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We present a theoretical study of the optimal control of a qubit interacting with a structured environment. We
consider a model system in which the bath is a bosonic reservoir at zero temperature and the qubit frequency is
the only control parameter. Using optimal control techniques, we show the extent to which the qubit population

and relaxation effects can be manipulated. The qubit states reachable by a shaped control with a fixed maximum
intensity are found numerically. We analyze the role of standard control mechanisms and the structure of the
set of reachable states with respect to the coupling strength between the system and the environment. This
investigation is used as a starting point to explore the selectivity problem of two uncoupled qubits interacting
with their own baths and characterized by a specific coupling strength. We numerically derive the optimal control
solution for a wide range of parameters, and we show that the control law is close to a sinusoidal function with

a specific frequency in some peculiar cases.
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I. INTRODUCTION

Quantum optimal control [1] is nowadays a key ingredi-
ent in a multitude of applications, extending from molecular
physics [2—4] to magnetic resonance and, more recently, to
quantum technologies [5]. Efficient optimal control proce-
dures have been developed to manipulate complex quantum
systems toward various optimization targets [6—10]. In spite
of recent success, challenging control problems remain to be
solved, in particular in the case of open quantum systems
[11]. The control of a dissipative system in the case of a
nonstructured environment [12,13] is by now well understood
[5,11,14-22]. In addition, controllability results have been
established in the mathematical literature for open quantum
systems whose dynamics are governed by the Lindblad equa-
tion [23-26]. Control processes are not at the same stage of
maturity for a structured bath [11,27-33] in a non-Markovian
regime when the fixed-dissipator assumption cannot be made
[12,13]. Recently, several studies have focused on different
aspects of the optimal control of non-Markovian dynamics.
Among recent investigations, we mention the implementation
of quantum gates [34-37], the quantum speed limit [38,39],
qubit purification [40—42], thermalization [43], the generation
of entanglement [44,45], decoherence control [46—48], the
control of wave-packet dynamics [49], controllability analysis
[50], the control of an inhomogeneous spin ensemble [51], and
ground-state cooling [52].
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Despite these results, the importance of information back-
flow as a useful resource for control protocols remains an open
issue. The information backflow of an open quantum system
is linked to the partial or total return of quantum excitations
to the system after a certain amount of time spent in the
environment. This effect is at the origin of non-Markovianity.
We propose to strengthen the previous studies by analyzing
the controllability and the reachable states of a qubit in contact
with a structured environment. This analysis is a key prereq-
uisite for determining control protocols performing specific
tasks and using all the available resources of the environment.
As an illustrative relevant example, we consider a qubit inter-
acting with a Lorentzian bath (see [35,53] for general reviews
on this system). A Markovian regime is achieved when the
coupling strength and the detuning of the qubit with respect to
the central bath frequency are small compared to the width of
the Lorentzian spectral density. Non-Markovianity can be ob-
served if these conditions are not met. The modulation of the
qubit frequency allows us to modify the information backflow
and to influence to some extent the relaxation effects. In this
context, the role of a constant detuning is well known, and the
dynamics can be integrated analytically. Several studies have
also pointed out the efficiency of a sinusoidal modulation with
a specific frequency, usually called the magic frequency, as a
way to prevent qubit relaxation [54-57]. However, a precise
description of the reachable states for a fixed control time
and of the corresponding control protocols is still lacking.
We propose here to take a step in this direction by exploring
numerically this control problem for the system under study.
Note that a complete theoretical answer to this fundamental
issue is a very difficult task and goes beyond the scope of this

©2022 American Physical Society


https://orcid.org/0000-0002-4594-5978
https://orcid.org/0000-0002-7925-3750
https://orcid.org/0000-0002-1963-333X
https://orcid.org/0000-0002-3336-2441
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.043702&domain=pdf&date_stamp=2022-10-03
https://doi.org/10.1103/PhysRevA.106.043702

ANSEL, FISCHER, SUGNY, AND BELLOMO

PHYSICAL REVIEW A 106, 043702 (2022)

work. Using optimization procedures [5], we numerically find
the reachable states for a given initial configuration, and we
show the extent to which the qubit population can be manipu-
lated in a fixed control time and a finite range of variations for
the control parameter. We also discuss the underlying control
mechanisms and the differences observed when the coupling
strength is changed.

