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Helicity, chirality, and spin of optical fields without vector potentials
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Helicity H , chirality C, and spin angular momentum S are three physical observables that play an important
role in the study of optical fields. These quantities are closely related, but their connection is hidden by the use
of four different vector fields for their representation, namely, the electric and magnetic fields E and B, and the
two transverse potential vectors C⊥ and A⊥. Helmholtz’s decomposition theorem restricted to solenoidal vector
fields entails the introduction of a bona fide inverse curl operator, which permits one to express the above three
quantities in terms of the observable electric and magnetic fields only. This yields clear expressions for H,C,
and S, which are automatically gauge invariant and display electric-magnetic democracy.
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I. INTRODUCTION

In both classical and quantum mechanics, physical sys-
tems can be characterized by conserved quantities, that is,
observable quantities that do not change with time [1]. A
conserved quantity F = F [ f ] is a linear functional of a space-
and time-dependent density f = f (r, t ) of the form

F [ f ] =
∫

d3r f (r, t ), (1)

where f (r, t ) denotes either a scalar or a tensor function [2].
The free electromagnetic field possesses an infinite set of con-
served quantities associated with densities which are bilinear
functions of the field variables [3–6]. Not all of these quan-
tities have a clear physical meaning. Among the meaningful
ones, the helicity H = H[h], the chirality C = C[χ ], and the
spin angular momentum S = S[s] are particularly significant
for the study of optical fields [7–15]. The corresponding den-
sities h = h(r, t ), χ = χ (r, t ), and s = s(r, t ) are given by

h = 1

2

[√
ε0

μ0
A · (∇ × A) +

√
μ0

ε0
C · (∇ × C)

]
, (2a)

χ = ε0

2
[E · (∇ × E) + c2B · (∇ × B)], (2b)

s = 1

2
[ε0 E × A + B × C], (2c)

where E = E(r, t ) and B = B(r, t ) are the electric and mag-
netic fields, respectively, and here and hereafter
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C = C⊥(r, t ), (3a)

A = A⊥(r, t ) (3b)

are the gauge-independent transverse (or solenoidal) parts of
the vector potentials implicitly defined in the Coulomb gauge
by

E = − 1

ε0
∇ × C, (4a)

B = ∇ × A. (4b)

We remark that from (2) and (3) it follows that h, χ , and s
are gauge-invariant quantities [13,16].

Substituting (4a) and (4b) into (2a)–(2c), one could express
h, χ , and s in terms of the gauge fields C and A only. However,
as C and A are gauge invariant but not directly observable,
it would be more appealing instead to write h, χ , and s as
functions of the physical fields E and B solely. For this we
would need to invert (4a) and (4b) to obtain

C = −ε0(∇×)−1E, (5a)

A = (∇×)−1B, (5b)

where (∇×)−1 would denote the formal inverse curl operator.
In this paper, we aim at determining such representation of
helicity, chirality, and spin densities in terms of physical fields
E and B only, to highlight their connection and to present
a uniform view of these three fundamental quantities that
are conserved in vacuum. Moreover, since the equations de-
scribing these quantities are expressed in terms of physical
fields only, they could also be considered in order to extend
the present study to nonvacuum cases, where charges and
currents are present so that the dual symmetry of Maxwell’s
equations is broken and the electric vector potential cannot be
introduced. However, such study would be beyond the scope
of the present paper.

To achieve our goal, we invert (4a) and (4b) using
Helmholtz’s decomposition theorem, to obtain C = C[E] and
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A = A[B]. Inserting these functionals into (2a)–(2c), we ob-
tain the sought physical-field representation in real space.
Then, we write h, χ , and s in reciprocal space by means of
the Fourier transforms of the physical fields. This provides
further information on their connection and shows that, unlike
the corresponding conserved quantities, these densities do not
separate into the sum of right-handed and left-handed terms.
Finally, in the penultimate section we show that our findings
for the gauge-invariant optical spin S are in agreement with
previously established results [13]. The paper is completed
by two appendices of a mainly didactic nature, in which all
the details of the calculations omitted in the main text are
presented.

