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Sub-Planck phase-space structure and sensitivity for SU(1,1) compass states
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We investigate the sub-Planck-scale structures associated with the SU(1,1) group by establishing that the
Planck scale on the hyperbolic plane can be considered as the inverse of the Bargmann index k. Our discussion
involves SU(1,1) versions of Wigner functions, and the quantum-interference effect is easily visualized through
plots of these Wigner functions. Specifically, the superpositions of four Perelomov SU(1,1) coherent states
(compass state) yield nearly isotropic sub-Planck structures in phase space scaling as 1/k compared with 1/

√
k

scaling for individual SU(1,1) coherent states and anisotropic quadratically improved scaling for superpositions
of two SU(1,1) coherent states (cat state). We show that displacement sensitivity exhibits the same quadratic
improvement to scaling.
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I. INTRODUCTION

The quantum uncertainty principle [1,2], arising from
commutator relations such as the position-momentum case
[x̂, p̂] = ih̄, limits the size of a phase-space structure [2],
for example, represented by the Wigner function [3] for
Heisenberg-Weyl (HW) symmetry [4] generated by the HW
algebra hw(1) and, more generally, by Moyal symbols for
other symmetries [5]. The uncertainty principle does not
actually mean that the displacement sensitivity, with “dis-
placement” referring to group action on the state, is limited
by this Planck scale because quantum interference in phase
space [6–8] yields finer-scale properties. For example, the
compass states (superposition of four coherent states) have
shown sub-Planck spotty structures in Wigner functions over
phase space [9]. Such sub-Planck structures are highly sensi-
tive to environmental decoherence [10] and play a crucial role
in the sensitivity of a quantum state against phase-space dis-
placements [11,12]. Sub-Planck structures have been explored
in various contexts [13–26], and both theoretical [27–31] and
experimental [32–36] studies of sub-Planck structure have
been undertaken.

Coherent states of the harmonic oscillator belong to the
dynamical symmetry group, the so-called Heisenberg-Weyl
(HW) group [37]. These coherent states were first introduced
by Schrödinger in 1926 [38,39] and then, for quantum optics,
by Glauber in 1963 [40]. These states can be visualized in
phase space by the Wigner function [6,7]. The concept of the
coherent states has been extended to other dynamical group
actions [41,42]. Coherent states exhibit the Planck limit to
phase space, known as the standard quantum limit or shot-
noise limit for HW symmetry.
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The coherent-state superpositions have been extensively
studied for the harmonic oscillator [6,43], whose position and
momentum operators obey hm(1) algebra for a single degree
of freedom and act on an infinite-dimensional Hilbert space.
The phase-space features of a cat state (superposition of two
distinct coherent states [44,45] parametrized by mean particle
or photon number n̄ corresponding to phase-space distance
from the phase-space origin) are not limited in all phase-space
directions, and hence, cannot be considered as sub-Planck.

Compared to coherent states, cat states as a superposition
of two coherent states with the same n̄ but opposite phases
have

√
n̄-enhanced sensitivity against displacements, with re-

spect to specific directions in phase space. Contrariwise, for a
compass state, this enhanced sensitivity to displacements is in-
dependent of phase-space directions. These same sub-Planck
structures present in compass states appear in cat mixtures
[23]. However, similar to cat states, the cat mixtures have
shown this enhanced sensitivity along a specific direction in
phase space. These results have been generalized to the case
of SU(2) dynamics [46].

Another symmetry of special interest for physicists is
the Lie SU(1,1) group generated by the su(1,1) algebra,
which is associated with displacementlike operators, involves
three generators as its basis elements, and acts on infinite-
dimensional Hilbert space [41]. The SU(1,1) coherent states
focused on in this paper are those of Perelomov [47,48].

SU(1,1) symmetry is connected with many quantum op-
tical systems [48–62]. The bosonic or Schwinger realization
of the su(1,1) algebra has a connection to the squeezing
properties of boson fields [63]. For example, the single- and
two-mode bosonic representations of the su(1,1) algebra have
immediate relevance to the single- and two-mode squeezed
states [47,64–71], respectively.

Similar to other dynamical groups, the SU(1,1) quasiprob-
ability distributions defined over the hyperboloid surface
are obtained through the Wigner function [72–74]. The
SU(1,1) Wigner distribution can be visualized on the Poincaré
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disk by using the stereographic projection. The super-
position of SU(1,1) coherent states has been extensively
studied in different contexts [75–77]. Moreover, the SU(1,1)
coherent-state superpositions have shown strong nonclas-
sical properties [76]. Multiple proposals suggest ways to
realize experimentally SU(1,1) coherent-state superpositions
[76–78]. Entangled coherent states [79–81] have been ex-
tended to superpositions of SU(2) and SU(1,1) coherent
states [82].

