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Two-photon-absorption measurements in the presence of single-photon losses
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We discuss how two-photon absorption (TPA) of squeezed and coherent states of light can be detected
in measurements of the transmitted light fields. Such measurements typically suffer from competing loss
mechanisms such as experimental imperfections (i.e., imperfect photodetectors) and other linear scattering losses
inside the sample itself, which can lead to incorrect assessments of the two-photon-absorption cross section. We
evaluate the sensitivity with which TPA can be detected and find that at sufficiently large photon numbers TPA
sensitivity of squeezed vacua or squeezed coherent states can become independent of linear losses that occur
after the TPA event has taken place. In particular, this happens for measurements of the photon number or of the
antisqueezed field quadrature, where large fluctuations counteract and exactly cancel the degradation caused by
single-photon losses.
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I. INTRODUCTION

Nonclassical quantum states of light are gaining promi-
nence as resources for quantum-enhanced applications in
imaging and spectroscopy. Of particular interest in this en-
deavor are nonlinear light-matter interactions, where the most
stunning effects are predicted. Two-photon absorption of en-
tangled photons or squeezed light holds great promise for
imaging and spectroscopic applications, since, at low photon
fluxes, the absorption probability scales linearly with the light
field intensity [1–6], in contrast to the quadratic scaling of the
two-photon absorption (TPA) signal induced by laser light.
This remarkable effect could enable nonlinear spectroscopy
and microscopy at low photon fluxes, which will be highly
beneficial for photosensitive samples. To date, TPA of entan-
gled photons or squeezed states of light was reported both in
atomic gases [4,6,7] and in molecules [8–15], even though
substantial controversy persists regarding the achievable en-
hancement of TPA signals due to entanglement in the latter
case [16–19]. Entangled TPA could form the basis of new
spectroscopic and microscopy applications [20–27], where
quantum correlations reveal otherwise hidden features or in-
crease the signal-to-noise ratio.
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Beams of isolated entangled photon pairs, however, suffer
inevitably from very low photon count rates, thus neces-
sitating long measurement times and rendering them less
appealing for practical applications. It is therefore important
to also investigate quantum spectroscopy at higher photon
fluxes [28]. At higher photon fluxes, entangled photon pairs
start to overlap temporally to form squeezed vacuum states
of light, which can contain macroscopic photon numbers
[29–34], and still show interesting properties for applications.
For instance, large photon-number fluctuations render them
more efficient at driving higher harmonic generation in crys-
tals than laser pulses with identical intensity [35]. These states
could further provide benefits for quantum imaging [36–42] or
spectroscopy [43–48], due to the reduced quadrature fluctua-
tions of squeezed light sources. Moreover, spectral quantum
correlations, which lie at the heart of quantum advantage
in entangled two-photon absorption, also remain prominent
in such higher-intensity states [49] and could be exploited
for sensing. It is in this regime that recent experimental
demonstrations of stimulated Raman imaging with squeezed
light provided conclusive evidence that quantum properties of
light can improve the performance of nonlinear imaging and
spectroscopic applications beyond the limits of classical laser
pulses [39,40,50–52]. Quantum enhancement of the signal-
to-noise ratio can reduce photodamage, which constitutes a
major drawback of nonlinear methods in the investigation of
photosensitive biological samples, and open novel perspec-
tives in quantum-enabled imaging technologies.

Nonlinear spectroscopy with high-flux squeezed states of
light has also been discussed extensively in the theoretical
literature. The application to nonlinear spectroscopy was first
investigated theoretically in [53], where the distinct scaling
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FIG. 1. Two-photon absorption in a sample is detected by measuring the transmission of a coherent or squeezed beam. A pump pulse
(blue) with frequency 2ω0 drives down-conversion into photons at ω0 in a nonlinear crystal creating a squeezed state or a squeezed coherent
state in case the down-conversion process is seeded (red). The output field is focused on the TPA sample and the transmitted light is detected.
Single-photon losses with a loss rate 1 − η can degrade the measurement outcome.

behavior of different matter pathways contributing to the sig-
nal was analyzed. The spectroscopic information contained
in squeezed light emission was considered both experimen-
tally and theoretically in [54,55]. More recent work by
Michael et al. analyzed squeezing-enhanced detection of co-
herent Raman scattering in a nonlinear interferometer [56,57],
demonstrating how interferometric measurements could be
exploited in nonlinear spectroscopy. Finally, a recent analysis
by some of the authors showed that squeezing can enhance the
precision with which two-photon-absorption losses could be
measured [58], based on calculations of classical and quantum
Fisher information. In particular, the maximally achievable
precision for determining TPA losses with quadrature mea-
surements was shown to improve quartically with the mean
photon photon number proportional to n4. Such a scaling
can only be achieved using squeezed states, while coherent
(classical) states only enable a cubic scaling proportional
to n3. In other observables such as the photon number or
the antisqueezed quadrature, squeezed states only realize a
quadratic scaling, whereas coherent states again have a cubic
dependence on the incident photon number. These results
were obtained, however, in an idealized situation where no
competing loss sources impede the precise measurement of
the TPA. As these will be unavoidable in any experiment,
however, the role of these single-photon losses remains an
important open question.

In this paper, we will address it and investigate in detail the
influence of single-photon losses on the measurement of the
TPA absorbance of a sample. We will show that the quartic
scaling mentioned above is quickly degraded even by very
weak single-photon losses. In stark contrast, the sensitivity of
observables that scale quadratically with the photon number
becomes independent of these losses. Measurements with co-
herent states are always affected by the single-photon losses.
Combining these findings, we find that amplitude-squeezed
states can eliminate the degradation of the sensitivity due to
the single-photon losses in measurements. As a consequence,
for instance, photon-number measurements with sufficiently
strongly amplitude-squeezed states can combine the superior
cubic scaling of the measurement sensitivity with a robustness
against degradation by noise. This insight allows us to derive
an optimal degree of squeezing. It depends on the noise level,
i.e., on the single-photon-loss probability due to undesirable
error sources, as well as on the mean photon number of the
incident photonic state.

The paper is structured as follows. In Sec. II we introduce
the model of TPA losses, which we describe with a Markov
master equation. We describe how losses are modeled and
how signals are calculated. In Sec. III we apply this formal-
ism to TPA measurements in transmission. We calculate the
classical Fisher information (FI) in the presence of losses and
investigate how the information gets eroded. In Sec. IV we
summarize our findings.

II. MEASURING TWO-PHOTON ABSORPTION

A. Setup and master equation

We consider TPA measurements in a transmission ge-
ometry, as sketched in Fig. 1. An input coherent seed at
frequency ω0 is squeezed in an optical parametric amplifier
(OPA), implemented by means of a nonlinear crystal pumped
at frequency 2ω0, and then used as a probe for a TPA mea-
surement. We focus on a narrow-bandwidth regime, where a
single mode of light is sufficient to describe the light field. The
measurement is modeled in two parts. First, the light traverses
a two-photon absorbing medium, where the TPA informa-
tion is encoded in the quantum state. The transmitted state
then undergoes single-photon losses, which could stem from
scattering losses in the optical system or imperfect photon
detection. Finally, an observable is measured in the detection
stage (sketched here as a photon counter). In Appendix C we
discuss what happens in case there are single-photon losses
also inside the medium and demonstrate how this situation
can be incorporated into the formalism presented in the main
text.

To describe the transmission of the quantum state of light
through the two-photon absorbing medium, we eliminate the
material using the normal methods of open quantum systems
to obtain a Markovian Lindblad equation for the density ma-
trix of the light field. In the rotating frame with respect to the
field Hamiltonian it reads (see Appendix A for more details)
[59–65]

d

dt
ρ = γTPALTPAρ = γTPA

4
(2a2ρa†2 − a†2a2ρ − ρa†2a2).

