term of the biphoton JSA. The plot here represents the signal
photon coupling out, with the idler being scattered [see Eq. (60)]. We
have used the normalization in Eq. (59), and the axes are in terms of
dimensionless variables κ1(2) = vS(I )(k1(2) − KS(I ) )/	̄S(I ). We assume
a 10-ps Gaussian pulse and we have set η = 0.6. The ring parameters
are consistent with those used in Fig. 3.

second, the ratio of unbroken pairs to broken pairs is larger. In
Fig. 7 we compare these analytic results to numerical results
obtained as described in Sec. IV. As expected, the two meth-
ods agree well when the ring’s finesse is sufficiently large.

Finally, in Fig. 8 we plot the JSA for the ring-channel
system. We note that the JSA components associated with
different pairs of channels differ only by a constant amplitude
and a global phase, as discussed in Sec. V C. Even when the
terms associated with broken and lost pairs are included in the
full biphoton wave function, its shape has the form familiar
from earlier treatments and experiments which address only
the photon pairs at the output [8,33].

VI. SAMPLE CALCULATION: ADD-DROP SYSTEM

We now use the two strategies to model photon pair gener-
ation via SFWM in an add-drop system, sketched in Fig. 5(b).
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We take the input fields to be entering by the channel labeled
“in,” although the channel labeled “add” could also be used as
an input channel. The generated photons can couple from the
ring into the through channel T or the drop channel D, or they
can be scattered; in the second strategy, this is modeled as a
coupling into the phantom channel P . There are thus nine tra-
jectories that the generated pairs can take; the first strategy can
describe the four trajectories that involve neither photon being
scattered (solid lines in Fig. 10), while the second strategy can
describe all of them.

The rate of photons exiting in each set of channels depends
on the resonator’s coupling to the through and drop channels.
The effect of varying these two parameters on the distribution
of the generated pairs is not obvious; on top of the trade-off
between coupling and field enhancement (seen in Fig. 10 and
discussed below), we have variable coupling to two channels
which affect the rates in different ways, since only the through
channel carries the pump field. In Fig. 9 we plot the rates
associated with a subset of the configurations; the full set of
plots can be found in Fig. 12 (Appendix C). For example,
consider a scenario where one wishes to have the photon pairs
coupling into the drop channel; Fig. 9(a) indicates that to
maximize the rate of photon pairs in the drop channel, the
drop coupling should be set equal to the phantom coupling
(which is set by Q(int)), with the through coupling smaller by
roughly a factor of 2.

One can also envision a more nuanced case: One might
wish to have photon pairs coupling into the drop channel and
to suppress the rates at which only one photon couples into the
drop channel, while the other photon couples into the through
channel [see Fig. 9(b)] or is scattered [Fig. 9(c)]. Using Fig. 9,
one can see the trade-off: One could reduce the rate of photons
in the unwanted trajectories [Figs. 9(b) and 9(c)] by increasing
the drop coupling and/or decreasing the through coupling
with respect to the values that maximize the rate of pairs in
the drop channel.

For easier interpretation we can consider a slice of the
parameter space in Fig. 9 where the coupling to one of the
waveguides is constant. In Fig. 10 we plot the rates of all the
trajectories in the case where the through coupling is fixed
such that η

(T )
J = 1.5η

(P )
J , where η

(P )
J is set by Q(int); here

again we use Q(int) = 2 × 104.
The behavior shown in Fig. 10 aligns well with intuition:

The increased coupling to the drop channel is initially accom-
panied by increasing rates of photons coupling into the drop
channel. As the coupling is increased past a critical point, the
rates decrease; increasing the coupling to the drop channel
increases the total linewidth of the resonator. This results in
a lower field enhancement and the total pair generation rate
falls. We again compare the rates predicted by the first and
second strategies in Fig. 11 and find that the second strategy
is valid provided the ring’s finesse is sufficiently large.