Such controllability results are the building block for con-
trol design. This general idea is exemplified in the case of the
selective control of two qubits. Selectivity is an important pre-
requisite in quantum computing [5,58], quantum sensing [59],
quantum discrimination and estimation [60,61], and magnetic
resonance [62,63] applications. In particular, selective control
is at the core of fingerprinting, contrast methods in magnetic
resonance imaging, and classical sensing approaches, which
aim to exploit the differences between qubit responses from
a unique input excitation. Note that similar ideas were also
recently developed with the quantum Fisher information for
quantum metrology applications [64,65]. On the basis of the
controllability results, we investigate this control issue in the
case of two qubits coupled to their own bath with different
coupling strengths. Using numerical optimization, we derive
the optimal control, which brings one of the qubits to the
ground state while preventing the relaxation of the second
qubit. We analyze the control mechanisms in different sit-
vations, such as in the strong-coupling regime, where the
optimal control law is close to a sinusoidal function. We point
out the properties of the system which are favorable to the
selective control process.

This paper is organized as follows. In Sec. II, the model
system is presented with specific attention to some limit cases.
Section III is dedicated to the numerical study of the states
reachable by a control with a maximum intensity in a given
control time. Different optimal control mechanisms are de-
scribed, and a comparison with standard control protocols is
also carried out. In Sec. IV, we study the selectivity problem
of two qubits. Simple control solutions are derived, and the
physical limits of the process are found using numerical op-
timizations. A conclusion and prospective views are given in
Sec. V. Technical details are reported in Appendixes A, B,
and C.

II. THE MODEL SYSTEM

We consider a qubit coupled to a bosonic reservoir at
zero temperature whose dynamics are governed by the Tavis-
Cummings Hamiltonian [53]

H() = h(wo(r>6+&_ + ) lwafa + 8164 + gj6-a] )

1

1
where wo(t) € R is the qubit frequency, which can be con-
trolled in time. The operators 6 and 6_ and &,T and g; denote,
respectively, qubit and cavity ladder operators. The parame-
ters w; € R and g; € C are, respectively, the frequency of the
mode [/ and its coupling strength with the qubit. The bath is
characterized by a Lorentzian spectral density [53] of the form

% 7>

Jo)= 4—— T
A P e
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where ¢ is the Lorentzian half-width at half maximum. The
parameter w, is the central frequency, and y is an effective
coupling strength. The bath correlation function K, which is
connected to J(w) by a Fourier transform, can then be written
as

K@t—1)= % expl—qlt — | —iwt —1)].  (3)

To simplify the following equations, we introduce the pa-
va
3
We assume that this model system is valid in the range of
parameters we consider in this study: the couplings and the
variations of wy must remain small with respect to w. [66].

We investigate the case in which the whole system has a
maximum of one excitation, so that the quantum state can be
expressed as

V(1)) =col 1o ® [0}z + 1] D)o ® [0)5
+ 3 a®l Vo ® l1)s, @
!

rameter p = which has the dimension of frequency.

where | |)p and | 1) are the ground and excited states of
the qubit, |0) is the ground state of the reservoir, and |/} is
the bosonic state with one excitation in mode / and the other
modes in their ground state (we stress that [ cannot be equal
to 0 and 1 to indicate these modes since the coefficients ¢
and c; are already used in other parts of the global state).
By inserting Egs. (3) and (4) into the Schrodinger equa-
tion d; |y (1)) = —ihilﬁ(l‘)h/f(l‘)), we arrive at the following
dynamical equation:

dr \ y(®) p —q)\y®) )’
where y is defined by

) = f dr'er(lpe e ] L1257 0) (6)
0 P

and the frequency w(¢) is given by the detuning w(t) =
wp(t) — w.. We remark that in Eq. (5), p plays the role of
another effective coupling strength. The variable y allows us to
study in a compact way the whole system dynamics. Its value
depends directly on the state of the bath. Similar approaches
can be found in [55,67]. Technical details about the derivation
of Eq. (5), as well as a generalization to an arbitrary number
of Lorentzian modes, are given in Appendix A. Note that ¢,
defined in Eq. (4), is a constant of motion that does not impact
the dynamics of the reduced system Eq. (5). Moreover, the
coherences of the qubit are given by cjc; and coc}, and then
the time evolution of their module is entirely determined by
|c1]. For simplicity, we set ¢y = 0.