(1)

Here a (a†) denotes the photon annihilation (creation) op-
erator of the field mode. Note that, in writing Eq. (1), we
write down the Lindblad operator given by a correlated loss
operator L = a2/

√
2, in order to simplify expressions in our
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subsequent derivations. We also note that Eq. (1) assumes that
no single-photon losses occur inside the TPA medium, which
in turn means that no dipole-active states must exist near the
photon frequency ω0. In the remainder of this paper we will
be interested in the measurement of the absorbance ε ≡ γTPAt ,
where t is the propagation time of the light through the TPA
medium.

We further model the single-photon losses as unbalanced
beam-splitter transformations, where a photon is transmitted
with probability η and scattered into an auxiliary mode with
probability 1 − η. Hence, the latter denotes the probability
for the photon to be lost. This level of modeling is stan-
dard in optical interferometry [66–68], as it reproduces the
same input-output relations as the solution of the Heisenberg
equation of motion of the photon annihilation operator un-
dergoing single-photon losses described by a suitable master
equation (see Appendix B for details) [69–71].

B. Measurement sensitivity and Cramér-Rao bounds

The sensitivity of the measurement of the absorbance ε via
the expectation value of a general operator O, �εO, is defined
as the square root of the variance �ε2

O. It can be obtained from
error propagation [72],

�ε2
O = Var(O)∣∣ ∂〈O〉

∂ε

∣∣2 , (2)

where the expectation value is evaluated at fixed ε. In our
derivation below, we will evaluate the changes at ε = 0, i.e.,
we assume that we can approximate the transmitted den-
sity matrix as ρ � ρ0 + ε × (∂ρ0/∂ε). This seems justified
for most applications, as typical two-photon-absorption cross
sections in molecules are very small. It is this small-ε limit
that will be the focus of our attention. The generalization to
finite ε is conceptually straightforward, but does not allow
analytical results and thus prevents us from developing an
intuitive understanding of the underlying physics.

In general, the sensitivity (2) is bounded by the classical
FI Fcl(O, ρ) associated with the measurement of O, which in
turn is bounded by the quantum Fisher information FQ(ρ),
which is further maximized over any positive-operator-valued
measurement [72–74],

�ε2
O � 1

Fcl(O, ρ)
� 1

FQ(ρ)
. (3)

These inequalities are known as the classical and quantum
Cramér-Rao bounds, respectively. As shown in [58], the quan-
tum FI diverges in the limit of very small absorbances ε → 0
and consequently does not provide a useful tool to assess the
achievable sensitivity. Instead, we will focus on the classical
Fisher information in the following.

The FI of a measurement such as the detection of photon
numbers is a function of the probability distribution pertaining
to this measurement. Here the photon-number distribution is
given by the set of probabilities {Pn} for the detection of
n photons. The information to be gained from the change
of this distribution under TPA losses is quantified by the

FI [73,74]

FC (ρε, n̂) =
∑

n

Pn(ε)

(
∂

∂ε
ln Pn(ε)

)2

=
∑

n

1

Pn(ε)

(
∂Pn(ε)

∂ε

)2

. (4)

It is likewise defined for operators with a continuous spec-
trum, which give rise to a probability distribution function.
For instance, given the probability distribution P(q) of pos-
sible measurement outcomes for measurements of the field
quadrature q̂, we calculate the corresponding FI

FC (ρε, q) =
∫

dq
1

P(q)

(
dP(q)

dε

)2

. (5)

C. Measurement sensitivity for two-photon losses

We now discuss how we evaluate measurement observables
and the measurement sensitivities. In the setup presented in
Fig. 1, the expectation value of the operator O is formally
given by

〈O〉 = tr{OeLloss eLTPAεeLOPAρ0}, (6)

where ρ0 is the initial state of light. In addition, LOPA is a
superoperator, which describes a squeezing operation, i.e., it
acts on a density matrix σ as

eLOPAσ ≡ UOPAσU †
OPA. (7)

Here we define the squeezing transformation [69]

UOPA = exp

(
ζ

2
a†2 − ζ ∗

2
a2

)
, (8)

with ζ = reiφr . The second superoperator in Eq. (6),
exp(LTPAε), describes the evolution according to the two-
photon-loss Lindbladian (1). Finally, we account for single-
photon losses. As described earlier, we can treat these losses
via a beam-splitter transformation in which the scattering into
an auxiliary photon mode with photon annihilation operator c
is described by a superoperator [66–68,75,76]

eLlossσ = UlossσU †
loss, (9)

where

Uloss = exp

(
τ (ac† + ca†)

2

)
, (10)

with τ = arccos(
√

η). Here η denotes the transmission prob-
ability for a photon and 1 − η quantifies the losses which are
incurred by this process.

We can now calculate Eq. (2). Since only the TPA evolution
depends on ε, we find straightforwardly the change of the
expectation value with ε,

∂〈O〉
∂ε

∣∣∣∣
ε=0

= tr

{
OeLloss

∂

∂ε
eLTPAεeLOPAρ0

}∣∣∣∣
ε=0

= tr{OeLlossLTPAeLOPAρ0}. (11)

Using Eq. (7), we can rewrite Eq. (11) as an expectation
value with respect to the initial state ρ0. Defining the primed
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operators O′ ≡ U †
TPAOUTPA, we obtain

O f = L′
TPA[U †

lossO
′Uloss] (12)

and

∂〈O〉
∂ε

∣∣∣∣
ε=0

= tr{O f ρ0}. (13)

Here L′
TPA denotes the adjoint superoperator to Eq. (1), which

acts on a operator X as

L′
TPAX = 1

4 (2a′†2Xa′2 − a′†2a′2X − Xa′†2a′2), (14)

where we define the transformed operators a′ = U †
OPAaUOPA

and a′† = U †
OPAa†UOPA.

Equation (13) can be translated into successive transforma-
tions of the photon operators in the Heisenberg picture.

(i) Perform squeezing operation. Using Eq. (7), we find

a → a′ = U †
OPAaUOPA = cosh(r)a + sinh(r)eiφr a†. (15)

Unless specified otherwise, we will set φr = 0 in the follow-
ing without loss of generality.

(ii) Apply the adjoint Lindbladian (14) to a′,

a′ → a′′ = a′ + εL′
TPA[a′] = a′ − ε

2
a′†a′2. (16)

(iii) Perform the beam-splitter transformation according to
Eq. (10) to account for single-photon losses,

a′′ → a′′′ = √
ηa′′ +

√
1 − ηc. (17)

Finally, the expectation value is taken with respect to the
initial state of the light field, which in the following we will
assume to be either in the vacuum or in a coherent state with
amplitude α = |α|eiφ and we collect terms which are linear in
ε to get the derivative.

D. Calculation of the Fisher information

In contrast to calculating expectation values, the evaluation
of the classical FI requires us to determine the full probability
distribution {Pn} of measuring n photons or the continuous
distribution functions P(q) and P(p) for the measurement of
field quadratures, respectively. As described in [58], this is
best done in the Schrödinger picture in a squeezed basis de-
fined by the orthonormal basis |ñ〉 = UOPA|n〉. In this basis, the
squeezed vacuum state becomes the vacuum and a squeezed
coherent state simply becomes a coherent state.1 The time
evolution is then given by Eq. (1), where the photon annihila-
tion operators have to be transformed into the squeezed basis,

ã = U †
OPAaUTPA. (18)

The change of the density matrix is then given by the action
of the transformed Lindbladian on the ground state of the
squeezed basis, i.e., ∂ρ̃/∂ε = L̃TPA|0̃〉〈0̃|.

1We can also transform to a squeezed-displaced basis defined by
| ˜̃n〉 = UOPAD(α)|n〉, where the squeezed coherent state again be-
comes the vacuum.