It is straightforward to plot the JSA for the add-drop sys-
tem, but we omit it since it is qualitatively identical to the
ring-channel JSA given in Fig. 8. The two systems differ only
in the coupling constants, which affects the scaling, and in
their full linewidths, which affects the shape of the JSA in a
trivial way [recall Eqs. (60) and (63)].

FIG. 9. Dependence of pair rates on the through and drop
channel coupling (	(T ) and 	(D), respectively). Of the nine config-
urations, here we plot the subset in which the signal photon exits
via the drop channel; the idler photon couples into the (a) drop,
(b) through, and (c) phantom channels.
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FIG. 10. Rates associated with each photon pair trajectory with
increasing drop channel coupling. Since the signal and idler frequen-
cies are similar, we have 	

(X )
S ≈ 	

(X )
I and RX X ′ = RX ′X , so three of

the nine rates are omitted from the legend and can be inferred from
the others.

VII. CONCLUSION

We have developed two strategies for realistic modeling of
integrated photonic systems under the influence of scattering
loss. In the first strategy, the fields must be determined (usu-
ally numerically) directly from the system’s structure, and the
attenuation due to scattering loss is modeled with a complex
wave vector. It is easy to implement and generalize, but it
describes only photons which are not scattered, providing
only a partial understanding of the effect of scattering loss.
In the second strategy, the fields are obtained starting from a
Hamiltonian for the system, which includes a loss mechanism,
such as a fictitious channel, into which the scattered photons
couple. Because the scattered photons are accounted for, this
strategy provides a more complete understanding of the effect
of scattering loss, but it is more difficult to generalize to
arbitrary structures.

FIG. 11. Pair generation rate using the first strategy (black solid
line) and the second strategy (red dashed line) for an add-drop sys-
tem, as a function of resonator finesse. The parameters summarized
in Fig. 3 are again used here. We fix the coupling between the ring
and the in-through channel (σ1 = 0.9814) and vary the coupling with
the add-drop channel (σ2 ∈ [0.3, 1]). Here the pair generation rate
refers to the number of photon pairs per unit time collected in the
through channel

By applying the second strategy to a microring system,
we find that the characteristics of scattered photons can be
inferred from the characteristics of photon pairs which couple
out of the system [see Eqs. (53) and (63)]. The latter behavior
can be understood either using a simple model like the first
strategy or from experimental observations. We also show that
the presence of scattering loss in this type of system has a
trivial effect on the correlations of unscattered photons. These
results should be immediately useful in the interpretation of
experimental results from realistic microring systems, or from
larger systems that include them, and in the design of new
systems. We emphasize that this conclusion applies only to the
simple microring system we have considered or other similar
resonant systems; further efforts could focus on generalizing
the second approach to different types of systems, in which
less trivial behavior could arise.

We have also limited our analysis to the generation of pho-
ton pairs by a classical pump, but applying this approach to
other scenarios could yield other interesting and useful results.
For example, it would be straightforward to apply the strate-
gies discussed here to study the generation of squeezed light.
With the second strategy one could also consider different
types of light as the input to a microring system; an arbitrary
state of light can be considered the input. We envision this
approach being applied to a number of other problems. One
could study the effect of linear dynamics on exotic states of
light or study nonlinear optics driven by nonclassical light
such as squeezed light or a very weak coherent state such that
non-Gaussian interactions could be important.
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APPENDIX A: TECHNICAL DETAILS

Here we give the details of the calculation leading to
Eq. (12) for the pair production rate from SFWM in the cw
limit. We begin by moving into an interaction picture with
Eq. (10) as the perturbation. The linear Hamiltonian describ-
ing free propagation of the fields leads to the raising and
lowering operators in Eq. (10) all acquiring the usual time
dependences. Then treating the strong pump field classically,
we can put ain(Xin )

P (k) → αP(k), where αP(k) is a complex
function. We assume a cw pump at a frequency ω0, which can
be slightly detuned from the center frequency of the pump
range. Then ω0 = ωP + δωP, with the associated k given to
first order by k0 = K (Xin )