II. HELMHOLTZ’S DECOMPOSITION THEOREM
FOR SOLENOIDAL VECTOR FIELDS

In this section we briefly illustrate the Helmholtz decompo-
sition theorem for solenoidal vector fields, following closely
Sec. 6-3 in [17] and Appendix F in [18]. For the sake of
definiteness, we consider the magnetic field B = B(r, t ) and
the transverse part of the potential vector A = A⊥(r, t ) as
prototypical solenoidal fields connected by the relation

B = ∇ × A. (6)

We assume that both A and B go to zero faster than 1/r as
r → ∞ [19], where r ≡ |r|.

Let Ã = Ã⊥(k, t ) and B̃ = B̃(k, t ) be the spatial Fourier
transform of A = A⊥(r, t ) and B(r, t ), respectively. They are
defined by

A⊥(r, t ) =
∫

d3k

(2π )3/2 Ã⊥(k, t ) exp (ik · r), (7a)

B(r, t ) =
∫

d3k

(2π )3/2 B̃(k, t ) exp (ik · r). (7b)

From ∇ · A = 0 = ∇ · B, it follows that

k · Ã = 0 = k · B̃. (8)

Our goal is to find A⊥(r, t ) given B(r, t ), that is, to give a
meaning to the symbolic equation

A⊥(r, t ) = (∇×)−1B(r, t ), (9)

where (∇×)−1 denotes the formal inverse curl operator. Sub-
stituting (7a) and (7b) into (6), and using

∇ × [a exp (ik · r)] = i(k × a) exp (ik · r), (10)

where a is an arbitrary constant (r-independent) vector, we
obtain

B̃ = i k × Ã

= i

⎛
⎝ 0 −k3 k2

k3 0 −k1

−k2 k1 0

⎞
⎠
⎛
⎝Ã1

Ã2

Ã3

⎞
⎠. (11)

The determinant of the antisymmetric matrix above is equal
to zero, therefore we cannot obtain Ã directly from (11) by
matrix inversion. However, multiplying both sides of (11) by

i k×, and using a × (b × c) = (a · c)b − (a · b)c, we find

i k × B̃ = − k × (k × Ã)

= − [(k · Ã)︸ ︷︷ ︸
= 0

k − (k · k)Ã]

= k2Ã, (12)

where k2 = k · k = |k|2, and (8) has been used. From (12) it
immediately follows that

Ã = i
k × B̃

k2
. (13)

Substituting this equation into (7a), we obtain

A⊥(r, t ) =
∫

d3k

(2π )3/2

[
i

k × B̃(k, t )

k2

]
exp (i k · r)

= ∇ ×
∫

d3k

(2π )3/2

1

k2
B̃(k, t ) exp (i k · r), (14)

where (10) has been used. Next, we use Eq. (6) in [20] (with
the role of k and r − r′ exchanged), to write 1/k2 as

1

k2
=
∫

d3r′

4π

exp [−i k · (r − r′)]
|r − r′| . (15)

Then, using the definition (7b), we can rewrite (14) as

A⊥(r, t ) = ∇ ×
∫

d3k

(2π )3/2

∫
d3r′

4π

exp (i k · r′)
|r − r′| B̃(k, t )

= ∇ ×
∫

d3r′

4π

B(r′, t )

|r − r′| . (16)

This equation can be cast in a different but equivalent form
using the vector identity

∇ × (φ a) = φ(∇ × a) − a × (∇φ), (17)

and

∇ f (r − r′) = −∇′ f (r − r′), (18)

where here and hereafter ∇′ denotes the gradient with respect
to the primed coordinates r′ = (x′, y′, z′), with f an arbitrary
function. Applying (17) and (18) to the integrand in (16), we
find

∇ ×
[

B(r′, t )

|r − r′|
]

= ∇′ × B(r′, t )

|r − r′| − ∇′ ×
[

B(r′, t )

|r − r′|
]
. (19)

Inserting (19) in (16) yields two terms:

A⊥(r, t ) =
∫

d3r′

4π

∇′ × B(r′, t )

|r − r′|

−
∫

d3r′

4π
∇′ ×

[
B(r′, t )

|r − r′|
]

︸ ︷︷ ︸
surface term = 0

. (20)

The last volume integral in (20) can be written as a surface
integral with the surface of integration lying at infinity, and it
vanishes if B(r, t ) goes to zero faster than 1/r as r → ∞.
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Thus, from (16) and (20), it follows that for any solenoidal
field G = G⊥(r, t ), we can write

(∇×)−1G⊥(r, t ) = ∇ ×
∫

d3r′

4π

G⊥(r′, t )

|r − r′| (21)

=
∫

d3r′

4π

∇′ × G⊥(r′, t )

|r − r′| . (22)

It is worth noting that this result in the form (22) was already
given in 1962 by Belinfante [21].