III. RESULTS

A. Photon-number measurements

1. Squeezed vacuum

We calculate the mean photon number, i.e., the expectation
value of the operator O = a†a, and obtain

〈n̂〉SV = η sinh2(r) − εη

2
[3 cosh(2r) − 1] sinh2(r)

= ηnr[1 − ε(1 + 3nr )], (19)

where we use nr = sinh2(r) and the subscript SV indicates
the squeezed vacuum. The first term is the transmission of the
empty setup (without the TPA sample) and the second term,
which is proportional to ε, is calculated using Eq. (13). As
expected, in the imperfect detection case the TPA and linear
scattering losses cannot be separated. The measurement of the
change of transmission can accurately and straightforwardly
measure TPA cross sections in the presence of linear losses in
the sample only if one can drive the absorption process in the
quadratic regime nr 
 1.

Calculating further the variation of the photon number and
using Eq. (2), we obtain the sensitivity

�ε
2(SV)
n̂ = 1 + η cosh(2r)

η sinh2(r)[1 − 3 cosh(2r)]2/4

= 1

ηnr

1 + η(2nr + 1)

(1 + 3nr )2
. (20)

At large photon numbers, i.e., nr 
 1, this result simplifies to

�ε
2(SV)
n̂ → 2

(3nr )2
, (21)

which remarkably is independent of the linear losses de-
scribed by η. This behavior is shown in Fig. 2(a), where the
inverse of the sensitivity (20) is plotted as dashed lines for al-
most ideal setups (i.e., with transmission probability η = 0.9),
intermediate case (η = 0.5), and extremely lossy setups (η =
0.1). In any case, the sensitivity converges to the limit (21)
at large squeezing. The necessary photon number, for which
this crossover takes place, will depend on the probability of
single-photon losses, i.e., it takes place when 2ηnr 
 1 in
the numerator of Eq. (20). Finally, we remark again that if
we additionally take single-photon losses into account, which
happen ahead of the TPA process, i.e., if the sample does not
interact with a pure squeezed quantum state of light, then these
losses indeed impact the sensitivity.

Fisher information. Next we focus on limits on achievable
sensitivity via Fisher information according to the Cramér-
Rao bound (3). We already calculated the FI (4) in [58] in
the absence of single-photon losses. Here we analyze how the
FI is affected by this error source.

The probability of detecting n photons after they undergo
single-photon losses is given by [77]

Pn(ε) =
∑
m>n

(
m
n

)
ηn(1 − η)m−nP(0)

m (ε), (22)

where P(0)
m denotes the probability to find m photons in

the light field before the single-photon losses occur. For a
squeezed vacuum state with mean photon number n, this
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FIG. 2. (a) Fisher information (4) of photon-number measurements plotted vs the mean photon number of squeezed vacuum input states in
the presence of single-photon losses with η = 0.9 (gray), 0.5 (blue), and 0.1 (red). The dashed lines correspond to the information attainable
from the analysis of the mean photon number alone, i.e., the inverse of Eq. (20). (b) Fisher information (4) of photon-number measurements
plotted vs the mean photon number of coherent input states in the presence of single-photon losses with η = 0.9 (gray), 0.5 (blue), and 0.1
(red). The dashed lines correspond to the information attainable from the analysis of the mean photon number alone according the inverse
of Eq. (24). (c) Same as (a) plotted vs the photon number and the single-photon transmission probability η. (d) Same as (b) plotted vs the
photon number and the single-photon transmission probability η. (e) Parameter regime, for which the ratio (25) is below one, plotted vs the
single-photon transmission and the average photon number. The red dashed line indicates the crossover, where rn̂ = 1.

probability is given by P(0)
m = (m!)nm/22−m/2[(m/2)!]2(1 +

n)(m+1)/2 (for even m). The initial state, and hence its popu-
lations, undergoes TPA according to the master equation (1),
which yields the change of the population distribution

∂P(0)
n (ε)

∂ε
= 1

2

[
(n + 2)(n + 1)P(0)

n+2 − n(n − 1)P(0)
n

]
. (23)

Together with Eq. (22), this allows us to evaluate the Fisher
information (4) straightforwardly.

The FI is shown as solid lines in Fig. 2(a) for the same
parameters as the sensitivity (2) discussed before, i.e., for
single-photon-loss strength ranging between weak (photon
transmission probability η = 0.9) and very strong losses (η =
0.1). As in our earlier analysis of the sensitivity attainable
from mean-photon-number measurements in Fig. 2(a), we
find that the FI converges to the ”ideal” situation of van-
ishing single-photon losses at large photon numbers. The
convergence takes place on the same photon-number range
as for the sensitivity before. At each photon number, the FI
is larger than the inverse of Eq. (20), such that additional
information can be gained from higher statistical moments
of the photon-number distribution. The scaling with photon
numbers remains the same in both cases, proportional to 〈n̂〉2.
The lack of dependence on the single-photon losses is further

illustrated in Fig. 2(c), where the same FI is plotted vs both
the photon number and the transmission probability η. At suf-
ficiently large photon numbers, the dependence on losses can
only be observed for very small η, i.e., very large photon-loss
probabilities.

2. Coherent states

To compare the above result with a conventional TPA
measurement with laser pulses, we now calculate the sensitiv-
ity achievable with transmission measurements of a coherent
state with complex amplitude α. Using the TPA transforma-
tion of the photon operators in Eq. (16), we find ∂〈n̂〉coh/∂ε =
−η|α|4. Given the variance of the coherent state Var(n̂) =
η|α|2 = 〈n̂〉ε=0, we find

�ε
2 (coh)
n̂ = η|α|2

η2|α|8 = 1

η|α|6 = 1

ηn3
α

, (24)

where nα = |α|2. Crucially, since both the variance and the
change of the photon number are linear in η, the influence
of linear losses can never be removed from the sensitivity.
In contrast, the photon-number variance of the squeezed state
in Eq. (20) contains linear and quadratic terms in η. At large
squeezing, the latter dominate and the η dependence cancels.
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The inverse sensitivity for coherent state measurements is
plotted in Fig. 2(b) vs the average photon number |α|2 for
different single-photon-loss rates. In contrast to the squeezed
state measurements in Fig. 2(a), the three dependences are
parallel at sufficiently large photon numbers, with the single-
photon losses accounting for a constant reduction of the
sensitivity. Nevertheless, at large photon numbers coherent
states can outperform squeezed vacuum states even in the
presence of strong single-photon losses due to the superior,
cubic scaling with the photon number proportional to 〈n̂〉3.
Figure 2(d) further illustrates that this remains true for any
single-photon-loss rate and any photon number. In contrast to
the squeezed vacuum in Fig. 2(c), the equipotential lines do
not tend to become vertical.

Fisher information. As in the squeezed vacuum case, we
evaluate the FI (4) which quantifies the additional precision
gains that the analysis of the full photon-counting distribution
enables. We can analyze the calculations of the preceding
section using the probability distribution of a coherent state as
input, i.e., we evaluate Eq. (22) with P(0)

m = exp(−n)nm/m!.
The results are shown as solid lines in Fig. 2(b). In contrast
to the squeezed vacuum case in Fig. 2(a), the FI of coherent
states and the inverse of Eq. (24) almost coincide for photon
numbers n � 1. Hence, as one would intuitively expect, the
analysis of higher statistical moments of the measured photon
distribution cannot enhance the achievable sensitivity for TPA
measurements with strong coherent light, where the probabil-
ity distribution is dominated by its mean value and shows only
small fluctuations. Furthermore, just like in Eq. (24), we find
that single-photon losses cannot be compensated and lower
the FI linearly.

We summarize the comparison between squeezed vacuum
and coherent states in Fig. 2(e), where we plot the ratio

rn̂ ≡ FC (ρcoh, n̂)

FC (ρsqu, n̂)
(25)

between the FI of the two cases. Figure 2 shows the parameter
regime for which squeezed light can outperform coherent
states, i.e., where rn̂ < 1. This is the case at small photon
numbers or in the presence of heavy single-photon losses. We
find that when single-photon losses are weak, i.e., 1 − η � 0,
this is the case for n � 10.