In the limit when w, p < ¢, a simple approximated dif-
ferential equation can be derived for the parameter c¢;. When
g — o0, we stress that the term =9~ in Eq. (6) behaves like
%8(t — 1), with § being the Dirac distribution. Assuming that

the bath is initially empty, we obtain y(t) ~ fcl (1), and thus,
we getd;ci(t) = (—iw(t) — %z)cl (t). In this limit, we observe
that the control parameter w(t) allows us to control the phase
of ¢y, but we cannot modify the population decay. We have to
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go beyond this approximation to obtain a noticeable modula-
tion of the qubit relaxation. Note that the boundary between
Markovian and non-Markovian regimes is nontrivial because
it depends on the amplitude of the information backflow. The
non-Markovian character is well defined in the case of free
evolution [53] and can be determined from a measure of
non-Markovianity, such as the measure of Breuer, Lane, and
Piilo (BLP) [31]. Its definition and its role in the case of a
controlled system are less clear, and they are still the subject
of theoretical studies (see Ref. [57] for an application with a
sinusoidal control). In the rest of this paper, it will be sufficient
to distinguish the weak- and strong-coupling regimes, given
by g > 2p and g K 2p, respectively, without discussing the
possible non-Markovian behavior of the system, whose anal-
ysis is not crucial for our study of the control processes.

An interesting property of Eq. (5) is its linearity with re-
spect to ¢; and y. This time-dependent differential system can
thus be formally integrated by using the evolution operator

_ Lo (—ie@) —p
U(t)—Texp[/O dt( » _q)i|, 7

where T is the time-ordering operator. The system controlla-
bility can be deduced by writing U as

—iW(t) 0
U(t) = (6 0 eq,)

' / 0 —PA(Z‘,)
xTexp[/.g dt (pAl(t’) 0 )], (8)

h(W)

with W(t) = [; o(t')dt’ and A(t) = e "™, The time-
ordered exponential belongs to the group SL(2, C) since the
argument of the exponential function is a linear combination
with complex coefficients of matrices with the same form of
6, and &_. However, due to the constraints on the coeffi-
cient A(?), the set of admissible matrices is only a subset of
SL(2, C). Using Eq. (8), it is straightforward to show that
det(U(t)) = exp[—qt — iW(¢)], implying that the determi-
nant of U decreases as a function of time. We thus deduce that
the system is not completely controllable since the identity
operator cannot be generated for ¢ > 0 (see Ref. [68], Theo-
rem 2.9). This first analysis does not give precise information
about the states reachable by the qubit. This issue is addressed
by means of numerical simulations in Sec. III.

III. QUBIT CONTROLLABILITY

This section first aims to describe the reachable states of the
qubit by using numerical optimal control techniques. We ana-
lyze in a second step the corresponding control mechanisms,
and we review different state-of-the-art solutions.

A. Reachable states of the qubit

We study the qubit controllability by computing the set
of points |c; |>(¢) that can be reached in a fixed time ¢. For
conciseness, we consider only the qubit population and not
its phase. Two relevant situations are used to illustrate the
properties of the dynamics, namely, the trajectories starting
either from {c;(0) = 1, y(0) = 0} (case 1) or from {c,(0) =

0, y(0) = 1} (case 2). The set of reachable states (reachable
set) is computed as follows. We first partition the space of
possible values of |c;|* in the form (¢°, |c}|?), where ¢ denotes
a point in the discretization grid. Using the algorithm Gradient
Ascent Pulse Engineering (GRAPE) [6], we then search for a
control field w(¢) connecting the initial state to the state |c<]>|2
at time ¢°. For that purpose, we introduce the cost functional
Co = |ler(t®)|* — |c§1?], where |c;(t%)]? is the population at
time ¢° generated by the optimal control field w(z). The target
state is said to be reached numerically if the final cost is lower
than 0.01. Further details on the numerical simulations are
reported in Appendix B.

In order to limit the intensity of the control field, we intro-
duce bounds on the control amplitude, w(t) € [—®maxs @max]-
Figures 1 and 2 illustrate the different results. In the two
figures, we discriminate the points that can be reached by a
constant or by a time-dependent control field. Figure 1 shows
that the relaxation effect is reduced when wp,,x increases. Note
that only a small increase of the reachable set is achieved with
a time-dependent control over a constant control () = Wmax
V¢, as can be seen in Figs. 1(a), 1(c) and 1(d). On the other
hand, shaped control fields allow us to access a large area
of states below the trajectory with w(¢) = 0. In this case,
numerical simulations reveal that it is advantageous to use
a piecewise-constant control, with first w(¢#) = wmax and then
w(t) = 0, to reach states with zero population. Similar behav-
iors are observed in Fig. 2, except that nonconstant control
fields allow us to explore a larger area of states that cannot be
reached with constant fields. As can be observed in Figs. 2(b)
and 2(c), control protocols starting from w =~ 0 and switching
t0 W > Wmax When |cl|2(t) is maximum lead to |c1|2 around
0.5 even for long control times. High efficiency of the con-
trol process is achieved using small variations of the control
amplitude.