P + (ω0 − ωP )/v(Xin )
P [recall Eq. (6)],

and we have

αP(k) =
√

2πPP

h̄ω0v
(Xin )
P

δ(k − k0), (A1)

where PP is the pump power.
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This follows from noting first that in the asymptotic-in
fields the form of the incident field for channel Xin is the same
as it would be for an infinite channel and so we can identify
αP(k) by considering an infinite channel where the energy
would be

H =
∫

dk h̄ωPkα
∗
P(k)αP(k), (A2)

where we take the integral over all k, although for our appli-
cations αP(k) will be nonzero only for positive k. Moving to
position space and taking

φP(z) =
∫

dk√
2π

αP(k)ei(k−k0 )z, (A3)

for a wave packet with components k only very near k0 we
have

H ≈ h̄ω0

∫
dk α∗

P(k)αP(k)

= h̄ω0

∫
dz φ∗

P(z)φP(z). (A4)

Thus the local energy density is h̄ω0φ
∗
P(z)φP(z), and since the

group velocity is vP, the local power is h̄ω0v
(Xin )
P φ∗

P(z)φP(z).
To set this equal to PP, we see from Eq. (A3) that we should
indeed set αP(k) according to Eq. (A1). Putting (A1) into the
interaction picture version of Eq. (10), we have

HI
SFWM(t ) = −

∑
X,X ′

∫
dk1dk2MXX ′

(k1, k2)

× e−i�(k1,k2 )t aout(X )†
S (k1)aout(X ′ )†

I (k2), (A5)

where

MXX ′
(k1, k2) = 6πPP

ε0h̄ω0vP
KXX ′

(k1, k2, k0, k0) (A6)

and

�(k1, k2) = 2ω0 − ωSk1 − ωIk2 . (A7)

To estimate the pair production rate we begin with
Schrödinger’s equation in the interaction picture

ih̄
d

dt
|�(t )〉 = H (I )

SFWM(t )|�(t )〉, (A8)

where as usual HI
SFWM(t ) = eiH0t/h̄HSFWMe−iH0t/h̄ and H0 is

the full linear Hamiltonian. If we assume that the classical
pump field is on from −T/2 to T/2 and that the initial
state has no signal or idler photons, the iterative solution of
Eq. (A8) is∣∣∣∣�

(
t >

T

2

)〉
= |vac〉 − i

h̄

∫ T/2

−T/2
H (I )

SFWM(t )|vac〉dt + · · · .

(A9)

The second term in this iteration is a two-photon state, and so
to first order, the probability of generating a photon pair is

P = 1

h̄2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt ′〈vac|H (I )

SFWM(t ′)H (I )
SFWM(t )|vac〉

(A10)

and from Eq. (A6) we have

〈vac|H (I )
SFWM(t ′)H (I )

SFWM(t )|vac〉

=
∑
X,X ′

∫
dk1dk2|MXX ′

(k1, k2)|2e−i�(k1,k2 )(t−t ′ ), (A11)

where we have used [a(X )
J (k), a†(Y )

J (k′)] = δXY δ(k − k′) and
�(k1, k2) is given by Eq. (A7). Putting this into Eq. (A10)
and evaluating the integrals over time, we have

P = 1

h̄2

∑
X,X ′

∫
dk1dk2

4sin2[�(k1, k2)T/2]

�2(k1, k2)
|MXX ′

(k1, k2)|2.

(A12)

We then assume that T is sufficiently long that we can use

4 sin2[�(k1, k2)T/2]

�2(k1, k2)
→ 2πT δ(�(k1, k2)) (A13)

so that

P = 2πT

h̄2

∑
X,X ′

∫
dk1dk2δ(�(k1, k2))|MXX ′

(k1, k2)|2.