3. Squeezed coherent state

Finally, we consider TPA detection with a squeezed coher-
ent state, i.e., we assume that a coherent state with amplitude
α is fed into the OPA as sketched in Fig. 1. This setup creates
the state S(ζ )D(α)|0〉. We note that this state is different from
the usual definition of a squeezed coherent state |α, ζ 〉 =
D(α)S(ζ )|0〉 which is often found in the literature and where
a squeezed vacuum is displaced. We can transform from one
to the other using the identity

|α, ζ 〉 = S(ζ )D(α cosh r + α∗eiφ sinh r)|0〉 (26)

and use, for instance, the photon-number distributions for
|α, ζ 〉 in [69]. With a general phase α = |α|eiφ , we obtain
a phase-squeezed coherent state at φ = 0 and an amplitude-
squeezed state at φ = π/2. The photon-number distributions
of the two cases is shown in Fig. 3.

FIG. 3. Photon-number probability distributions of squeezed co-
herent states with fixed mean photon number 〈n̂〉 = 50. The open
blue circles show the probability distribution of an amplitude-
squeezed state, where the laser phase is set to φ = π/2. The red
points show the corresponding phase-squeezed states with φ = 0.
The insets sketch a phase-space picture of the respective states; the
frames are colored as the respective plots. The gray dashed line
finally indicates a coherent state distribution for comparison.

The average detected photon number is given by

〈n̂〉sq-coh = η{nr + |α|2[1 + 2nr + cos(2φ)2
√

nr (1 + nr )]}
+ εη{(nr + 3n2

r ) + 2|α|2[2nr (2 + 3nr )

+ cos(2φ)
√

n2(1 + nr )(1 + 6nr )]

+ |α|4[1 + 6nr (1 + nr )

+ 4 cos(2φ)
√

nr (1 + nr )(1 + 2nr )

+ 2 cos(4φ)nr (1 + nr )]}. (27)

We remind the reader that we use the abbreviation nr =
sinh2(r). The subscript sq-coh distinguishes it from the
squeezed vacuum calculation in Eq. (19). The photon-number
variance at ε = 0 is given by

Var(n̂) =ηnr[1 + η(1 + 2nr )]

+ η|α|2{1 + 2nr + cos(2φ)
√

nr (1 + nr )

+ 2η[nr (3 + 4nr ) + cos(2φ)
√

nr (1 + nr )(1 + 4nr)]}.
(28)

The phase dependence of the resulting sensitivity is plotted
in Fig. 4. We fix the mean photon number that interacts with
the sample; it is simply given by Eq. (27) at ε = 0 and η = 1
(i.e., before any losses have taken place). Overall, we find
that amplitude-squeezed state states with φ = π/2 perform
better than phase-squeezed states at φ = 0. As we choose a
fairly large mean photon number 〈n̂〉sq-coh = 10 and no single-
photon losses, a large coherent amplitude is beneficial due to
its cubic scaling [see Eq. (24)] such that a weakly squeezed
state generally performs better than a more strongly squeezed
state or a squeezed vacuum state. In any case, however, we
find that amplitude squeezing can provide an advantage, while
phase squeezing appears to be the least effective way to in-
crease the sensitivity.
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FIG. 4. Phase dependence of the sensitivity (2) for measurements
with a squeezed coherent state with mean photon number 〈n̂〉 = 10
and squeezing parameters r = 0.88 (dark blue dashed line) and r =
0.31 (light blue dotted line). For each phase, we adjust the coherent
amplitude α such that the mean photon number remains constant.
The black solid line indicates the squeezed vacuum sensitivity at
〈n̂〉 = 10. We further set η = 1, i.e., we consider an ideal setup
without any single-photon losses.

At large squeezing nr 
 1, the leading contributions give,
using the definition of the sensitivity (2),

�ε
2(sc)
n̂ → 2η2|α|2[4n2

r + cos(2φ)4n2
r

]
{
η|α|4[6n2

r + 8n2
r cos(2φ) + 2n2

r cos(4φ)
]}2

= 4[1 + cos(2φ)]

|α|6n2
r (16 cos4 φ)2

. (29)

At φ = 0, i.e., a phase-squeezed state, this simplifies to

�ε2
n̂,p-s � 1

|α|6e4r
= 1

|α|2|αer |4 . (30)

The subscript p-s is introduced to denote the phase squeez-
ing. Hence, the squeezed coherent state still shows the cubic
scaling of the coherent input (i.e., ∼|α|6). However, a suffi-
ciently strong squeezing component can compensate for the
detrimental influence of single-photon losses and render the
sensitivity independent of the transmission probability η. For
an amplitude-squeezed state with φ = π/2, we find that both
leading-order terms in the numerator and denominator vanish
and the subleading contributions then yield the sensitivity

�ε2
n̂,a-s � 1

|α|6e2r
. (31)

Thus, at a first glance, it appears that the phase-squeezed state
(30) is capable of detecting TPA losses with higher precision.
However, this changes completely when we relate the scaling
to the incident photon number [Eq. (27) at ε = 0 and η = 1],
where we find 〈n̂〉p-s � |αer |2 and 〈n̂〉a-s � |αe−r |2, respec-
tively, at large α. Here we have neglected the spontaneously
down-converted photons ∼ sinh2 r. Plugging these back into
the sensitivities (30) and (31), we find �ε2

n̂,p-s � e2r〈n̂〉−3

and �ε2
n̂,a-s � e−4r〈n̂〉−3. The squeezing thus deteriorates the

sensing capabilities of the phase-squeezed state. The increase
in the mean photon number is more than counterbalanced by
the increased photon-number fluctuations (compare Fig. 3).

FIG. 5. (a) Logarithm of the Fisher information (4) for an
amplitude-squeezed coherent state (i.e., φ = π/2), which is dom-
inated by its coherent amplitude, shown vs the transmission
probability η and the average photon number. The squeezing param-
eter is fixed as r = 1.876 (corresponding to a photon number �10 in
a squeezed vacuum state) and the coherent amplitude is increased to
produce the desired average photon number. (b) Same as (a) but for a
state with fixed coherent amplitude α = √

10 and variable squeezing
parameter.

The opposite is true for the amplitude-squeezed state: While
the squeezing operation reduces the initial number of photons
in the coherent state α → αe−r , the resulting state shows
exponentially enhanced sensitivity at a given average photon
number.

Fisher information. We finish this section by evaluat-
ing the FI (4) in the presence of single-photon losses with
squeezed coherent input states. In Figs. 5(a) and 5(b) we
present parameter scans of the FI vs the transmission prob-
ability η and the average photon number for two extreme
cases: We keep the squeezing parameter r fixed in Fig. 5(a),
producing a state with substantial squeezing but whose
large-n behavior is dominated by the coherent amplitude
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FIG. 6. (a) Fisher Information (4), normalized to its optimal
value, plotted vs the squeezed photon number nr = sinh2(r) at fixed
single-photon transmission probability η = 0.75 and average photon
number 〈n̂〉 = 25 (red solid line), 〈n̂〉 = 50 (blue dashed line), and
〈n̂〉 = 100 (gray dotted line). We also set the coherent amplitude
phase φ = π/2, i.e., we focus on the amplitude-squeezed states that
proved superior in Fig. 4. (b) Same as (a) but for η = 0.25.