The examples in Figs. 1 and 2 are given for a qubit strongly
coupled to the bath. In the weak-coupling regime, the ampli-
tude of oscillations is smaller, which leads to a much smaller
reachable set. In particular, the gray area near |c;|* = 0 dis-
appears, and the fastest way to steer the system to the ground
state is approximately given by an exponential decay of the
form |c;(1)|> = el 4, which corresponds to the system tra-
jectory in the limit p, wyax < ¢. This is illustrated in Fig. 3.
In the weak-coupling regime, almost all the accessible states
can be reached by using constant controls.

B. Control mechanisms

The examples of control protocols given in Figs. 1 and 2
suggest that most of the reachable states can be obtained with
simple control fields composed of one or two constant parts.
In these cases, the dynamics can be solved analytically, and
simple control mechanisms can be highlighted. The evolution
operator for a constant field w during a time ¢ is given by

UIZ(Q)’ t)
Un(w, 1))’

Un(w,t)

R ©)

where

. Qt —1 Qt
Ui (w, 1) = e tior/2 |:c0sh<7> + 9 sz sinh(7>:|,
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FIG. 1. Reachable states for two different bounds of the control amplitude: (a) wmax = 2q and (b) wWmax = 10q. A color code from white to
dark gray gives the final value of C, after optimization. Light gray areas correspond to states with a low cost C, but not low enough to ensure
the reachability of the state (see the text for details about the used criterion). The orange regions are reachable with a constant control field
@(t) € [—Wmax, ®max]. Solid and dashed black lines represent the trajectories with w(f) = wma.x and w(t) = 0, respectively. The two insets at
the top show the bath spectral density (black curves), while the colored interval depicts the range of possible frequencies for the control. The
parameters are set to p = «/gq and, for the initial condition, ¢;(0) = 1 and y(0) = 0. (c)—(f) show examples of control fields and trajectories
ending around points A and B. In these panels, orange solid lines refer to the optimized solutions; in (c) and (d) the dashed purple lines refer

to the case with a constant control equal to wpx.

. Qt —1 Qt
U (w, 1) = e~ \atier/2 |:cosh<7> _ 1 Qlw sinh(T):I,

2 ) Qt
Up(w, t) = —pae_(q‘“"’)’/zsinh(?), (10)

and Q = /(g — iw)?> — 4p?. 1t is then straightforward to de-

duce the time evolution of ¢ (¢) corresponding to a constant or
to the concatenation of two constant fields. For instance, in the
case of Fig. 2(c), the time evolution of ¢; is given by ¢ (¢) =
Upp(0,1) if t <t* and ¢;(t) = Uy (@max, t —t")U12(0, %) +
Uir(wmax, t — 1)U (0, t*) if t > t*. The time ¢* is the time
when the field value is switched, here chosen as the position
of the maximum of |U},(0, ¢)?, given by point A’ in Fig. 2(a).
It is given by

2 q
* e — . 11
t |:Im(52) arccos ( A R (Im(Q))2>:|w:o (11)

We can show that the modulus of Uj, is smaller than 1,
and therefore, it is not possible to completely transfer the bath
excitation to the qubit. Moreover, we notice that |Uj,| is pro-
portional to 1/]€2| and it decreases to zero when w — =£00.

Thus, we recover the possibility to reduce the qubit relaxation
when the qubit is detuned from the central bath frequency w,.

We conclude this section with a comparison be-
tween a sinusoidal control w(t) = wmax sin(O1), proposed in
Refs. [54,55], and two other simple control fields. It can be
shown that a sinusoidal frequency modulation can strongly
limit the qubit relaxation if wp,x > ¢, p (called condition
1) and, additionally, if the oscillation frequency © is tuned
to the so-called magic frequency defined by Jo(wmax/®) = 0
(condition 2), where Jj is the first-order Bessel function [55].
Further details about this control protocol are given in Ap-
pendix C. We observe in Fig. 4 that, on average, a sinusoidal
control is less efficient than a constant control of amplitude
®max- This is easily explained by the fact that the effects of
condition 2 on slowing down the decay hold only if condition
1 is verified. However, the time evolution of the population
lc1]? has a different period in the two cases, and maxima
for a sinusoidal excitation can be slightly above the curve
of a constant field. Then, a sinusoidal control at the magic
frequency has effects similar to those produced by the controls
plotted in Figs. 1(c) and 2(b). We have observed that the
magic-frequency mechanisms can be used with other periodic
controls. A simple example is given by a square-wave control
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FIG. 2. (a) is the same as in Fig. 1 (with p = x[Sq), but with the
initial conditions ¢;(0) = 0 and y(0) = 1. The maximum amplitude
is set to wmax = 10g. (b) and (c) show, respectively, two examples
of control fields and the corresponding dynamics for a target state
le1]? & 0.45 at gty = 1.4 (point B'). At this time, the maximum
possible value of |c;|* is 0.46. In these panels, orange solid lines
refer to the optimized solutions, while the dashed purple lines refer
to a simpler piecewise-constant control.