Here, we discuss the phase-space representations of in-
teresting SU(1,1) coherent-state superpositions using the
SU(1,1) Wigner function. We show that by considering
SU(1,1) coherent-state superpositions on the hyperboloid sur-
face, one can build cat states, compass states, and cat-state
mixtures. These quantum states have similar phase-space fea-
tures as their counterparts of the HW and the SU(2) groups
when represented on the Poincaré disk. For a coherent state,
the Wigner distribution appears as a lobe at the location
where it is pinned on the Poincaré disk. The effective sup-
port of this lobe decreases as k (k is the Bargmann index)
grows, which scales as 1/k. We show that the concept of
sub-Planck structures is extended to the SU(1,1) group by
associating the support area of the coherent states as the
SU(1,1) counterpart of the Planck action. In particular, we
show that SU(1,1) compass state and cat-state mixtures have
phase-space structures with extension proportional to 1/k along
any direction, which is a factor 1/

√
k smaller than the extension

found for coherent states. Two-mode bosonic realization of
the su(1,1) algebra relates the Bargmann index k to the asym-
metry in photon numbers of correlated modes of two-mode
squeezed number states. We then show that the existence of
the sub-Planck structures are connected to larger values of this
asymmetry in photon numbers of two correlated modes of the
squeezed-number states. Moreover, we verify that the SU(1,1)
coherent-state superpositions of the present work have exactly
the same enhanced sensitivity to displacements found for their
counterparts of the HW and the SU(2) groups, with the role of
n̄ in the HW group and j in the SU(2) group played by k for
the SU(1,1) groups.

Our paper is organized as follows. In Sec. II, we review
the basic concepts of sub-Planck structures associated with
the hw(1) algebra. In Sec. III, we introduce specific SU(1,1)
coherent-state superpositions and discuss their phase-space
representation by the Wigner function. Here we explore var-
ious aspects associated with these states such as sub-Planck
structures present in their Wigner function, two-photon real-
izations, and sensitivity against displacements. Furthermore,
in this section we also compare the properties of these SU(1,1)
states with their HW and SU(2) counterparts. Finally, we
summarize our discussion in Sec. IV.

II. BACKGROUND

In this section we present the background of the main
concepts, including phase-space representations of quantum
states, sub-Planck structures, and the sensitivity of a quantum
state against phase-space displacements. We explain these
concepts by means of the compass state of the harmonic
oscillator or the hw(1) algebra.

A. Sub-Planck structures

Let us start to explain some basics of the hw(1) algebra.
This algebra is defined through the creation operator â† and
the annihilation operator â that satisfy the commutation rela-
tion [â, â†] = 1. The dimensionless versions of the position
and momentum operators

x̂ := â† + â√
2

and p̂ := i(â† − â)√
2

, (1)

respectively, obey the uncertainty relation �x�p � 1/2,
where

�C2 := 〈Ĉ2〉 − 〈Ĉ〉2 (2)

is the uncertainty of any operator Ĉ [1,2].
A Schrödinger coherent state is a nonspreading wave

packet of the quantum harmonic oscillator [83] and is defined
was an eigenstate of the annihilation operator: â|α〉 = α|α〉 for
α ∈ C [6,40]. The coherent state is generated by displacing the
vacuum state by |α〉 = D̂(α)|0〉 [42] for D̂(α) := exp(αâ† −
α∗â). In the Fock basis,

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, {|n〉; n ∈ N}, (3)

which yields a Poisson distribution of the particle number and
mean n̄ = |α|2.

The Wigner function for any arbitrary quantum state ρ̂ is
written as an expectation value of the parity kernel as [74,84]

Wρ̂ (r) := tr[ρ̂�̂(α)], r := (x, p)�, (4)

with

�̂(α) := 2D̂(α)�̂D̂†(α), �̂ := exp(iπ â†â), (5)

being the displaced parity operator.
Zurek [9] showed that the compass state leads to sub-

Planck structures in phase space, and, importantly, these
structures play a crucial role in enhancing its sensitivity
towards phase-space displacements [11,12,46]. The super-
position of four coherent states with equal amplitude and
maximally spaced phases leading to the Zurek compass state
(we omit state normalization throughout) is as follows:

|ψ〉 := |x0/
√

2〉 + |−x0/
√

2〉 + |ix0/
√

2〉 + |−ix0/
√

2〉, (6)

with x0 ∈ R. The Wigner function of this compass state is
shown in Fig. 1(a). Throughout we normalize the Wigner
functions with their maximum amplitudes Wρ (0). The Wigner
function of the compass state (6) is written as a sum of the
Wigner functions of the underlying coherent states plus the
interferences between them, that is,

W|ψC〉(r) = Wcoh(r) + Iosc(r) + I�(r), (7)

where

Wcoh(r) := 1
4 [e−p2

G(x; x0) + e−x2
G(p; x0)], (8)

with

G(x; x0) := e−(x−x0 )2 + e−(x+x0 )2
, (9)

represents the Wigner functions of four coherent states under-
lying the compass state. The locations of these coherent states
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FIG. 1. For x0 = 4, (a) Wigner function of the (Heisenberg-Weyl) compass state and (b) overlap between compass state and its displaced
versions. The quantities are in arbitrary units.

in phase space are understood as the geographical points (east,
west, north, and south). The second term in Eq. (7) is

Iosc(r) := 1

2

∑
m1,m2=±1

V (m1x, m2 p), (10)

with

V (x, p) := e−[(x− x0
2 )2+(p− x0

2 )2] cos

[
x0

(
x + p − x0

2

)]
,

(11)
and represents the quantum interference between northeast,
northwest, southeast, and southwest pairs of the coherent
states.

For our purpose, we focus on the central chessboardlike
pattern

I�(x, p) := 1
2 e−(x2+p2 )[cos(2x0x) + cos(2x0 p)]. (12)

This pattern contains tiles of alternating signs (denoted by
different colors in Fig. 1) with areas proportional to x−2

0
and, hence, below the Planck scale for x0 	 1. The same
sub-Planck structures appear for the cat-state mixture [23,46].
Cat states do not have sub-Planck structures because the ef-
fective support of their phase-space structures appearing in
the interference pattern is limited only in the specific direc-
tion. The sensitivity of the compass state to displacements is
discussed next.