α. Conversely, we fix this coherent amplitude in Fig. 5(b)
and increase the squeezing parameter r. We find that the
former states are much more strongly affected by single-
photon losses. Nevertheless, as they show a cubic scaling
at large photon numbers proportional to n3, the absolute
FI can still become substantially larger than in the corre-
sponding squeezing-dominated case. At fixed photon number,
an optimal state will therefore contain the minimal amount
of squeezing, which should be chosen sufficiently large to
counter single-photon losses, but not larger than this. This
makes it possible to benefit from the positive properties of
the squeezed vacuum state, while also benefiting from the
superior photon-number scaling of the coherent state. This
is illustrated in Fig. 6, where the FI of an amplitude-squeezed
state is plotted vs the squeezed photon number nr = sinh2(r)
at fixed total average photon number. This means that with in-
creasing r, the coherent amplitude is reduced to keep 〈n̂〉 fixed.
Each plot then terminates at a maximal squeezing parameter
when the coherent amplitude vanishes, and 〈n̂〉 = sinh2(rmax).
Furthermore, to compare different photon numbers, we nor-
malize each plot to the maximal FI. In Fig. 6(a) simulations
are shown for fairly weak single-photon losses 1 − η = 0.25.
We find that indeed the FI increases first at small r, reaches

its maximum, and then drops to a minimum, before starting to
increase again when the squeezed contribution becomes domi-
nant. When the single-photon losses are increased in Fig. 6(b),
this increase at strong squeezing becomes more pronounced
until it crosses the local maximum at smaller squeezing pa-
rameters. This is the case for 〈n̂〉 = 25 in Fig. 6(b), which
means that the optimal state is a squeezed vacuum and we
have reached the phase-space region shown in Fig. 2(e), where
squeezed states outperform coherent states.

B. Quadrature measurements

We next turn to measurements of the field position
q = (a + a†)/

√
2 and the momentum quadrature p = (a −

a†)/
√

2i. We remind the reader that in Eq. (15) we set the
phase of squeezing φr = 0. This means that, if squeezing is
present, the quadrature p̂ will become squeezed, while q̂ will
be antisqueezed.

1. Squeezed vacuum

For a squeezed vacuum state, the expectation value of
either quadrature vanishes, i.e., 〈q̂〉 = 〈p̂〉 = 0. Consequently,
the sensitivity according to Eq. (2) diverges, and in order to
assess the metrological power of quadrature measurements in
the presence of noise, we need to turn to the FI.

Fisher information. In the presence of losses into an aux-
iliary mode c, we can use the transformation (17) to write the
detected quadrature as

q̂detect = √
ηq̂ +

√
1 − ηq̂c, (32)

where we added the vacuum quadrature q̂c = (c + c†)/
√

2,
which gives rise to a probability distribution Pc(q) induced
by these losses. As the auxiliary mode is in the vacuum,
we have simply Pc(q) = (2/π )1/2 exp(−2q2). Defining the
random variables A ≡ √

ηq̂ and B ≡ √
1 − ηq̂c, we find the

distribution of q̂detect as the sum of two independent random
variables such that the resulting probability distribution is
given by the sum of those of the two random variables

P(q) =
∫ ∞

−∞
P0

(
q√
η

−
√

1 − η

η
q′

)
Pc(q′)

dq′
√

η
, (33)

where P0 denotes the probability distribution in the absence
of losses. Thus, single-photon losses lead to a rescaling of
the detected quadrature distribution, i.e., q → √

ηq, as well
as a convolution with the Gaussian distribution of the vacuum
mode c.

In [58] we calculated the FI for quadrature measurements
of squeezed vacua in the absence of losses. In particular, we
found a quartic scaling behavior at large photon numbers for
measurements of the squeezed quadrature,

F 0
C (ρsqu, p̂) ∼ 32n4, (34)

and a quadratic scaling of the antisqueezed quadrature,

F 0
C (ρsqu, q̂) ∼ 21n2

2
. (35)

Note that in Eqs. (34) and (35) we only show the dominant
scaling contribution at large photon number n. We investigate
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FIG. 7. (a) Scaling of the Fisher information of squeezed quadra-
ture measurements (33) for a squeezed vacuum input state plotted
vs the average photon number. The gray solid line indicates the
ideal scaling behavior (34). (b) Same as (a) but for measurements
of the antisqueezed quadrature. The gray solid line indicates the
corresponding scaling (35) of the FI at large photon numbers.

the degradation of these scaling behaviors by single-photon
losses in Fig. 7. The FI of squeezed quadrature measure-
ments is plotted in Fig. 7(a). Evidently, even for tiny losses
1 − η < 10−2 the quartic scaling (34) is eroded substantially,
and for 1 − η = 0.5 the scaling is lost entirely. This is quite
different for the antisqueezed quadrature in Fig. 7(b). For
any loss rate 1 − η, the FI eventually approaches the optimal
scaling (35). As in our discussion of Fig. 9 below, we find that
measurements of the antisqueezed quadrature are not affected
by single-photon losses, provided the initial squeezing can
overcome the loss rate.

2. Coherent state

For coherent input states, we obtain straightforwardly
〈q〉(coh) = √

2η|α| cos(φ)(1 − ε
2 |α|2) and 〈p〉(coh) =√

2η|α| sin(φ)(1 − ε
2 |α|2), as well as Var(p) = Var(q) = 1

2 .
Hence, the sensitivity yields

�ε
2 (coh)
q̂ = 1

η|α|6 cos2(φ)
, (36)

�ε
2 (coh)
p̂ = 1

η|α|6 sin2(φ)
. (37)

FIG. 8. (a) Scaling of the Fisher information of displaced quadra-
ture measurements (33) for a coherent input state plotted vs the
average photon number. The gray solid line indicates the ideal scal-
ing behavior (38). (b) Same as (a) but for measurements of the
momentum quadrature. The gray solid line indicates the correspond-
ing scaling (39) of the FI at large photon numbers.

In either case, quadrature measurements can only achieve the
same sensitivity as photon-number detection [Eq. (24)], but
never exceed it. They are further limited by single-photon
losses η which cannot be removed or circumvented.

Fisher information. We can calculate the FI of coher-
ent state measurements using the same approach as in the
squeezed vacuum case. In [58] we derived the classical FI
in an ideal setup. For a coherent state displaced along the q̂
quadrature, we found

F 0
C (ρcoh, q̂) = n3 + n2

2
(38)

and

F 0
C (ρcoh, p̂) = n2

2
. (39)

The simulations in the presence of losses are shown in Fig. 8.
As in the photon-number measurements, we find that the FI
of both measurements is affected by single-photon losses. We
never observe a convergence to the ideal setup, as we did in
the antisqueezed quadrature measurements before. However,
it should also be noted that the degradation is not as dramatic
as the reduction in Fig. 7(a) of the FI of squeezed quadrature
measurements of a squeezed vacuum.
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(a) (b)

(c) (d)

FIG. 9. (a) Sensitivity �ε2
q̂ for antisqueezed q-quadrature measurements plotted for different mean photon numbers vs the coherent state

phase φ. The solid lines show an ideal measurement with η = 1 and the dashed lines a very noisy measurement with η = 0.1. (b) Sensitivity
�ε2

q̂ plotted vs the mean photon number for different single-photon transmission probabilities η. The solid lines correspond to squeezed
coherent states, where the coherent amplitude is fixed at α = 0.1 and the squeezing parameter r is increased to generate larger photon numbers.
The laser phase is fixed at φ = 0. The light gray line indicates the limiting behavior e2r/〈n̂〉3. The inset shows a sketch of the quadrature
distribution of the incident phase-squeezed state. (c) Same as (a) but for squeezed quadrature measurements �ε2

p̂. The dashed lines, in contrast,

correspond to states where we set r = sinh−1(
√

0.1) and increase the coherent amplitude α. (d) Same as (b) but for �ε2
p̂. The light gray

lines indicate the limiting behavior (1 − η)η−1e−2r〈n̂〉−3 for η = 0.1 and 1. The laser phase is fixed at φ = π/2. The inset again shows the
corresponding phase-space distribution.