Equations (21) and (22) give a faithful representation
of the inverse curl operator for solenoidal fields. Indeed,
it is straightforward to prove that ∇ × [(∇×)−1G⊥(r, t )] =
G⊥(r, t ) using either (21) or (22). The simplest way to prove
this is by using the first equation:

∇ × [(∇×)−1G⊥(r, t )] = ∇ ×
[
∇ ×

∫
d3r′

4π

G⊥(r′, t )

|r − r′|
]

= ∇
[
∇ ·

∫
d3r′

4π

G⊥(r′, t )

|r − r′|
]

︸ ︷︷ ︸
= 0

− ∇2
∫

d3r′

4π

G⊥(r′, t )

|r − r′| . (23)

The first integral in (23) is zero because from (18) and

∇ · (φ a) = a · (∇φ) + φ(∇ · a) (24)

it follows that

∇ ·
∫

d3r′

4π

G⊥(r′, t )

|r − r′| ≡
∫

d3r′

4π
G⊥(r′, t ) · ∇ 1

|r − r′|

= −
∫

d3r′

4π
G⊥(r′, t ) · ∇′ 1

|r − r′|

= −
∫

d3r′

4π
∇′ ·

[
G⊥(r′, t )

|r − r′|
]

︸ ︷︷ ︸
surface term = 0

+
∫

d3r′

4π

1

|r − r′| ∇′ · G⊥(r′, t )︸ ︷︷ ︸
= 0

= 0. (25)

Finally, using the relation

∇2 1

|r − r′| = −4π δ(r − r′), (26)

we can rewrite the second integral in (23) as

−∇2
∫

d3r′

4π

G⊥(r′, t )

|r − r′| =
∫

d3r′ G⊥(r′, t )δ(r − r′)

= G⊥(r, t ). (27)

This completes the proof.

III. HELICITY, CHIRALITY, AND SPIN IN REAL SPACE

In this section we calculate H[h], C[χ ], and S[s] in
real space via (1). We evaluate explicitly the densities h =
h(r, t ), χ = χ (r, t ), and s = s(r, t ), in terms of the electric
and magnetic fields only.

A. Helicity

From the definition (2a), it follows that

H =
∫

d3r
1

2

[√
ε0

μ0
A · (∇ × A) +

√
μ0

ε0
C · (∇ × C)

]

= ε0

2c

∫
d3r {E · [(∇×)−1E] + c2B · [(∇×)−1B]}, (28)

where (5a) and (5b) have been used. Next, we use (22)
with G = E and G = B, respectively, to write (∇×)−1E and
(∇×)−1B explicitly in (28), thus obtaining

H =
∫

d3r
{

ε0

8πc

∫
d3r′ E(r, t ) · [∇′ × E(r′, t )] + c2B(r, t ) · [∇′ × B(r′, t )]

|r − r′|
}
. (29)

An equivalent expression for H was already given in [22].

B. Chirality

From (2b) it follows that C is automatically fulfilling
electric-magnetic democracy. However, to highlight its con-
nection with the helicity and the spin, we can recast the
expression (2b) in a form similar to (29), as follows. We start
from the defining equation

C =
∫

d3r
{ε0

2
[E · (∇ × E) + c2B · (∇ × B)]

}
, (30)

and we rewrite it as a double spatial integral with the help of
the Dirac delta function:

C = ε0

2

∫
d3r

∫
d3r′δ(r − r′)E(r, t ) · [∇′ × E(r′, t )]

+ ε0 c2

2

∫
d3r

∫
d3r′{δ(r − r′)B(r, t )

· [∇′ × B(r′, t )]}
≡ CE + CB. (31)

Let us consider first the electric-field contribution CE in (31).
Using

δ(r − r′) = − 1

4π
∇2 1

|r − r′| , (32)
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and swapping the order of integration, we can rewrite CE as

CE = − 1

4π

∫
d3r′

{
[∇′ × E(r′, t )]

·
∫

d3r E(r, t )

(
∇2 1

|r − r′|
)}

. (33)

Next, we notice that

E
(

∇2 1

R

)
= 1

R
(∇2E)

+
3∑

i=1

∂

∂xi

[(
∂

∂xi

1

R

)
E − 1

R

(
∂

∂xi
E
)]