B. Sensitivity to displacements

The sensitivity of any arbitrary quantum state ρ̂ to dis-
placements is obtained by calculating its overlap with their
displaced versions D̂(δα)ρ̂D̂†(δα). This overlap is

Fρ̂ (δα) := tr[ρ̂D̂(δα)ρ̂D̂†(δα)] = |〈ψ |D̂(δα)|ψ〉|2, (13)

where δα ∈ C is an arbitrary displacement and the last equal-
ity holds when the states are pure, ρ̂ = |ψ〉〈ψ |. This quantity
provides a measure [85] for the distinguishability of the state
and its displaced version. The smaller the displacement δα

needs to be in order to bring the overlap to zero, the more
sensitive the state is said to be against displacements.

For a coherent state |α〉 the overlap (13) is

F|α〉(δα) = e− 1
2 |δα|2 , (14)

where the smallest noticeable displacement that vanishes this
overlap is above the Planck scale, |δα| > 1. This inequality
implies that the sensitivity of a given coherent state is at the
standard quantum limit.

Consider the compass state, for which the overlap (13)
under the assumption x0 	 1 and |δα| 
 1 is

F|ψ〉(δα) = 1
4 e− 1

2 |δα|2 [cos (x0δx ) + cos (x0δp)]2, (15)

with

δα = δx + iδp, δ j ∈ R. (16)

We plot this overlap in Fig. 1(b), and it vanishes when either
of the conditions

δx ± δp = 2m + 1

x0
π, m ∈ Z, (17)

are fulfilled. As illustrated in Fig. 1(b), the overlap vanishes
for the displacements |δα| ∼ x−1

0 and the arbitrary phase.
Hence, as compared to coherent states, a compass state with
excitations n̄ (here n̄ = x2

0/2) has shown
√

n̄-enhanced sensitiv-
ity against displacements of any arbitrary directions in phase
space.

For cat states and their mixtures this enhancement only
occurs for displacements of specific directions. Having the
same sub-Planck structures in phase-space, cat-state mixtures
are inferior for metrology of compass states, for which the
quantum superposition plays a crucial role. Hence, sub-Planck
structures are not the sole reason for the remarkable sensibility
of compass states against displacements [11].

The coherent-state superpositions of the SU(2) group are
well discussed [86–91]. SU(2) quasiprobability distributions
defined over the unit sphere are obtained through the Wigner
function [88,92–95]. The concept of sub-Planck structures
has been extended to the SU(2) group [46]. Specifically,
by restricting SU(2) coherent-state superpositions along the
equator, one can build cat states, compass states, and cat-state
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mixtures that have similar Wigner interference patterns as
their HW counterparts when represented in the stereographic
plane, with the role of x0 being played by

√
j [46,88]. The

compass state and cat-state mixtures of the SU(2) group have
shown the structures limited in all directions of the stereo-
graphic plane. These structures have an extension proportional
to 1/j in any direction, which is a factor 1/

√
j smaller than

the extension found for coherent states. Furthermore, SU(2)
cat states have shown an interference pattern with structures
limited only in one direction, just like their HW counterparts.
These states have exactly the same enhanced sensitivity to dis-
placements found for the hw(1) algebra, where j has played
the role of n̄ [46].

III. SUB-PLANCK STRUCTURES OF SU(1,1)

Different algebras are associated with different systems
[41]. For example, the hw(1) algebra, discussed in the pre-
vious section, acts on an infinite-dimensional Hilbert space
and is typically associated with one-dimensional mechanical
systems. Most recently SU(1,1) has achieved special attention
for metrology [54–60]. The SU(1,1) representation is asso-
ciated with the Hamiltonian involving squeezing [96]. This
is because the SU(1,1) displacement operator is considered
as a squeezing operator, resulting in the SU(1,1) coherent
state actually being the squeezed state [47,64–71]. In fact,
squeezing of quantum states represents the leading strategy
for enhanced quantum metrology [8,97]. It is interesting to
extend the results found for one algebra to different ones. It
may provide a way to devise experimental implementations of
essentially any algebra we are interested in. We have found it
useful to generalize the concept of sub-Planck structures from
the harmonic oscillator to the SU(2) group [46]. In this spirit,
in the following we generalize the concept of sub-Planck
structures to the SU(1,1) group.

In Sec. III A, we review the main properties of the su(1,1)
algebra. In Sec. III B, we evaluate the Wigner function of the
SU(1,1) coherent states. In Sec. III C, we introduce specific
coherent-state superpositions and show how the concept of
sub-Planck structures can be extended to the SU(1,1) case. In
Sec. III D, we explore two-photon representations of these su-
perpositions, and then in Sec. III E, we discuss their sensitivity
against phase-space displacements. In Sec. III F, we compare
the properties of these SU(1,1) coherent-state superpositions
with their HW and SU(2) counterparts.