3. Squeezed coherent state

We obtain for a squeezed coherent input state the expecta-
tion value

〈q〉 =
√

2ηα cos(φ)er

− ε

2

√
η

2
α cos(φ)er[4nr +

√
nr (1 + nr ) + |α|2 fr (φ)],

(40)

where we define the factor fr (φ) = 1 + 2nr +
cos(2φ)2

√
nr (1 + nr ) = 2 cosh(2r) + 2 cos(2φ) sinh(2r),

which determines the seed amplification, and for optimal
amplification at φ = 0, i.e., for a phase-squeezed
state, it evaluates simply to fr (0) = 2 exp(2r) and for
an amplitude-squeezed state φ = π/2 it evaluates to
fr (π/2) = 2 exp(−2r). The variance at ε = 0 yields

Var(q̂) = 1
2 er[

√
1 + nr + √

nr (2η − 1)]. (41)

For measurements of the squeezed quadrature, we likewise
obtain

〈p〉 =
√

2ηα sin(φ)e−r

− ε

2

√
η

2
α sin(φ)e−r[4nr −

√
nr (1 + nr ) + |α|2 fr (φ)]

(42)

and

Var( p̂) = 1
2 e−r[

√
1 + nr − √

nr (2η − 1)]. (43)

These results are readily plugged into Eq. (2) to obtain the
sensitivity for measurements using the expectation value. At
large squeezing nr � exp(2r)/4 
 1, the expression for the
antisqueezed quadrature simplifies to

�ε2
q̂ = Var(q̂)

|∂〈q〉/∂ε|2 (44)

� 8η
√

nrer

η|α cos(φ)|2e2r[5nr + |α|2 fr (φ)]2

= 4

|α cos(φ)|2[5nr + |α|2 fr (φ)]2
. (45)

The sensitivity is maximized at φ = 0, π, . . .. As we have
seen in the discussion of photon-number measurements ear-
lier, however, one has to be careful with the assessment, as
the sensitivity is not yet normalized to the incident photon
flux. Yet if we plot the sensitivity vs the laser phase for fixed
photon numbers in Fig. 9(a), we find that indeed φ = 0, i.e.,
a phase-squeezed state, is the optimal coherent setting for
the detection of the antisqueezed quadrature. Further, we can
encounter two limiting cases. When the coherent amplitude
is very small, i.e., α  1, the sensitivity approaches �εq →
(25|α|2e4r/16)−1. Translating this into a photon-number de-
pendence, this means (25|α|2e4r/16)−1 � e−2r (25〈n̂〉/32)−1.
In contrast, when the coherent seed dominates α 
 er , the
sensitivity is given by �εq → (|α|6e4r )−1 = e2r/〈n̂〉3. This
reproduces the scaling behavior of photon-number measure-
ments in Eq. (30). These distinct scaling behaviors are shown
in Fig. 9(b). The solid lines depict the sensitivity (44) of
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FIG. 10. (a) Logarithm of the Fisher information (5) for measurements of the antisqueezed quadrature q̂ for phase-squeezed state ρp-s

shown vs the average photon number of the incident state and the squeezing parameter r. Single-photon losses are not taken into account,
i.e., we set η = 1. The inset shows an illustration of the state in phase space. The blue double-arrow indicates the quadrature measurement.
(b) Same as (a) but for measurements of the antisqueezed quadrature p̂. (c) Same as (a) but for measurements with an amplitude-squeezed state
ρa-s. (d) Same as (b) but for measurements with an amplitude-squeezed state.

states which are dominated by their squeezed contribution.
Therefore, they basically reproduce the scaling behavior of
squeezed vacua in Fig. 2(a). If the squeezed coherent state
is instead dominated by the coherent amplitude, we rather
observe an inverse cubic scaling of the sensitivity.

Running the same analysis with the sensitivity of the
squeezed p̂ quadrature, we arrive at

�ε2
p̂ = Var( p̂)

|∂〈p〉/∂ε|2 (46)

= 8e−r (1 − η)
√

nr

η|α sin(φ)|2e−2r[3nr + |α|2 fr (φ)]2

� 1 − η

η

4

|α sin(φ)|2[3nr + |α|2 fr (φ)]2
. (47)

Here we have approximated the numerator Var( p̂) � (1 −
η)n1/2

r exp(r), which is valid for nr 
 1. First, we note
that the impact of single-photon losses, described by the
transmission factor η (and loss rate 1 − η), cannot be elim-
inated from the expression. Furthermore, the sensitivity is
largest when φ = π/2, 3π/2, . . ., i.e., when we prepare an
amplitude-squeezed state [see Fig. 9(c)]. We again distinguish
two limiting behaviours. For α  1, we find �ε2

p̂ � (1 −
η)η−14(3αe2r/4)2 � (1 − η)η−132e−6r/9〈n̂〉, where 〈n̂〉 �
|αe−r |2. At large coherent amplitudes, we instead find �ε2

p̂ �
(1 − η)η−1e−2r〈n̂〉−3.

We note that this scaling changes in an ideal measurement
where η = 1. In this case, we obtain Var( p̂) = e−2r/2 (rather
than the noisy limit 1 − η used above), and an identical cal-
culation shows that the sensitivity approaches (for a weakly
seeded squeezed state with α  1) �ε(ideal)

p → 32e−6r/9〈n̂〉.
For a strongly seeded state with α 
 er , we likewise ob-
tain �ε(ideal)

p (φ = π/2) → 2e−2r/〈n̂〉3. However, the scaling
remains inferior to the performance in photon-number mea-
surements [see Eq. (31)].

Equation (46) is plotted in Fig. 9(d) for different levels
of single-photon loss and for states with varying degrees
of squeezing (solid lines) and varying coherent amplitudes
(dashed lines). We observe a very interesting crossover be-
tween a low-photon regime, where the constant terms in the
plot dominate, followed by a crossover regime where the
coherent amplitude and the squeezing parameter give rise to
similar photon numbers. Remarkably, in the course of this
crossover the sensitivity diverges, since ∂〈p̂〉/∂ε changes sign
when the α-dependent term becomes larger than the second
term in Eq. (42). The approximate scaling behaviors are ob-
served only at much larger mean photon numbers.

Fisher information. We finally simulate the FI of quadra-
ture measurements with squeezed coherent states in Fig. 10.
For an ideal setup without single-photon losses, we present
the FI of both quadrature measurements as a function of
the average incident photon number and the squeezing pa-
rameter for phase- and the amplitude-squeezed states. In our
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TABLE I. Summary of analytical results for sensitivities of different states and measurement approaches.

Sensitivity �ε2

Measurement State Limit Formula

photon counting squeezed vacuum nr 
 1 2
9n2

photon counting coherent state 1
ηn3

photon counting
squeezed coherent

φ = 0 (phase squeezed)
nr 
 1 e2r

n3

photon counting
squeezed coherent

φ = π

2
(amplitude squeezed)

nr 
 1 e−4r

n3

antisqueezed q quadrature coherent state 1
ηn3 cos2 φ

antisqueezed q quadrature
squeezed coherent

φ = 0 (phase squeezed)
α  1 e−2r 32

25n

antisqueezed q quadrature
squeezed coherent

φ = 0 (phase squeezed)
α 
 er e2r

n3

squeezed p quadrature coherent state 1
ηn3 sin2 φ

squeezed p quadrature
squeezed coherent

φ = π/2
(amplitude squeezed)

α  1 1−η

η
e−6r 32

9n

squeezed p quadrature
squeezed coherent

φ = π/2
(amplitude squeezed)

α 
 1 1−η

η
e−2r 1

n3

presentation, the horizontal line at r = 0 corresponds to the FI
of coherent states. Conversely, the upper boundary, where we
have maximal squeezing, corresponds to a squeezed vacuum
and the coherent amplitude vanishes, i.e., α = 0. In between
these two extreme cases, the relative strength of coherent and
squeezed contributions is varied continuously.