︸ ︷︷ ︸
surface term that goes → 0, when integrated

, (34)

where R ≡ |r − r′|. Inserting (34) into (33), we obtain

CE = − 1

4π

∫
d3r

∫
d3r′ ∇2E(r, t ) · [∇′ × E(r′, t )]

|r − r′|

= − 1

4πc2

∫
d3r

∫
d3r′

∂2

∂t2
E(r, t ) · [∇′ × E(r′, t )]

|r − r′| ,

(35)

where the wave equation

∇2E(r, t ) − 1

c2

∂2

∂t2
E(r, t ) = 0 (36)

has been used. The same procedure can be followed to calcu-
late CB, so that eventually we can write

C =
∫

d3r

⎧⎪⎪⎨
⎪⎪⎩− ε0

8πc2

∫
d3r′

∂2E(r, t )

∂t2
· [∇′ × E(r′, t )] + c2 ∂2B(r, t )

∂t2
· [∇′ × B(r′, t )]

|r − r′|

⎫⎪⎪⎬
⎪⎪⎭. (37)

C. Spin

From (2c) it follows that

S = ε0

2

∫
d3r {E × [(∇×)−1B]

− B × [(∇×)−1E]}, (38)

where (5a) and (5b) have been used. To begin with, let us
consider the first term in the equation above. Our goal is to
evaluate the functional∫

d3r E × [(∇×)−1B]

=
∫

d3r E ×
[
∇ ×

∫
d3r′

4π

B(r′, t )

|r − r′|
]

≡
∫

d3r E × (∇ × F), (39)

where (16) has been used, and we have defined F = F(r, t ),
as

F(r, t ) =
∫

d3r′

4π

B(r′, t )

|r − r′| . (40)

Note that (25) implies

∇ · F = 0. (41)

Next, we show that∫
d3r E × (∇ × F) =

∫
d3r (∇ × E) × F. (42)

For this, first we notice that

∇(E · F) = E × (∇ × F) + F × (∇ × E)

+ (F · ∇)E + (E · ∇)F. (43)

The integral of ∇(E · F) with respect to d3r is a surface
term that goes to zero when the surface of integration goes

to infinity. The integral of (F · ∇)E + (E · ∇)F is also zero
because

∫
d3r(F · ∇)E =

∫
d3r Fi(∂iE)

=
∫

d3r ∂i(FiE)︸ ︷︷ ︸
surface term = 0

−
∫

d3r (∇ · F)︸ ︷︷ ︸
= 0 from (41)

E

= 0, (44)

where ∂i = ∂/∂xi, with i = 1, 2, 3, and summation over re-
peated indices is understood. In the same way we can show
that

∫
d3r(E · ∇)F = 0. (45)

Thus, (42) is demonstrated.
Now, using (42) and Faraday’s law

∇ × E(r, t ) = − ∂B(r, t )

∂t
, (46)

we can rewrite (39) as

∫
d3r (∇ × E) × F

=
∫

d3r
[
−∂B(r, t )

∂t

]
×
∫

d3r′

4π

B(r′, t )

|r − r′|

= 1

4π

∫
d3r

∫
d3r′

B(r′, t ) × ∂B(r, t )

∂t
|r − r′| . (47)

043519-4



HELICITY, CHIRALITY, AND SPIN OF OPTICAL … PHYSICAL REVIEW A 106, 043519 (2022)

Following the same procedure as above, and using Ampère’s law

∇ × B(r, t ) = 1

c2

∂

∂t
E(r, t ), (48)

we can directly prove that

∫
d3r B × [(∇×)−1E] = − 1

4π c2

∫
d3r

∫
d3r′

E(r′, t ) × ∂E(r, t )

∂t
|r − r′| . (49)

Finally, gathering (38), (48), and (49), we can write

S =
∫

d3r

⎧⎪⎪⎨
⎪⎪⎩

ε0

8πc2

∫
d3r′

E(r, t ) × ∂E(r′, t )

∂t
+ c2 B(r, t ) × ∂B(r′, t )

∂t
|r − r′|

⎫⎪⎪⎬
⎪⎪⎭. (50)

By definition, this expression displays electric-magnetic
democracy.