A. Basics of SU(1,1)

The su(1,1) algebra is spanned by the generators K̂+, K̂−,
and K̂0, which satisfy the commutation relations [41]

[K̂0, K̂±] = ±K̂±, [K̂−, K̂+] = 2K̂0. (18)

These generators are written in terms of the Hermitian opera-
tors K̂1 and K̂2 as

K̂± = ±i(K̂1 ± iK̂2). (19)

The action of the SU(1,1) generators on the Fock space states
{|k, n〉; n ∈ N} satisfies

K̂0|k, n〉 = (k + n)|k, n〉, (20)

K̂+|k, n〉 =
√

(n + 1)(2k + n)|k, n + 1〉, (21)

K̂−|k, n〉 =
√

n(2k + n + 1)|k, n − 1〉, (22)

where |k, 0〉 is the normalized reference state. For any irre-
ducible representation the Casimir operator satisfies

K̂2 = K̂0 − 1
2 (K̂+K̂− + K̂−K̂+), (23)

= K̂2
0 − K̂2

1 − K̂2
2 = k(k − 1)1, (24)

where k is the Bargmann index which separates different irre-
ducible representations. We restrict to positive discrete series
for which k > 0.

The SU(1,1) displacement operator admits either of the
forms [53,98,99]

D̂(ζ ) := eξ K̂+−ξ∗K̂− = eζ K̂+eln(1−|ζ |2 )K̂0 e−ζ ∗K̂− , (25)

where

ξ = τ

2
eiϕ, ζ = eiϕ tanh

(τ

2

)
, (26)

with −∞ < τ < ∞ and 0 < ϕ < 2π . The parameter |ζ | is
restricted to the interior of the Poincaré disk, 0 � |ζ | < 1,
whereas ξ is defined on the upper sheet of the two-sheet
hyperboloid surface.

Multiplication of two operators obey [41]

D̂(ζ1)D̂(ζ2) = D̂(ζ3)eiφK̂0 , (27)

where

ζ3 = ζ1 + ζ2

1 + ζ ∗
1 ζ2

, φ = −2 arg(1 + ζ ∗
1 ζ2). (28)

As Eq. (27) is independent of k, this is proved by setting

K̂0 = σ3

2
, K̂1,2 = iσ1,2

2
, (29)

for the Pauli matrices {σ j}.

B. SU(1,1) coherent states and the Wigner function

SU(1,1) coherent states are obtained by displacing (25) the
reference state |k, 0〉 according to [47,65]

|ζ 〉 = D̂(ζ )|k, 0〉 = (1 − |ζ |2)k
∞∑

n=0

√
�(n + 2k)

n!�(2k)
ζ n|k, n〉.

(30)

Equivalently, SU(1,1) coherent states can be associated with
points on the two-sheeted hyperboloid surface through the
hyperbolic version of the Bloch vector, namely,

n = (cosh τ, sinh τ cos ϕ, sinh τ sin ϕ). (31)

Using Eqs. (27) and (30), the overlap between any two arbi-
trary coherent states is

〈ζ1|ζ2〉 =
[

(1 − |ζ1|2)(1 − |ζ2|2)

(1 − ζ ∗
1 ζ2)2

]k

. (32)
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FIG. 2. Plots of the SU(1,1) Wigner function of the reference state |k, 0〉 on the Poincaré disk. (a) k = 6, (b) k = 10, and (c) k = 14. The
quantities are in arbitrary units.

The overlap between a reference state |k, 0〉 and any state |ζ 〉
is approximately Gaussian as a function of ζ :

〈k, 0|ζ 〉 = (1 − |ζ |2)k ≈ e−k|ζ |2 , k 	 1. (33)

The width of this overlap is proportional to 1/
√

k, which de-
creases as k grows.

Similarly, the overlap between two coherent states located
at different points of the hyperboloid surface decreases with k
according to

|〈ζ1|ζ2〉| = cosh−k (χ/2), (34)

where

cosh χ = cosh τ1 cosh τ2 − cos(ϕ1 − ϕ2) sinh τ1 sinh τ2,

(35)

with

ζ j = exp (iϕ j ) tanh(τ j/2). (36)

The SU(1,1) Wigner function of operator ρ̂ is evaluated via
the expectation value of the displaced parity operator [72–74],

Wρ̂ (ζ ) := tr[ρ̂�̂(ζ )], (37)

where

�̂(ζ ) := D̂(ζ )�̂D̂†(ζ ), (38)

and �̂ := exp[iπ (K̂0 − k)] is the parity operator for SU(1,1)
[100]. The SU(1,1) Wigner distribution is visualized on the
surface of the Poincaré disk via stereographic projection:

ζ := x + ip. (39)

The unit disk can be lifted to the upper sheet of the two-
sheeted hyperboloid by the inverse stereographic map.

Using Eq. (37), the Wigner function of the operator |ζ1〉〈ζ2|
is easily found to be

W|ζ2〉〈ζ1|(ζ ) =
[

(|ζ |2 − 1)2(|ζ1|2 − 1)(|ζ2|2 − 1)(ζ2ζ
∗ − 1)(ζ ∗

1 ζ − 1)

(ζ1ζ ∗ − 1)(ζ ∗
2 ζ − 1)(1 − 2ζ ζ ∗

1 + ζ2ζ
∗
1 + ζ2ζ

∗
1 + |ζ |2 − 2ζ ∗ζ2 + |ζ |2ζ ∗

1 ζ2)2

]k

e2ikarg( 1−ζ1ζ∗
1−ζ2ζ∗ )

. (40)

The detailed derivation of this Wigner function is provided in
the Appendix.