(A14)

The total pair generation rate is then

R = P
T

= 2π

h̄2

∑
X,X ′

∫
dk1dk2δ(�(k1, k2))|MXX ′

(k1, k2)|2

=
∑
X,X ′

RXX ′
, (A15)

where the rate of pair production with a signal photon in
channel X and an idler photon in channel X ′ is given by

RXX ′ = 2π

h̄2

∫
dk1dk2δ(�(k1, k2))|MXX ′

(k1, k2)|2. (A16)

Moving from wave number (k1, k2) to frequency variables
(ω1 ≡ ωSk1 , ω2 ≡ ωIk2 ) and setting

JXX ′
(ω1, ω2,ω3, ω4) ≡ KXX ′

(k1(ω1), k2(ω2), k3(ω3), k4(ω4)),

(A17)

where on the right-hand side

k1(ω) = K (X )
S + ω − ωS

v
(X )
S

,

k2(ω) = K (X ′ )
I + ω − ωI

v
(X ′ )
I

, (A18)

k3(ω) = k4(ω) = K (Xin )
P + ω − ωP

v
(Xin )
P

,

using Eq. (A6) in (A16), and implementing the Dirac δ func-
tion, we find Eq. (12).

APPENDIX B: DERIVING ASYMPTOTIC FIELD
AMPLITUDES FOR A RING COUPLED TO MANY

WAVEGUIDES

First, recall that, as indicated in Fig. 4, there are twice
as many channels as waveguides. Each waveguide has an
in-channel and an out-channel, in the region of the waveguide
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with z < 0 and z < 0, respectively, for the direction of propa-
gation indicated in Fig. 4. The in-channels have asymptotic-in
states of interest associated with them, while the out-channels
have asymptotic-out states of interest associated with them.
We associate the label X with a particular channel and we
denote the corresponding waveguide by X̄ .

As described in Sec. II, an asymptotic-in field for a particu-
lar channel X generally consists of a field propagating towards
an interaction region in only that channel and outgoing fields
in all other channels. The incoming field has the form that
it would have if it were freely propagating in that channel.
This applies to a ring-channel system as follows: At negative
enough z in the appropriate waveguide (outside the interaction
region with the ring), an asymptotic-in field for a ring-channel
system will have the form of the field that would propagate
were the ring not present [7]. Then for an asymptotic-in field
associated with an in-channel X we can identify

Din(X )
Jk (r) = Dwg(X̄ )

Jk (r)

(in input region of waveguide X̄ ), (B1)

Din(X )
Jk (r) = 0

(in input region of other waveguides Ȳ ), (B2)

where Din(X )
Jk (r) is the asymptotic-in field amplitude, as intro-

duced in Eq. (7). Similarly, an asymptotic-out field consists
of a single outgoing field in one channel and fields incoming
from every channel. At positive enough z in the appropriate
waveguide, an asymptotic-out field in a ring-channel system
will have the form of the field that would propagate were the
ring not present; for the asymptotic-out field associated with
an out-channel X , we can identify

Dout(X )
Jk (r) = Dwg(X̄ )

Jk (r)

(in output region of waveguide X̄ ), (B3)

Dout(X )
Jk (r) = 0

(in output region of other waveguides Ȳ ). (B4)

To find the asymptotic field amplitudes in the other regions
of the structure, we refer to equations of motions arising from
the Hamiltonian in Eq. (41). Working in the Heisenberg pic-
ture with Eq. (41) and taking care that the resulting ψ

(X )
J (z, t )

suffer a discontinuity across z = 0, for each ψ
(X )
J (z, t ) we find

that away from z = 0 we have [18]

∂ψ
(X )
J (z, t )

∂t
+ v

(X )
J

∂ψ
(X )
J (z, t )

∂z
+ iωJψ

(X )
J (z, t ) = 0 (B5)

and at the coupling point we have

ψ
(X )
J> (0, t ) = ψ

(X )
J< (0, t ) − iγ (X )

J

v
(X )
J

bJ (t ). (B6)