D. Discussion

Equations (29), (37), and (50) show that h(r, t ), χ (r, t ),
and s(r, t ) all have the same form, which is

f (r, t ) = ε0

8πc

∫
d3r′ gE (r, r′, t )

|r − r′|

+ ε0

8πc

∫
d3r′ gB(r, r′, t )

|r − r′| , (51)

where g ∈ {h, χ, s}, and

hE (r, r′, t ) = E(r, t ) · [∇′ × E(r′, t )], (52a)

χE (r, r′, t ) = −1

c

∂2E(r, t )

∂t2
· [∇′ × E(r′, t )], (52b)

sE (r, r′, t ) = 1

c
E(r, t ) × ∂E(r′, t )

∂t
. (52c)

The corresponding magnetic densities hB, χB, and sB can be
obtained from (52a)–(52c) by replacing E with cB every-
where. Equations (51) and (52a)–(52c) are the main result of
this paper.

Next, we will make some remarks on the advantages of
expressing h, χ , and s in terms of physically observable elec-
tric and magnetic fields, compared to the traditional formulas
(2a)–(2c).

(1) In (51), electric-magnetic democracy is clearly
displayed.

(2) From (51), the nonlocal nature of the three densities
h(r, t ), χ (r, t ), and s(r, t ) is evident. The importance of this
point has been thoroughly discussed by Bialynicki-Birula
[22].

(3) By definition, Eqs. (51) and (52a)–(52c) are manifestly
gauge invariant.

(4) Comparing (52a) and (52b), we can see directly why for
monochromatic fields of frequency ω0, helicity and chirality
are proportional to each other. In this case ∂2E(r, t )/∂t2 =
−ω2

0E(r, t ), so that χE (r, r′, t ) = (ω2
0/c)hE (r, r′, t ).

(5) The densities (52a)–(52c) are not uniquely defined. To
obtain these equations, we repeatedly used integration by parts
with respect to d3r, which caused the elimination of some

surface terms. This is particularly evident for the chirality,
where we have two distinct expressions for χ (r, t ), given by
(30) and (37). Having different expressions for the densities
h(r, t ), χ (r, t ), and s(r, t ), all giving the same measurable
conserved quantities H,C, and S, respectively, allows for
different views, all physically valid, of the same quantities.
This produces deeper physical insights, as it will be particular
evident in the next section where the densities are expressed in
reciprocal (Fourier) space. A detailed discussion of why it is
convenient having nonuniquely defined densities can be found
in Sec. 5.4, p. 87 of [1].

IV. HELICITY, CHIRALITY, AND SPIN OF OPTICAL
FIELDS IN RECIPROCAL SPACE

Further insights into H[h], C[χ ], and S[s], come from their
expressions in reciprocal space, obtained by substituting the
Fourier transforms of E and B into Eqs. (51) and (52a)–(52c).
As shown in Appendix B, Eqs. (B10), (B23), (B27), and (B37)
demonstrate that it is possible to write

f (r, t ) = − ε0

c

∑
σ,σ ′=±1

∫
d3k

(2π )3/2

∫
d3k′

(2π )3/2

eir·(k−k′ )

|k′|
× gσσ ′ (k, k′)Aσσ ′ (k, k′, t ) + c.c., (53)

where, as before, g ∈ {h, χ, s}, and the common time-
dependent term Aσσ ′ (k, k′, t ) is defined by

Aσσ ′ (k, k′, t )

= aσ (k)aσ ′ (−k′)
(

σ ′ − σ

2

)
exp [−i(ω + ω′)t]

+ aσ (k)a∗
σ ′ (k′)

(
σ ′ + σ

2

)
exp [−i(ω − ω′)t], (54)

with ω = c|k|, ω′ = c|k′|, and

hσσ ′ (k, k′) = ε̂σ (k̂) · ε̂∗
σ ′ (k̂′), from (B10), (55a)

χσσ ′ (k, k′) = c|k|2ε̂σ (k̂) · ε̂∗
σ ′ (k̂′), from (B23), (55b)

χσσ ′ (k, k′) = c|k′|2ε̂σ (k̂) · ε̂∗
σ ′ (k̂′), from (B27), (55c)

sσσ ′ (k, k′) = −iσ ε̂σ (k̂) × ε̂∗
σ ′ (k̂′), from (B37). (55d)
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There are several features of (53), (54), and (55a)–(55d)
which are worth highlighting.