of period 47 /wmax, Which defines another magic frequency
limiting the qubit relaxation. The square-wave control field
and the corresponding trajectory are plotted in Fig. 4. An
intermediate decay with respect to the constant and the sinu-
soidal control cases is observed. The technical details of the
square-wave control field are given in Appendix C.

To summarize, we have numerically determined the reach-
able states of the qubit, showing the extent to which the qubit
relaxation can be manipulated by the variation of the qubit
frequency. The reachable sets with constant or time-dependent
fields are very similar to the case of weak coupling, while sig-
nificant areas can be reached only using a shaped control when
the interaction between the system and the bath is strong.
The reduction of relaxation effects by shaped controls is quite
limited, but these controls can represent an efficient tool to
reach quickly the ground state of the system. As shown in
the different numerical simulations, this observation depends
strongly on the characteristics of the environment. We study
an application of these properties with the selectivity problem
in Sec. IV.

IV. SELECTIVITY OF TWO UNCOUPLED QUBITS

We consider the simultaneous control of two uncoupled
qubits each interacting with its own bath with two different

S L S & 9
N S > ' <
I —

ley 2

let P

FIG. 3. Same as Fig. 1, but for a low coupling constant p =
0.25g and @max = 2g. The purple dash-dotted curves correspond
to |ci()* = e’z”z’/‘l, which is the system trajectory in the limit
P, Wmax K g. Notice that due to the discretization, small gray areas
can be seen above the curve corresponding to w(f) = ., Y1, but
if they are crossed by the black solid line, they reflect only the fact
that the area can be reached by a constant field with a fidelity smaller
than 0.01 (see the zoomed inset at the bottom).

coupling strengths, p'!) for the first qubit and p® = p(1 +
«) for the second one, with & € R being a scale parameter.
The value of g is chosen to be equal for the two qubits. We
assume that the two qubits are in the excited state at the initial
time. The goal of the control is then to bring one of the qubits
to the ground state at time ¢, while preventing the relaxation of
the second qubit. We first solve this control problem by using
a simple frequency modulation in the case when the coupling
strengths for the two qubits are quite different. Numerical
simulations show that a sinusoidal control field at the magic
frequency leads to an impressive gain of selectivity compared
to a constant control at maximum amplitude. An example
is plotted in Fig. 5. An off-resonance effect (condition 1)
prevents relaxation for the qubit with a small value of p, while
a rapid loss of population is observed for the second qubit
(which is characterized by a larger value of p), leading to a
big population difference, which is much larger than for a
constant control (at¢# = ty). This dissimilarity between the two
fields comes from the variations of the sinusoidal a constant
control. Since condition 1 is not verified for the second qubit,
the time spent near sin(®7) = 0 is not negligible, and the
relaxation effect is important. The same kind of mechanism is
observed in Figs. 1(e) and 1(f). Note that the control strategy
also works in the weak-coupling regime, but the trajectories
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FIG. 4. (a) displays the time evolution of the controls fields
W(t) = Wmax (yellow thick solid line), w(t) = wmaxsgn[sin(wmaxt /2)]
(orange dashed line), and w(t) = Wy SIn(O1) (purple thin solid
line). (b) displays the population |c, |2(¢) associated with each control
in (a). The parameters are set to ¢;(0) =1, y(0) =0, ® = 20gq,
Wmax = 2.404830, and p = \/gq (see the text for details).
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FIG. 5. (a) displays the time evolution of constant (purple thick
solid line) and sinusoidal (orange thin solid line) control fields
used to discriminate qubits dynamics. (b) depicts the evolution of
the excited-state population for the two qubits. The same colors
and thicknesses as in (a) are used. The two qubits have coupling
strengths = ﬁq (dashed line) and p® = «5(1 + 5)g (solid
line). Other parameters are ¢;(0) = 1, y(0) = 0, wmax = 30q, and
® = wnax/2.40483.

are very close to exponential decays, and the control time is
very long.