We also have(
d

dt
+ 	̄J + iωJ

)
bJ (t ) =

∑
X

−i
(
γ

(X )
J

)∗
ψ

(X )
J< (0, t ), (B7)

with

	̄J =
∑

X

	
(X )
J , 	

(X )
J =

∣∣γ (X )
J

∣∣2

2v
(X )
J

. (B8)

The ψ
(X )
J<(>)(0, t ) in Eqs. (B7) and (B6) are introduced to

treat the discontinuity at the coupling point; ψ
(X )
J< (0, t ) is the

field ψ
(X )
J (z, t ) for z < 0 (in-channel), extended to all z via

(B5). Likewise, ψ
(X )
J> (0, t ) is the field ψ

(X )
J (z, t ) for z > 0

(out-channel) extended to all z via (B5) [18]. From here we
impose the conditions in Eqs. (B1) and (B3) to derive the
asymptotic-in and -out field amplitudes.

1. Asymptotic-in field

For a general asymptotic-in field associated with in-
channel X , Eq. (B1) requires that the field in the input region
of channel X has the form

DJ (r, t ) =
∫

dk

√
h̄ωJ

2
d (X )

J (x, y)ψ̌ (X )
J< (z, t )eiK (X )

J z + H.c.,

(B9)

with

ψ̌
(X )
J< (z, t ) = ain(X )

J (k)√
2π

ei(k−K (X )
J )ze−iωJkt (B10)

[cf. Eqs. (2) and (4)]. We take the dependence of ψ̌
(X )
J< (z, t )

on k to be understood and we do not mark it explicitly with
a label; the profile d (X )

J (x, y) is the waveguide profile dJ (x, y)
[see Eq. (34)] in waveguide X̄ . Equation (B2) then requires
that we have

ψ̌
(Y 
=X )
J< (z, t ) = 0 (B11)

so that the field amplitudes are zero in all other input channels.
The fields in the output regions of each waveguide have a
form similar to Eq. (B9), where the dependence of ψ̌

(Y )
J> (z, t )

on ain(X )
J (k) must be determined. Taking these and seeking

a corresponding b̌J (t ) = b̌J exp−iωJkt , we find that the equa-
tions (B7) require

[−i(ωJk − ωJ ) + 	̄J ]b̌Je−iωJkt = −i
(
γ

(X )
J

)∗ ain(X )
J (k)√

2π
e−iωJkt ,

(B12)

ψ̌
(X )
J> (0, t ) = ain(X )

J (k)√
2π

e−iωJkt − iγ (X )
J

v
(X )
J

b̌J exp−iωJkt , (B13)

ψ̌
(Y 
=X )
J> (0, t ) = − iγ (Y 
=X )

J

v
(Y 
=X )
J

b̌Je−iωJkt . (B14)
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Manipulating this, we have

[i(ωJ − ωJk ) + 	̄J ]b̌J = −i
(
γ

(X )
J

)∗ ain(X )
J (k)√

2π
, (B15)

b̌J =
(

−i
(
γ

(X )
J

)∗

i(ωJ − ωJk ) + 	̄J

)
aasy-in(X )

J (k)√
2π

(B16)

= −
√

L
2π

1√
L

( (
γ

(X )
J

)∗

(ωJ − ωJk ) − i	̄J

)
ain(X )

J (k) (B17)

= −
√

L
2π

1√
L

( (
γ

(X )
J

)∗

vJ (K (X )
J − k) − i	̄J

)
ain(X )

J (k), (B18)

b̌J = −
√

L
2π

F (X )
J− (k)ain(X )

J (k), (B19)

with the field enhancement factor F (X )
J± (k) defined in Eq. (47).