Measurements of the antisqueezed quadrature are shown
in Figs. 10(a) and 10(c). In the former case [Fig. 10(a)] we
find cubic growth of the FI according to Eq. (38) such that, at
any fixed photon number, squeezing merely reduces the FI. In
Fig. 10(c), on the other hand, it grows quadratically according
to Eq. (39), such that the squeezed vacuum ultimately shows
superior FI. We also note that, as in the case of the sensitivity
in Eq. (46), the FI goes through a local minimum as a function
of the squeezing, before growing to the squeezed vacuum
case.

In Figs. 10(b) and 10(d) we show the FI pertaining to mea-
surements of the squeezed quadrature. Here we find weaker
differences between the phase-squeezed state in Fig. 10(b)
and its amplitude-squeezed counterpart in Fig. 10(d). In
both cases, the optimal state at large photon numbers is the
squeezed vacuum due to its quartic increase according to
Eq. (34).

IV. CONCLUSION

In summary, we have investigated the detection of two-
photon absorption in the presence of competing single-photon
losses, which could stem from scattering losses or imperfect
photon detectors. Focusing on the regime of very weak TPA
losses, we provided an extensive analysis of the sensitivi-
ties achievable with different observables, namely, the photon
number, and the two field quadratures. A summary of the
scaling behaviors we derived is provided in Table I. Note that
in the quadrature measurement results, we only list phase-

squeezed (amplitude-squeezed) states in measurements of the
antisqueezed (squeezed) quadrature. As the expectation value
of the antisqueezed (squeezed) quadrature vanishes for an
amplitude-squeezed (phase-squeezed) state, the correspond-
ing variance �ε2 diverges.

For photon-number measurements, our main result is that
the TPA detection sensitivity measured with squeezed vac-
uum states can become independent of single-photon losses,
provided the mean photon number of the incident state is
sufficiently large. In this high-intensity regime, the change
in the observable’s expectation value due to single-photon
losses is exactly canceled by the corresponding change of
the photon-number variance. This cancellation persists also
for the corresponding Fisher information, thus canceling the
detrimental effect of the single-photon losses. It does not
occur in measurements with coherent probe states, where the
sensitivity is always reduced by unwanted losses. However,
the latter sensitivity shows a superior cubic scaling with the
photon number such that coherent probes will still perform
better at very large photon fluxes. Moreover, we found that
coherent state measurements are determined entirely by the
field expectation values. The calculation of the FI shows that
higher-order correlation measurements do not improve the
sensitivity. This is in contrast to squeezed probes, where the FI
is always roughly a factor 2 larger than the sensitivity derived
from the photon-number expectation value.

In our analysis of quadrature measurements, we found
that measurements of the squeezed quadrature are strongly
affected by additional losses. The beneficial quartic scaling
of the FI alluded to in the Introduction is quickly eroded
even by very small single-photon losses. In contrast, the anti-
squeezed quadrature fluctuations compensate for these losses
and become independent thereof. However, as in the case of
photon-number measurements, this comes at the price of a
suboptimal quadratic scaling with the mean photon number.
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Finally, we also investigated measurements with squeezed
coherent states, where we found that suitable tuning of the
parameters of the light allows us to combine the positive
aspects of both squeezed and coherent probes. In particular,
in photon counting experiments, single-photon losses can be
compensated, provided the squeezing is sufficiently large to
counteract the losses. Too much squeezing, however, has a
detrimental effect on the sensitivity by reducing the superior
cubic scaling of coherent probes. The competition between
these two effects leads us to define optimal degrees of squeez-
ing for a given mean photon number and noise level. This
behavior is true for both amplitude- and phase-squeezed states
of light (see Table I). However, the latter states suffer from
exponentially large photon-number fluctuations such that an
amplitude-squeezed state is beneficial for TPA measurements.
This is no longer true in quadrature measurements, where
the squeezed quadrature is always affected by single-photon
losses.
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APPENDIX A: LINDBLADIAN FOR
TWO-PHOTON-ABSORPTION PROCESSES

In this Appendix we provide some details concerning the
derivation of the Lindbladian for TPA given in Eq. (1) by
drawing heavily on Refs. [59,63,65]. We are interested in two-
photon-absorption processes in which the sample consists of
an ensemble of independent two-level systems and transition
between these levels is done by absorption from a single mode
of the electromagnetic field. The number of these two-level
systems is kept constant. The interaction Hamiltonian is given
by

HI =
∑

i

(ξσ
†
2iσ1iE

+2(�ri) + H.c.), (A1)

where ξ is the matrix element for TPA and σ
†
1i and σ

†
2i are the

creation operators for the ith two-level system in two different
states. The positive-frequency part of the electric field (in CGS
units) is given by

E+(�ri ) = −i
√

2π h̄ωu(�ri)a, (A2)

with u(�ri ) the mode eigenfunctions. In general, based on the
Liouville equation of motion, the total density operator of the
matter-photon field satisfies the von Neumann equation

ih̄
∂ρT (t )

∂t
= [ĤI , ρT (t )], (A3)

where the operators are presented in interaction picture. At
t = 0, the photon field and two-level systems of the sample
are decoupled, indicating

ρT (0) = ρ(0)
⊗ ∏

i

ρ(0)i, (A4)

in which ρ(0)i is the thermal-equilibrium density operator for
the ith two-level system. It should be noted that the density
operator of the photon field at time t can be obtained by
ρ(t ) = TriρT (t ), in which Tri denotes the trace over two-level
systems. Using the standard perturbation techniques based on
Born-Markov approximations, we find the master equations

∂ρ(t )

∂t
= κ1γTPA

4
{[a2ρ(t ), a†2] + [a2, ρ(t )a†2]}

+ κ2γTPA

4
{[a†2ρ(t ), a2] + [a†2, ρ(t )a2]}, (A5)

where the first (second) line describes the absorption (emis-
sion) process, κ1 (κ2) is the thermal population of the
two-level systems, and γTPA is given by [59,63]

γTPA = 2(2π )2ω2|ζ |2g(2ω)
∫

d3r N (�r)|u(�r)|4, (A6)

in which g(2ω) is the line-shape function and N (�r) is the
density of atoms at the position �r and integration takes place
over volume of the medium. We assumed that the sample is at
zero temperature; hence κ2 = 0 and κ1 = 1 and by redefinition
of the creation and annihilation operators, Eq. (A5) would
result in the Lindbladian given in (1).

APPENDIX B: DESCRIPTION OF SINGLE-PHOTON
LOSSES VIA BEAM-SPLITTER TRANSFORMATION

Here we elaborate on why it is acceptable to model single-
photon losses via an imbalanced beam-splitter transformation.
For this presentation, we rely heavily on Chap. 5 of Ref. [69].
We show that there are two different but equivalent ways
to describe the single-photon losses in our apparatus. One
of these methods derives a Markovian master equation by
tracing out the environmental degrees of freedom. In the other
approach, we use the quantum Langevin equation of motion
of the photon annihilation operator to find an input-output
relation for the single-photon-loss processes.