The control field producing the best selectivity is, in gen-
eral, difficult to determine, especially for smaller values of o
and specific control times f;. For this case, we use optimal
control techniques to find optimal selective control fields. The
control problem is defined through the minimization of the
cost functional

¢ =P = || (12)

where |c(11)(tf)|2 and |c§2)(tf)|2 are the excited-state popula-
tions of the first and second qubit, respectively, at the final
time #; and A is a parameter weighting |C§2)(tf')|2. A value
of A > 1 forces the algorithm to converge toward a solution
where the excited-state population of the second qubit is close
to zero. The ideal value to obtain in order to achieve perfect
selectivity is then —1. Interesting results were obtained for
A =2 and t; = 1.225/q. All the numerical optimizations dis-
cussed in this section were performed using these two values.
More elaborate cost functionals can also be used depending
on the parameters to discriminated. In order to describe the
efficiency of the optimal solution with respect to the case
o(t) = 0 Vt, we introduce the gain G, defined as

G — ||C51)(tf)w=wopa = |C§2)(tf)w=wopt 2| (13)

||C§1)(tf)w=o}2 - |C§2)(tf)w=0 2} ’

where ey is the optimized control field. This function pro-
vides additional information about the selectivity process,
and it may be easier to interpret than the cost functional C.
However, when the denominator of G is very small, note that
a small variation of the latter may induce a large change in
G. For this reason, we are not interested in a precise value of
G (we use the cost function C for that purpose), but we are
looking for a global tendency given by G > 1 or G < 1.

The gain in selectivity and the cost functional for several
values of « in the interval [0,0.5] are plotted in Fig. 6. We
observe that the optimization process decreases significantly
the cost functional. An impressive gain of selectivity is also
achieved (up to 26 for « = 0.45). Note that the cases ¢ = 0.45
and o = 0.5 are very similar, and the large difference in G
is due to a small variation of the denominator in Eq. (13).
We also point out that the optimized control field not only
enhances the population difference but also forces the first
qubit to be in the ground state at the final time. It is inter-
esting to stress that the optimal solution does not require very
large values of w, as illustrated in Fig. 6(c). The minimum
C ~ —0.412 (for « = 0.5) is reached at wyx = 7.5¢.

Figure 7 displays the optimal control field and the corre-
sponding time evolution of the population |c;(t)|*> for o =
0.5. A comparison is made between the optimal solution
and the constant and sinusoidal cases. Extensive numerical
simulations suggest that global minima have been reached.
The same results are obtained with repeated launches of the
algorithm GRAPE, initialized with multiple random initial
fields (a similar study using a shooting algorithm [10] gave
the same kind of results). The optimal field plotted in Fig. 7,
which is determined without control bounds, has a maximum
amplitude of 6.36g. Optimal control fields are very similar
to sinusoidal functions (at the magic frequency), as can be
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FIG. 6. (a) and (b) show, respectively, the gain G and the cost
functional C as a function of the scaling parameter «, defined by
p? =pPU +a) and pP = NG 5q. These calculations are made
without bounds on the control amplitude. (c) displays the evolution
of C as a function of a bound on the control amplitude wp,, for
pY = \/gq and o = 0.5. For all the panels initial conditions are the
same for the two qubits: ¢;(0) = 1 and y(0) =

seen in Fig. 7. We can therefore conjecture that (slightly mod-
ified) sinusoidal frequency modulation plays a central role in
selectivity mechanisms. These solutions could be an excellent
starting point for more elaborate selective processes.

Finally, we point out that optimized control protocols
are of limited interest in the weak-coupling regime. In this
regime, the population relaxation is very close to an expo-
nential evolution. Using numerical observations, we notice
that the qubit relaxation for a constant control [w(f) = Wmax
Vt] is given by le1 ()] ~ exp(—2p2qt/|q + iwmax|?), while
for an arbitrary control field of maximum amplitude @y,
we have |c;(1)|* ~ exp(—=2pqft/|q + iowmax|*). Here, f is a
parameter that depends nontrivially on the control field but
not on the parameter p. The effect of the control can be
interpreted as a new timescale + — ft, with the optimization
selecting a specific value of f. We deduce that the control
process does not lead to a mechanism able to distinguish
qubits dynamics. As an example, we consider a case simi-
lar to the ones described in Fig. 7. We choose a sinusoidal
control at the magic frequency for p'" = 0.25¢, « = 0.5, and
®Wmax = 6.36q. A fit with very good accuracy of the qubits
trajectories is achieved for f = 3.38. The ground state of the
second qubit is reached approximately after a time 7, given by
tr = 5|q + iomax|*/[2(p'P)*qf] & 218/q. We obtain popula-
tions of [¢{"(¢,)[*> & 0.108 and |c\*(;)|* ~ 0.006 for the first
and second qubit, respectively. The population difference is