In Eq. (B18) we have neglected the group velocity dispersion
across the resonance; for this to be valid, the group veloc-
ity dispersion β2 must be small enough that 1

vJ
(ωJ − ω) �

β2(ωJ − ω)2. For example, for a 1-GHz resonance linewidth,
this would be a good approximation for β2 < 10−20 s2/m.
Putting this into Eqs. (B13) and (B12), we have

ψ̌
(X )
J> (0, t ) = ain(X )

J (k)√
2π

e−iωJkt + iγ (X )
J

v
(X )
J

√
L

2π
F (X )

J− (k)ain(X )
J (k)e−iωJkt ,

(B20)

ψ̌
(X )
J> (0, t ) =

(
1 + iγ (X )

J

v
(X )
J

√
LF (X )

J− (k)

)
ain(X )

J (k)√
2π

e−iωJkt ,

(B21)

and

ψ̌
(Y 
=X )
J> (0, t ) = iγ (Y 
=X )

J

v
(Y 
=X )
J

√
LF (X )

J− (k)
ain(X )

J (k)√
2π

e−iωJkt . (B22)

From Eq. (B5) we have ψ̌
(Y )
J<(>)(z, t ) = ψ̌

(Y )
J<(>)(0, t )ei(k−K (Y )

J )z

for all waveguides Ȳ , including X̄ .
We now consider separately each k component of an

asymptotic-in field mode J . That is, we introduce Din(X )
Jk (r, t )

such that

Din
J (r, t ) =

∑
X

∫
dk

[
Din(X )

Jk (r, t ) + H.c.
]
. (B23)

The component Din(X )
Jk (r, t ) is a piecewise function with the

form

Din(X )
Jk (r, t ) =

√
h̄ωJ

2
d (Y )

J (x, y)ψ̌ (Y )
J<(>)(z, t )eiK (Y )

J z

[r ∈ input (output) region of all waveguides Ȳ ]
(B24)

=
√

h̄ωJ

2

dJ (r⊥; ζ )√
L

b̌Je−iωJkt eiκJ ζ

(r ∈ ring). (B25)

Using Eqs. (B10), (B19), (B21), and (B22), we have

Din(X )
Jk (r, t ) =

√
h̄ωJ

4π
d (X )

J (x, y)eikzain(X )
J (k)e−iωJkt

(r ∈ input region of waveguide X̄ ) (B26)

=
√

h̄ωJ

4π
d (X )

J (x, y)

(
1 + iγ (X )

J

v
(X )
J

√
LF (X )

J− (k)

)
eikzain(X )

J (k)

e−iωJkt (B27)

(r ∈ output region of waveguide X̄ )

=
√

h̄ωJ

4π
d (Y )

J (x, y)

(
iγ (Y 
=X )

J

v
(Y 
=X )
J

√
LF (X )

J− (k)

)
eikzain(X )

J (k)e−iωJkt

(B28)

(r ∈ output region of all other waveguides Ȳ 
= X̄ )

= −
√

h̄ωJ

4π
dJ (r⊥, ζ )F (X )

J− (k)eiκJ ζ ain(X )
J (k)e−iωJkt

(r ∈ ring). (B29)

Finally, recalling the general form of the asymptotic-in field
in Eq. (7), we have

Din(X )
Jk (r, t ) = Din(X)

Jk (r)ain(X)
J (k)e−iωJkt , (B30)

and the asymptotic-in field amplitudes listed in Eq. (46) can
be read directly off from Eqs. (B26)–(B29).

2. Asymptotic-out field

We begin by imposing the appropriate asymptotic behav-
ior, namely, that for an asymptotic-out field associated with
an out-channel X , we have

ψ̌
(X )
J> (z, t ) = aout(X)

J (k)√
2π

ei(k−K (X )
J )ze−iωJkt , (B31)

ψ̌
(Y 
=X )
J> (z, t ) = 0. (B32)

This ensures that the outgoing displacement field in out-
channel X has the form of a field propagating through
an isolated waveguide and that this is the system’s only
outgoing field. These boundary conditions along with
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Eqs. (B6) and (B7) give

aout(X )
J (k)√

2π
e−iωJkt = ψ̌

(X )
J< (0, t ) − iγ (X )

J

v
(X )
J

b̌J (t ), (B33)

0 = ψ̌
(Y 
=X )
J< (0, t ) − iγ (Y 
=X )

J

v
(Y 
=X )
J

b̌J (t ), (B34)

(
d

dt
+ 	̄J + iωJ

)
b̌J (t ) = −i

(
γ

(X )
J

)∗
ψ

(X )
J< (0, t )

− i
∑
Y 
=X

(
γ

(Y 
=X )
J

)∗
ψ

(Y 
=X )
J< (0, t ).