In the particular case of the reference state |0〉 = |k, 0〉, the
Wigner function is obtained

W|0〉(ζ ) =
( |ζ |2 − 1

|ζ |2 + 1

)2k

. (41)

The corresponding Wigner distribution, which we show in
Fig. 2, appears as a lobe. The support area of this lobe de-
creases isotropically as k grows. We can approximate this
Wigner function as a Gaussian of the form exp(−4k|ζ |2) for
k 	 1. Hence, the extension of the SU(1,1) coherent state

along any direction in phase space is proportional to 1/
√

k,
which is precisely the same scaling that we found for the width
of the overlap between coherent states. In the following, we
show that the notion of sub-Planck structures is extended to
the SU(1,1) group by associating the effective support of the
SU(1,1) coherent state as a counterpart of the SU(1,1) Planck
action.

C. SU(1,1) coherent-state superpositions

The SU(1,1) cat states (superposition of two distinct coher-
ent states) have been discussed [73,75–77]. In particular, the
horizontal cat typically refers to the superposition of coherent
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FIG. 3. Plots of the SU(1,1) Wigner function of the cat state on the Poincaré disk: (a) k = 6, (b) k = 10, and (c) k = 14. Insets represent
the interference pattern of each case. In all cases ζ0 = 0.8. The quantities are in arbitrary units.

states along the horizontal axis of the Poincaré disk:

|ψH〉 := |ζ0〉 + |−ζ0〉, (42)

where ζ0 ∈ R. The corresponding Wigner function of this cat
state is

W|ψH〉(ζ ) = W|ζ0〉(ζ ) + W|−ζ0〉(ζ ) + IH(ζ ), (43)

where each term is fairly easy to obtain using Eq. (40). The
first two terms represent the Wigner functions of the coherent
states,

W|±ζ0〉(ζ ) = 1

2

[ (
ζ 2

0 − 1
)
(|ζ |2 − 1)(

ζ 2
0 + 1

)
(|ζ |2 + 1) ± 2ζ0(ζ + ζ ∗)

]2k

, (44)

and the last term provides the interference between the under-
lying coherent states,

IH(ζ ) :=
[ (

ζ 2
0 − 1

)2
(|ζ |2 − 1)2

1 − 2(2ζ 2 + 1)ζ 2
0 + ζ 4

0 + (
ζ 2

0 − 1
)2|ζ |4 + 2ζ

(
ζ 2

0 + 1
)2

ζ ∗ − 4ζ 2
0 ζ ∗

]k

cos [2k arg(�)], (45)

with

� = (1 − ζ0ζ
∗)(ζ0ζ − 1)

(1 + ζ0ζ ∗)(ζ0ζ − 1) + (ζ + ζ0)(ζ0 − ζ ∗)
. (46)

In Fig. 3 we plot the corresponding Wigner function on the
Poincaré disk. Two lobes appear on the unit disk at the loca-
tions (±ζ0, 0) are representing the coherent states. In addition,
interference appears as an oscillatory pattern directed along
the p direction of the stereographic plane. As illustrated in
Fig. 3 this interference pattern becomes pronounced (i.e., the
number of oscillation increases) as the representation index k
increases.

Along the p axis (x = 0) the interference (45) becomes

IH(p) =
[ (

ζ 2
0 − 1

)2
(p2 − 1)2(

ζ 2
0 − 1

)2
(1 + p4)+2p2

(
ζ 4

0 + 6ζ 2
0 + 1

)
]k

cos (θ ′),

(47)

where

θ ′ = 2k tan−1

(
4ζ0 p

ζ 2
0 − 1

)
. (48)

The zeros of the interference pattern IH(ζ ) occur when

p = ±
(
ζ 2

0 − 1
)

4ζ0
tan

[
(2m + 1)π

4k

]
, m ∈ Z. (49)
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FIG. 4. Plots of the SU(1,1) Wigner function of the compass state on the Poincaré disk: (a) k = 6, (b) k = 10, and (c) k = 14. Insets
represent the central interference pattern of each case. In all cases ζ0 = 0.8. The quantities are in arbitrary units.

This means that the first zeros are located at

p = ±ζ 2
0 − 1

4ζ0
tan

[
π

4k

]
≈ ±ζ 2

0 − 1

16ζ0k
π, k 	 1. (50)

Hence, the extension of the interference patches along the p
direction is proportional to 1/k for k 	 1. In contrast, along
the x axis (p = 0), interference is simply approximated by

IH(x) =
(

x2 − 1

x2 + 1

)2k

≈ exp(−4kx2), k 	 1. (51)

Therefore, along the x direction the extension of the inter-
ference pattern is proportional to 1/

√
k. This is precisely the

same extension that we found for a coherent state along the
x direction. Support of interference structures of the SU(1,1)
horizontal cat state is limited only along the vertical direction
of the phase space.

Similarly, we can build cat states along the vertical axis of
the stereographic plane as

|ψV〉 := |iζ0〉 + |−iζ0〉, (52)

whose Wigner function appears to be the same as one of the
horizontal cat states, but rotated by π/2 in the Poincaré disk,
that is,

W|ψV〉(ζ ) = W|iζ0〉(ζ ) + W|−iζ0〉(ζ ) + IV(ζ ),

= W|ψH〉(p + ix). (53)

Here, W|±iζ0〉(ζ ) = W|±ζ0〉(p + ix) represents the Wigner func-
tion of underlying coherent states, and IV(ζ ) = IH(p + ix) is
the interference.

Let us consider now the superposition of horizontal and
vertical cat states, leading to the SU(1,1) compass state

|ψC〉 := |ψH〉 + |ψV〉. (54)

The corresponding Wigner function is shown in Fig. 4. This
Wigner function is written as a sum of the Wigner functions
of individual cat states plus the interference between these
(cat-like interference patterns located at the northeast, north-
west, southeast, and southwest positions). We can clearly see
four lobes centered at positions (±ζ0, 0) and (0,±ζ0) on the
the Poincaré disk, which correspond to the coherent states.
Note that, for k 	 1, the chessboardlike pattern around the
origin of the Poincaré disk is evident. The support area of
a fundamental tile appears in a chessboardlike pattern that
decreases isotropically in phase space as k increases.