We consider our propagating light field characterized by
destruction operator a interacting with an environment (con-
tinuum of harmonic oscillators) characterized by destruction
operator b(�), where � is the frequency of the environmental
mode. The Hamiltonian for such a system and its environment
in the interaction picture is given by [69]

HI = h̄
∫

�b†(�)b(�)d�

+ h̄
∫

W (�)[a†b(�) + ab(�)†]d�. (B1)

We next transform it to the interaction picture with respect to
the first term in Eq. (B1) (see Chap. 2 of [69] for more details),
giving us the time-dependent Hamiltonian

VI (t ) = h̄
∫

W (�)[a†b(�)e−i�t + ab(�)†ei�t ]d�. (B2)
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It is straightforward to write the interaction Hamiltonian as

VI (t ) = ih̄[a†F (t ) − aF (t )†], (B3)

in which we use the definition

F (t ) = −i
∫

W (�)b(�)e−i�t d�. (B4)

The time evolution of the total density matrix describing the
system and environment is given by

ih̄
∂ρT (t )

∂t
= [VI , ρT (t )], (B5)

which by integrating it we get

ρT (t ) = ρT (0) − i

h̄

∫
[VI (t ′), ρT (t ′)]dt ′. (B6)

Considering that we are interested in the system (not the
environment), we can trace out the effects of the environment
(similar to Appendix A) and find

∂ρ(t )

∂t
= − i

h̄
Tre[VI (t ), ρT (t )]

− 1

h̄2

∫ t

0
Tre[VI (t ′), [VI (t ′), ρT (t ′)]]dt ′, (B7)

in which the first term is zero since it only contains a term
proportional to 〈F (t )〉. Therefore, the only contributing term
is the second term. By expanding this term and solving the in-
tegral accordingly (see Chap. 5 in Ref. [69] for more details),
we will get

∂ρ(t )

∂t
= γSPA(2aρa† − a†aρ − ρa†a), (B8)

in which γSPA = πW (0)2 and this is the Lindbladian equa-
tion describing the single-photon-loss process in our optical
setup.

Next we use the quantum Langevin equation to obtain an
input-output relation. To this end, we conduct our study in the
interaction picture, which means that a → a(t ) and b(�) →
b(�, t ) in the interaction Hamiltonian in Eq. (B1). The equa-
tion of the motion for annihilation operator in Heisenberg
picture gives us

∂a(t )

∂t
= i

h̄
[HI , a(t )] = −i

∫
W (�)b(�, t )d�. (B9)

It is a matter of straightforward calculation to find the solution
of this differential equation as (see Chap. 5 in Ref. [69] for
more details)

a(t ) = e−γSPAt a(0) − iW (0)

×
∫

b(�, 0)

γSPA − i�
(e−i�t − e−γSPAt )d�, (B10)

where, crucially, γSPA is identical to the loss rate in the above
Lindblad equation (B8). If we take t to correspond to the
time it takes for the light field to travel through the region
where single-photon losses take place, we identify in Eq. (17)
a(t ) = a′′′ and a(0) = a′′. Furthermore, defining e−γSPAt = √

η

and the second term in Eq. (B10) as
√

1 − ηc, where c can be
shown to satisfy bosonic commutation relations, we find

aoutput = a′′′ = √
ηa′′ +

√
1 − ηc, (B11)

which is identical to beam-splitter transformation given in
Eq. (17).

APPENDIX C: SINGLE-PHOTON LOSSES INSIDE
THE TPA MEDIUM

Here we elaborate how single-photon losses taking place
inside the TPA medium can be included in our analysis.
In molecular TPA, these losses could stem from, e.g., pho-
tons scattering off the solution containing the TPA-active
molecules, i.e., from the contribution of a second species of
molecules in the target area. In an atomic setting, they might
stem from a second atomic species which is admixed to the
sample. In such a situation, the evolution equation is given by

d

dt
ρ = (γTPALTPA + γSPALSPA)ρ, (C1)

where the first term is defined in Eq. (1) and the second term
accounts for the single-photon losses and is given in Eq. (B8).

We first note that the two superoperators in Eq. (C1) do
not commute, as it makes a difference whether photons are
lost before or after interacting with the TPA sample. This
complicates evaluating the change due to TPA losses. The
formal solution of Eq. (C1) is given by

ρ(t ) = exp(LTPAε +LSPAεs)ρ0, (C2)

where we define εs = γSPA × t in addition to the notation
introduced in the main text. In the main text we evaluated the
change due to TPA losses perturbatively at ε = 0. This is well
justified since these losses are typically small. However, in
general, we cannot do the same for the single-photon losses,
so we have to treat them to all orders in εs.

Using the Suzuki-Trotter formula, we next evaluate

∂

∂ε
exp(LTPAε +LSPAεs) (C3)

= ∂

∂ε

[
lim

N→∞
exp

(
LSPAεs

N

)
exp

(
LTPAε

N

)]N
∣∣∣∣∣
ε=0

(C4)

= lim
N→∞

1

N

N∑
k=1

exp

(
N − k

N
LSPAεs

)
LTPA exp

(
k

N
LSPAεs

)

(C5)

=
∫ 1

0
dk exp[(1 − k)LSPAεs]LTPA exp(kLSPAεs). (C6)

Thus, losses taking place during the photon propagation
through the TPA medium can be included in the present anal-
ysis through a convolution of losses taking place before and
losses taking place after the TPA event happened. Each of
these events can be implemented with a beam-splitter trans-
formation with transmission coefficients ηbefore = exp(−2kεs)
and ηafter = exp[−2(1 − k)εs], followed by a simple integral
over k. The total single-photon loss is then given by ηtotal =
ηbeforeηafter = exp(−2εs).

We next consider how this affects intensity measurements
with a squeezed vacuum state (19). A straightforward calcu-
lation yields

∂

∂ε
〈n̂(k)〉SV = −ηafterη

2
beforenr (1 + 3nr ). (C7)
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Losses taking place before the TPA event contribute quadrat-
ically. The variance reads simply Var(n̂) = ηtotalnr[1 +
ηtotal(1 + 2nr )], i.e., here losses before and after the TPA event
contribute linearly as before and the variance becomes inde-
pendent of k. This shows that, as expected, losses before the
TPA event cannot be compensated by a suitable measurement
setup. Integrating over k, we obtain

∂

∂ε
〈n̂〉SV =

∫ 1

0
dk

∂

∂ε
〈n̂(k)〉SV

= −ηtotalnr (1 + 3nr )
ηtotal − 1

ln(ηtotal )
. (C8)

Here the first term with ηtotal = ηbeforeηafter looks like single-
photon losses acting on the state after the TPA event. By
identifying η = ηtotal, it reproduces the result of the main text.
The losses before the TPA are accounted for by the extra term
(ηtotal − 1)/ ln(ηtotal ), which stems from the k integration of
the second ηbefore in Eq. (C7).

Thus, overall, the sensitivity for photon-number measure-
ments in the presence of single-photon losses inside the TPA
medium evaluates to

�ε2SV
n̂ → 2

(3nr )2

ln2(ηtotal )

(1 − ηtotal )2
, (C9)

where we find the second term stemming from these losses
inside the TPA medium.

We also provide the calculation for intensity measurements
with a coherent state, i.e., the result analogous to Eq. (24). We

find

�ε2coh
n̂ = 1

ηtotaln3
α

ln2(ηtotal )

(1 − ηtotal )2
, (C10)

where the first term is identical to Eq. (24) when we
identify η = ηtotal, but in addition we find the same term
ln2(ηtotal )/(1 − ηtotal )2 as in the squeezed vacuum case.

The exact same calculation can be repeated for quadrature
measurements as well. We can calculate the sensitivity by
replacing in Eqs. (40) and (42) the transmission probability η

by ηtotal in the first line and by ηtotalη
2
b in the respective second

lines. The variances are obtained by simply replacing η with
ηtotal. Altogether, the sensitivity for quadrature measurements
remains the same as in Eqs. (44) and (46), when we identify η

in the above equations with ηtotal and add the additional factor
that stems from the k integration, i.e.,

�ε2
q̂/p̂ → �ε2

q̂/p̂

ln2(ηtotal )

(1 − ηtotal )2
. (C11)

Hence, our results in the main text also hold for single-photon
losses inside the TPA medium, provided the additional reduc-
tion factor ln2(ηtotal )/(1 − ηtotal )2 is added, which accounts for
losses taking place before the TPA event and which creates
a reduction that appears independent of the initial quantum
states of light which we considered in this paper.

A similar analysis for the classical Fisher information
would be feasible in principle, but numerically very involved.
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