(B35)

Setting b̌J (t ) = b̌Je−iωJkt and rearranging Eqs. (B33) and
(B34), we have

ψ̌
(X )
J< (0, t ) = aout(X )

J (k)√
2π

e−iωJkt + iγ (X )
J

v
(X )
J

b̌Je−iωJkt , (B36)

ψ̌
(Y 
=X )
J< (0, t ) = iγ (Y 
=X )

J

v
(Y 
=X )
J

b̌Je−iωJkt . (B37)

Putting these into Eq. (B35) and using 	
(Y )
J = |γ (Y )

J |2
2v

(Y )
J

, we have

[−i(ωJk − ωJ ) + 	̄J ]b̌Je−iωJkt

= −i
(
γ

(X )
J

)∗ aout(X )
J (k)√

2π
e−iωJkt + 2	

(X )
J b̌Je−iωJkt

+
∑
Y 
=X

2	
(Y )
J b̌Je−iωJkt , (B38)

and since 	̄J = ∑
X 	

(X )
J , this rearranges to

[−i(ωJk − ωJ ) − 	̄J ]b̌J = −i
(
γ

(X )
J

)∗ aout(X )
J (k)√

2π
, (B39)

so

b̌J =
(

−i
(
γ

(X )
J

)∗

i(ωJ − ωJk ) − 	̄J

)
aout(X )

J (k)√
2π

(B40)

= −
√

L
2π

1√
L

( (
γ

(X )
J

)∗

vJ (K (X )
J − k) + i	̄J

)
aout(X )

J (k), (B41)

b̌J = −
√

L
2π

F (X )
J+ (k)aout(X )

J (k). (B42)

Using these in Eqs. (B36) and (B37), we have

ψ̌
(X )
J< (0, t ) =

(
1 − iγ (X )

J

v
(X )
J

√
LF (X )

J+ (k)

)
aout(X )

J (k)√
2π

e−iωJkt ,

(B43)

ψ̌
(Y 
=X )
J< (0, t ) = − iγ (Y 
=X )

J

v
(Y 
=X )
J

√
LF (X )

J+ (k)
aout(X )

J (k)√
2π

e−iωJkt .

(B44)

From here the derivation of the field amplitudes follows the
asymptotic-in case; we introduce the components Dout(X )

Jk (r, t )
of the full asymptotic-out field and find that the amplitudes
given in Eq. (48) follow from Eqs. (B31) and (B42)–(B44).

APPENDIX C: ADD-DROP SAMPLE CALCULATION: PAIR
RATES WITH VARYING COUPLING TO WAVEGUIDES

In Sec. IV we discussed photon pair generation in an add-
drop structure. In particular, we discussed the rate of photons
in different sets of channels, including the phantom channel,
and their dependence on the ring’s coupling to the through
and drop ports. This dependence is plotted in Fig. 12 for all
the different trajectories for the photon pairs.
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FIG. 12. Rate of signal and idler photons in channels X and X ′, respectively, for the add-drop system, with variable coupling to the through
and drop waveguides (	(T ) and 	(D)) for (a) X = D and X ′ = D, (b) X = D and X ′ = T or X = T and X ′ = D, (c) X = D and X ′ = P or
X = P and X ′ = D, (d) X = T and X ′ = T , (e) X = P and X ′ = P, and (f) X = P and X ′ = T or X = T and X ′ = P.
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