We focus on this central interference pattern, which is
written as the sum of the interferences of the horizontal and
vertical cat states, that is,

I�(ζ ) = IH(ζ ) + IV(ζ ). (55)

The extension of each tile in this pattern is proportional to
1/k along any arbitrary direction in phase space, which is
a factor 1/

√
k smaller than the extension found for coherent

states. These results show that, as promised, the concept of
sub-Planck structures is generalized to the SU(1,1) group.

These sub-Planck structures present by the mixture of two
cat states. In particular, we consider the incoherent mixture of
horizontal and vertical cat states,

ρ̂M := |ψH〉〈ψH| + |ψV〉〈ψV|, (56)
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FIG. 5. Plots of the SU(1,1) Wigner function of cat-state mixtures on the Poincaré disk: (a) k = 6, (b) k = 10, and (c) k = 14. Insets
represent the central interference pattern of each case. In all cases ζ0 = 0.8. The quantities are in arbitrary units.

whose Wigner function is equal to the sum of the Wigner
functions of horizontal and vertical cat states, that is,

Wρ̂M (ζ ) = W|ψH〉(ζ ) + W|ψV〉(ζ ). (57)

This Wigner function is shown in Fig. 5, where the chess-
boardlike pattern appears around the origin of the Poincaré
disk. Hence, the same chessboardlike pattern with sub-Planck
structures appears for the SU(1,1) cat-state mixtures.

D. Correlated coherent states of the SU(1,1) group

In this subsection, we review the relation between a few
well-known quantum states and coherent states associated
with the SU(1,1) group. The relevance of the su(1, 1) algebra
to the physical system can be obtained through the realization
of the generators in terms of the operators of the underlying
physical system. Here we focus on the bosonic realizations
of the su(1, 1) algebra corresponding to one and two modes
[47,64–71].

As a first example, we consider a single boson-mode
system in which the elements of the su(1, 1) algebra are
expressed as a single set of boson annihilation and creation
operators as

K̂+ = 1
2 â†2, K̂− = 1

2 â2, K̂0 = 1
4 (ââ† + â†â). (58)

The Casimir operator is K̂2 = −3/16, which leads to the
Bargmann indices k = 1/4 and k = 3/4. For these irreducible
representations, the SU(1,1) displacement operator (25) is
identified as a one-mode squeezed operator. The represen-
tation associated with the Bargmann index k = 1/4 is the
even-numbered Fock states, while for k = 3/4 the associated

representation is only the odd-numbered Fock states [69].
Hence, for k = 1/4, the SU(1,1) Perelomov coherent state can
be considered as an ordinary squeezed-vacuum state:

|ζ , 1/4〉 = (1 − |ζ |2)1/4

∞∑
n=0

√
2n!

2nn!
ζ n|2n〉. (59)

For k = 3/4, the corresponding SU(1,1) Perelomov coherent
state is just the squeezed one-photon state [69]:

|ζ , 3/4〉 = (1 − |ζ |2)3/4

∞∑
n=0

√
(2n + 1)!

2nn!
ζ n|2n + 1〉. (60)

Hence, for these irreducible representations, the SU(1,1)
coherent-state superpositions of the present work can be taken
as the superpositions of the ordinary squeezed vacuum and
squeezed one-photon states. In Fig. 6 we plot the correspond-
ing Wigner functions of each case. For the given parameters
these Wigner functions appear as positive peaked distribu-
tions. The superpositions of ordinary squeezed-vacuum states
have been investigated [101–105].

Now we briefly review the realization two-mode standard
case. Let (â1, â2) and (â†

1, â†
2) be, respectively, the annihila-

tion and creation operators of modes 1 and 2. Furthermore,
let |n1〉 and |n2〉 represent the number states of these two
modes, and the complete number-state basis of the two-mode
field is

|n1, n2〉 = |n1〉 ⊗ |n2〉. (61)
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FIG. 6. The Wigner functions of the SU(1,1) coherent-state superpositions considered in this work are shown on the Poincaré disk. Panels
(a) and (b) represent the Wigner functions of the cat state with k = 1/4 and k = 3/4, respectively. Similarly, panels (c) and (d) show the Wigner
functions of the compass state for k = 1/4 and k = 3/4, respectively. The Wigner functions of cat-state mixtures for k = 1/4 and k = 3/4 are
shown by panels (e) and (f), respectively. In all cases ζ0 = 0.8. The quantities are in arbitrary units.

The su(1, 1) algebra can be realized by two-mode annihilation
and creation operators as

K̂+ = â†
1â†

2, K̂− = â1â2,

K̂0 = 1
2 (â†

1â1 + â†
2â2 + 1). (62)

These SU(1,1) operators obey the commutation relations (18),
and their action on the two-mode states can be described as

K̂0|n1, n2〉 = 1
2 (n1 + n2 + 1)|n1, n2〉, (63)

K̂+|n1, n2〉 =
√

(n1 + 1)(n2 + 1)|n1 + 1, n2 + 1〉, (64)

K̂−|n1, n2〉 = √
n1n2|n1 − 1, n2 − 1〉. (65)

The Casimir operator (24) in this case becomes

K̂2
0 = 1

4 (�2 − 1), (66)

where

� = â†
1â1 − â†

2â2, (67)

whose eigenvalue is equal to the difference between the num-
ber of quanta in modes 1 and 2, i.e., n1 − n2.