w/q
U R
[ N Y I i )

leg 2

FIG. 7. (a) shows the constant control w(t) =0 (thick pur-
ple line), the sinusoidal control for wpy., = 6.36g and © =
®max/2.40483 (orange thin line), and the optimized control (yellow
medium line) for p¥ = ﬁq and « = 0.5. The time evolution of the
population |c;|* is plotted in (b). The first qubit is represented by
dashed lines, and the second one is shown by solid lines. For all the
panels initial conditions are the same for the two qubits: ¢;(0) =1
and y(0) =

of the order of 0.10, while it is estimated to be around 0.41 in
the strong-coupling regime with the optimal solution given in
Fig. 7. Finally, note that, when both wy,.x and p are negligible
with respect to g, we have |g + iowmax|* ~ ¢ and f ~ 1, and
we recover the limit already discussed in Secs. II and III,
such that |c;(7)]? =~ exp(—2p*t /¢*). In this second limit, the
control protocol cannot play any efficient role in the selectivity
process.

V. CONCLUSION

This paper presented a complete study of the optimal con-
trol of a qubit coupled to a structured environment and driven
by the modulation of its frequency. We have shown that the
full system is not controllable, and we have numerically found
the reachable qubit states at a given time for two different
initial configurations. We have described the structure of the
reachable set when the interaction between the system and the
environment is varied. We have observed that the structured
environment offers interesting control opportunities in the
strong-coupling regime (for which the information backflow
may produce non-Markovian dynamics). In this case, different
control mechanisms have been derived to steer the system
to different targets. Differently, in the weak-coupling case,
almost all the accessible states can be reached using constant
controls. Using this preliminary study, we have explored the
selective control of two qubits interacting with their own bath
and with different coupling strengths. Optimal control compu-
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tation leads to a control law close to a sinusoidal modulation.
This result is based on two fundamental mechanisms which
tend to enhance or prevent the relaxation effect by respectively
tuning the qubit frequency at or out of resonance at specific
times.

This study provides an example of complete theoretical
analysis of the control of an open quantum system using the
tools of optimal control theory. We hope that this will inspire
investigations in other quantum systems and thus contribute to
progress in quantum technologies that cannot be put forward
without precise control of the different states involved in the
dynamic processes. This work also opens the door to further
studies on selective control of qubits. The results of this paper
are, e.g., a possible starting point for generalizing finger-
printing processes [63] to the non-Markovian regime. Such
protocols combined with optimal control techniques provide a
way to approach the physical limits of a measurement process
in terms of precision and sensitivity. It would be also interest-
ing to study the link with the maximization of the quantum
Fisher information in this kind of system [64,65].
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APPENDIX A: TECHNICAL DESCRIPTION OF THE
SYSTEM

This Appendix describes the different steps to derive
Eq. (5). We also generalize the model in Sec. II to the case
when the bath can be characterized by an arbitrary number of
Lorentzian modes.

We consider the interaction picture by using the uni-

. At A
tary transformation e~ 21 %% The Hamiltonian defined in
Eq. (1) transforms into

Hy(t) = h(wo(rm& + D lgre " G va + g’;e"w"&ah),
1

(AL)
and the corresponding Schrodinger equation is

|y (1)) = —i(wo(t)61(t) +y gze_i“’”Cz(l)> | Mo ®10)s
I

dicy (1)

—i Y g e ()] Lo ® |5 (A2)
l
dyci (1)
Formally integrating d,c;(t), we get
t
at) =c(0)—i f dr'gie ™ ci(t). (A3)
0

Plugging Eq. (A3) into d;c(¢) in Eq. (A2) leads to
dici(t) = — iwo(t)c (2)

t
- f d'er(t) ) 1gilPe™ ) =iy e (0),
0 /

1

K(t—t')
(A4)

To proceed further, a bath correlation function K (¢ —t) has
to be specified. We assume that K is the Fourier transform of
a spectral density distribution J given by a sum of Lorentzians
centered around the frequency w, [53]. We then have