The representations that we obtain are those for which
this difference is constant. The su(1,1) basis |k, n〉 can be
identified by

k = 1
2 (q + 1), n = 1

2 (n1 + n2 − q), q = 0, 1, 2, . . . , (68)

where q is the degeneracy parameter representing the eigen-
value of |�|, and it measures asymmetry in the photon
number of two correlated modes. We assume that mode 1
has q more photons than mode 2, so that n1 = n2 + q and
n = n2 = 0, 1, 2, . . . . Thus, the weight state of SU(1,1) be-
comes |k, n〉 = |n2, n2 + q〉, with n = 0, 1, 2, . . . , or, more
conveniently, it can be just simply written as |n2, n2 + q〉 =
|n, n + q〉 (with n2 = n). Therefore, SU(1,1) Perelomov co-
herent states (30) can be written in terms of the two-mode
squeezed number states as

|ζ , q〉 = (1 − |ζ |2)1+q/2

∞∑
n=0

√
(n + q)!

n!q!
ζ n|n, n + q〉. (69)

Note that the state |q, 0〉 will be interpreted as the ground state
of the relevant unitary irreducible representations of SU(1,1).
For q = 0 we just have the familiar two-mode squeezed vac-
uum state. For q > 0 it is the state obtained by the action
of the two-mode squeezed vacuum operator on the number
state |q, 0〉. Hence, SU(1,1) coherent-state superpositions con-
sidered in this work can be just superpositions of ordinary
two-mode squeezed number states. Superpositions of ordinary
two-mode squeezed vacuum states have been investigated in
Ref. [106].

The photon-number distribution of the SU(1,1) coherent
states (69) appears as a Poissonian distribution for q = 0 (zero
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fluctuations in system) [65,107]. However, as q grows, the dis-
tribution has a peak value at n > 0. Higher values of q inject
more photons in the system. Hence, this distribution is sub-
Poissonian as q increases. As mentioned earlier, larger values
of the Bargmann index k yield the sub-Planck structures in
the phase space of compass states. Note that k relates to the
degeneracy parameter q by Eq. (68). In other words, we can
say that the sub-Planck structures of the compass states are
associated with q 	 1 for the two-boson-mode standard case
of the SU(1,1). This can be understood in a way similar to that
for compass states of the harmonic oscillator, i.e., injecting
more photons in the states brings more sub-Planckness in
the phase space. The influence of squeezing on the quantum
decoherence that occurs in a two-qubit system has been in-
vestigated [108]. The su(1,1) algebra can also be associated
with the four-mode boson field by a four-boson realization of
SU(1,1) [109].

E. Sensitivity against SU(1,1) displacements

In this subsection, we discuss the sensitivity against phase-
space displacements of SU(1,1) coherent-state superpositions
presented in the preceding section. We compute the overlap
between the states and their δζ -displaced versions, as given
by Eq. (13).

Let us first consider SU(1,1) coherent states. We already
discussed in Sec. III A that, for k 	 1, this overlap is ap-
proximated in Gaussian form as exp(−k|δζ |2). Hence, the
sensitivity to displacements for SU(1,1) coherent states scales
as 1/

√
k. In the following we have to compare the sensitivity of

SU(1,1) coherent-state superpositions with this scaling.
Consider next the horizontal cat state (42). The overlap

(13) for this state under the approximation k 	 1 leads to

F|ψH〉(δζ ) = 1

2

[ (
ζ 2

0 − 1
)2

(|δζ |2 − 1)

1 − 2ζ 2
0 + 4ζ 2

0 δ2
p + ζ 4

0

]2k

cos2(2kθ ), (70)

where

θ = tan−1

(
2ζ0δp

ζ 2
0 − 1

)
(71)

and

δζ := δx + iδp, (72)

with δ j ∈ R. Note, for k 	 1 and |δζ | 
 1, the contribution
of the cross terms between the coherent states to the overlap,
e.g., 〈ζ0|D̂(δζ )| − ζ0〉 and 〈−ζ0|D̂(δζ )|ζ0〉, is negligible. The
condition to make this overlap equal to zero is

δp = ζ 2
0 − 1

2ζ0
tan

[
(2m + 1)π

4k

]
(73)

≈
(
ζ 2

0 − 1
)
(2m + 1)

8ζ0k
π, m ∈ Z, k 	 1. (74)

Thus, for large k, the displacement δp ∼ 1/k along the vertical
direction of the stereographic plane can make the horizontal
cat state orthogonal. This overlap is plotted for different values
of k in Figs. 7(a)–7(c). As compared to the coherent state,
the horizontal cat state shows 1/

√
k times higher sensitivity

against displacements. This occurs for displacements in the

vertical direction in the stereographic plane. However, for
the horizontal displacement it does not show the enhanced
sensitivity compared to coherent states.

For k 	 1, the overlap (13) of the compass state (54) is

F|ψC〉(δζ ) = 1
2 [

√
F|ψH〉(δζ ) + √

F|ψV〉(δζ )]2, (75)

with

F|ψV〉(δζ ) = F|ψH〉(δζp + iδζx ). (76)

We plot this overlap in Figs. 7(d)–7(f) with different values
of k. This result shows that the SU(1,1) compass state has
1/

√
k times higher sensitivity against displacements compared

to the coherent states, but now this enhanced sensitivity is
independent of the displacement directions.