N
K(t — t/) — Zp%e—qﬂf—t'\e—iwc(t—t') , p%’ gk € RT. (A5)
k=1
Inserting Eq. (AS) into Eq. (A4) gives

N
dicr(t) = —iwo(t)er(t) = Y piyict),

(A6)
k=1
where
t
0o , 1
()= / di'c: () pre e ] 11— 3" ¢)(0).
0 P
(A7)
Since |t — '] > 0, we can differentiate yy:
diyi(t) = —(qx + iw)y(t) + prei (). (A8)

We observe that the whole dynamics is given by a system
of N + 1 first-order linear differential equations. The first
coordinate c¢; encodes the qubit dynamics (cy is a constant),
while the y, variables are associated with the state of each
effective mode. In the main text, we consider only the case
N = 1. To simplify the notation we use y; = y, and the system
of differential equations is rewritten in a matrix form to obtain
Eq. (5).

APPENDIX B: DETAILS ON THE NUMERICAL
SIMULATIONS

The numerical calculations discussed in this paper were
performed with piecewise-constant control fields. The time
step is 0.02/¢ except in the case of the long control sequences
in Fig. 3, where it is 0.1/g. The number of points in a grid
(t°, |c$|?) is between 1271 and 4141. For each control field,
800 iterations were used to obtain the convergence of the
GRAPE algorithm. The computation time for a field is be-
tween 0.12 s (shortest values of ) and 356 s (longest values
of r°). These times are given for a single core clocked at
3.2 GHZ. Since all optimizations are independent, parallel
computing was used to reduce the overall computation time.
To speed up the calculations, in some cases we verified before
the optimization process which partitions of the grid can be
reached by constant controls.

APPENDIX C: SINUSOIDAL AND SQUARE-WAVE
CONTROL FIELDS

In this Appendix, we present the construction of sinusoidal
and periodic square-wave control fields of amplitude wmax
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which lead to an effective decoupling between the qubit and
the reservoir. First, we recall the main results that can be
established in the case of sinusoidal control [54,55], and then
we extend this approach to square-wave controls.

1. Sinusoidal control

A possible starting point is to consider the evolution op-
erator given in Eq. (8). This propagator is expressed as the
product of two operators, one being diagonal and the other
having nondiagonal elements in the canonical basis. The lat-
ter is a function of a time-dependent coupling term which
depends on the integral over time of the control. Explicitly,
the effective coupling is proportional to exp(—i fol w(t"dt").
We consider a sinusoidal control field w(t) = wmax Sin(O1),
for which an explicit calculation of the integral is possible.
The effective coupling can be expressed as

o1 B cos(©1)

- Jo(%) +2 i(i)”]n(%) cos(n®1), (C1)
n=1

with J, being the n-order Bessel function. A simple way to
reduce the coupling between the system and the environment
is to cancel the zeroth-order term of the expansion, i.e., to
impose Jo(wmax/®) = 0. The first zero of the function is given
by ®max/® = 2.40483. The corresponding solution is called
the magic frequency. However, the effect of this choice on the
dynamics is noticeable only if wmax > ¢, p. Otherwise, the
system stays near resonance for a long time, and the relaxation
is fast. It results that the control effect is very weak.

2. Square-wave control

We consider a control of period 7 with values +nax
and —wpx for the first and second half periods, respectively.
Assuming that the initial condition is ¢;(0) = 1 and y(0) = 0,
a straightforward calculation gives

ci(T) = U1 (—0max, T /2)U11 (Omax, T /2)
— U (=®max, T /2)Ur2(@0max, T /2). (C2)

In the limit wn, — £00, we have Q2 =~ i(q F iwmax), and
then U;; — 1 [see Eq. (10)]. We deduce that the dynamics is
governed by the term U},. Equation (C2) can be approximated
as

N

T)y~1-2
ci(T) GE

e [cosh(gT /2) — cos(@naT/2)]-

(C3)
Equation (C3) shows that the relaxation effect is minimum
when wnxT /2 = 27 since the first-order term of a Taylor
expansion in T is zero. This constraint is the analog of
Jo(wmax/®) = 0 for the sinusoidal control. In contrast, the
relaxation effect is enhanced if wnT'/2 = 2k 4+ 1), k € N.
It must be emphasized that the square-wave solution is always
less efficient than a constant control of amplitude £y, and
duration T because in this case

ci(T) = Uy (omax, T), (C4

which is equal to 1 in the limit wy,x — F00. The convergence
toward 1 is therefore faster. An example of dynamics with a
square-wave control is plotted in Fig. 4.
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