Finally, we consider the cat-state mixture (56). The overlap
(13) for this state leads to

Fρ̂M (δζ ) = F|ψH〉(δζ ) + F|ψV〉(δζ ). (77)

This overlap is plotted for different values of k in Figs. 7(g)–
7(i). Now, the

√
k-enhanced sensitivity is present for displace-

ments directed along the δx = ±δp directions.

F. Analogies: SU(1,1) versus HW and SU(2)

In this subsection, we compare properties (phase-space
features and sensitivity against the displacements) of the
SU(1,1) coherent-state superpositions of the present work
with their HW and SU(2) counterparts. SU(1,1) compass
states and cat-state mixtures have structures of extensions pro-
portional to 1/k (k is the Bargmann index) in all phase-space
directions, which is 1/

√
k times smaller than the extension

found for coherent states. Interference features of SU(1,1) cat
states are limited only in one direction, just like their HW
and SU(2) counterparts. This shows that the Wigner functions
of these states have exactly the same phase-space features
as their HW and SU(2) counterparts when plotted on the
Poincaré disk, with the role of x0 (distance of the coherent
states from the origin) in the HW case and

√
j ( j the angular

momentum) in the SU(2) case now played by
√

k.
These SU(1,1) coherent-state superpositions are shown be

sensitive against displacements that are lower than the sen-
sitivity found for the coherent states by a factor of 1/

√
k.

This enhanced sensitivity for the SU(1,1) compass state is
independent of the displacement directions in phase space.
Whereas, for cat states and their mixtures, this enhancement
always occurs in specific directions. This shows that these
SU(1,1) states have shown exactly the same behavior against
the displacements as their HW and SU(2) counterparts, with
the role of n̄ in the HW case and j in the SU(2) case being
played by k for SU(1,1).

IV. SUMMARY

We have shown that by considering coherent-state super-
positions on the hyperboloid surface, one can build SU(1,1)
cat states, compass states, and cat-state mixtures with phase-
space features similar to those of their HW and SU(2)
counterparts when their Wigner functions are represented on
the Poincaré disk. In particular, both SU(1,1) cat-state su-
perpositions (compass state) and mixtures have sub-Planck
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FIG. 7. Overlap between SU(1,1) states considered in this work and their slightly displaced versions. The left column corresponds to k = 6,
the middle column to k = 10, and the right column to k = 14. Panels (a)–(c) represent cat-state overlaps, panels (d)–(f) represent the overlaps
of the compass state, and panels (g)–(i) are the overlaps of the cat-state mixtures. In all cases ζ0 = 0.8. The quantities are in arbitrary units.

structures in phase space, but interference structures of cat
states are not considered to be sub-Planck (since they are
not limited in all phase-space directions). Moreover, these
SU(1,1) coherent-state superpositions also behave similarly to
their HW and SU(2) counterparts regarding their sensitivity
against displacements. This generalizes sub-Planck structures
found in the HW and SU(2) cases to the SU(1,1) group.

We have reviewed the two-mode bosonic realization of
the su(1,1) algebra, which relates the Bargmann index k
to the asymmetry in photons numbers of correlated modes
of two-mode squeezed number states. Then we have shown
that the existence of the sub-Planck structures is associated
with larger asymmetry in photon numbers of two correlated
modes of the squeezed number state. In a similar way, the
enhanced sensitivity of these superpositions can also be con-
nected with this asymmetry in photon numbers of two modes;
i.e., higher asymmetry in photon numbers of these two modes
corresponds to better enhanced sensitivity against the dis-
placements.

A number of interesting schemes have been presented
for the implementation of SU(1,1) cat states [76–78]. An-

other future direction will concern how to generate the
SU(1,1) compass states introduced in our work. Some of these
schemes can be adapted to achieve the generation of SU(1,1)
compass states, which otherwise will require a completely
new proposal to generate superpositions of four coherent
states.
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APPENDIX: SU(1,1) WIGNER FUNCTION

In this section, we provide the more detailed derivations
of the Wigner function for SU(1,1) coherent states. For the
operator ρ̂ = |ζ2〉〈ζ1|, we rewrite its Wigner function as

W|ζ2〉〈ζ1|(ζ ) = 〈ζ1|D̂(ζ )�̂D̂†(ζ )|ζ2〉,
= 〈k, 0|D̂†(ζ1)D̂(ζ )�̂D̂†(ζ )D̂(ζ2)|k, 0〉. (A1)
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In some cases simpler expressions are found using the al-
ternative form of the composition property of displacement
operators, which we rewrite here as

D̂(ζ1)D̂(ζ2) = e−iφK̂0 D̂(ζ3), (A2)

with

ζ3 = ζ1 + ζ2

1 + ζ1ζ
∗
2

, φ = −2 arg(1 + ζ1ζ
∗
2 ). (A3)

Using composition laws given by Eqs. (27) and (A2), we
simplify Eq. (A1) as

W|ζ2〉〈ζ1|(ζ ) = e2ikarg( 1−ζ1ζ∗
1−ζ2ζ∗ )〈ζ ′

1|�̂|ζ2
′〉, (A4)

with

ζ ′
1 = ζ1 − ζ

1 − ζ1ζ ∗ , ζ ′
2 = ζ2 − ζ

1 − ζ2ζ ∗ . (A5)

This expression is easily simplified to obtain Eq. (40).
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