(1) It is well known that the helicity H , the chirality C,
and the spin angular momentum S are diagonal with respect
to the helicity polarization basis. In fact, from (B12), (B24),
and (B39) it follows that

H = 2 ε0

c

∫
d3k

1

|k| [|a−(k)|2 − |a+(k)|2], (56a)

C = 2 ε0

∫
d3k |k| [|a−(k)|2 − |a+(k)|2], (56b)

S = 2 ε0

c

∫
d3k

k̂
|k| [|a−(k)|2 − |a+(k)|2]. (56c)

Conversely, the corresponding densities are not diagonal and
cross-helicity terms do not vanish. However, from (54) it fol-
lows that in the monochromatic limits the rapidly oscillating
factors exp[±i(ω + ω′)t] go to zero after averaging over a
period of oscillation [23]. The remaining terms proportional
to exp[±i(ω − ω′)t] average to 1, so that

Aσσ ′ (k, k′, t ) → aσ (k)a∗
σ ′ (k′)

(
σ ′ + σ

2

)
= σ δσσ ′aσ (k)a∗

σ (k′), (57)

and the cross-helicity terms disappear.
(2) Equations (55b) and (55c) give another view on the

nonuniqueness of the densities. Note, however, that the two
expressions coincide for monochromatic light where |k| =
|k′|.

(3) Equation (55d) shows that the spin density possesses
both a longitudinal and a transverse part, because from (A6b)
it follows that

sσσ ′ (k, k′) = −i σ ε̂σ (k̂) × ε̂∗
σ ′ (k̂′)

= k̂[ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)]

− ε̂σ (k̂)[k̂ · ε̂∗
σ ′ (k̂′)]. (58)

However, the spin S is purely longitudinal because spatial
integration yields a delta function δ(k − k′), so that the trans-
verse part disappears, due to the transverse character of the
electromagnetic field.

V. CHECK OF THE CONSISTENCY WITH PREVIOUS
RESULTS

Equation (50) gives the optical spin S in terms of the
observable electric and magnetic fields. Since the total optical
angular momentum J is a gauge-invariant quantity, it follows
that also the orbital optical angular momentum L = J − S
must be expressible in terms of the electric and magnetic
fields only. This gauge-invariant split between orbital and
spin optical angular momenta has been extensively discussed,
for example, by Stewart [24] and by Barnett, Cameron, and
coworkers [7,11,13,25]. However, while Stewart obtained ex-
pressions for L and S in terms of E and B only (thus obtaining
manifestly gauge-invariant quantities), Barnett, Cameron, and
coworkers wrote L and S in terms of both the observable fields
E and B and the transverse vector potentials A = A⊥(r, t )
and C = C⊥(r, t ). Our approach in the present paper is

somewhere in between Barnett’s and Stewart’s, because we
start from the “Barnett-like” spin density (2c) [see Eq. (25) in
[13]], and from this we derive S in terms of E and B only, in a
“Stewart-like” way [see Eq. (15) in [24]]. Therefore, to com-
plete the present paper, we must demonstrate the equivalence
between our results about the optical spin S and the ones from
Stewart and Barnett, Cameron, and coworkers [26].

A. Stewart’s approach

To begin with, we write the linear momentum density
p(r, t ) of an optical field, in the electric-magnetic democratic
form:

p(r, t ) = ε0

2
[E(r, t ) × B(r, t ) − B(r, t ) × E(r, t )]. (59)

In [23], using Helmholtz’s decomposition theorem, we have
shown that E and B can be expressed in terms of each other,
as

E(r, t ) = − 1

4π
∇ ×

∫
d3r′ ∂ B(r′, t )

∂t

1

|r − r′| , (60a)

B(r, t ) = 1

4πc2
∇ ×

∫
d3r′ ∂ E(r′, t )

∂t

1

|r − r′| . (60b)

Substituting (60b) and (60a) in the first and second term
of (59), respectively, we obtain after a straightforward
calculation

p(r, t ) = ε0

8πc2
[�E (r, t ) + �B(r, t )], (61)

where we have defined

�E (r, t ) ≡ E(r, t ) × [∇ × F(r, t )]

=
3∑

i=1

Ei(∇Fi ) − (E · ∇)F, (62)

with F = F(r, t ), defined by

F(r, t ) =
∫

d3r′ ∂ E(r′, t )

∂t

1

|r − r′| . (63)

As usual, �B is obtained replacing E with cB everywhere, in
the expressions of �E and F.

Next, following Stewart [24], we calculate the angular mo-
mentum J = JE + JB, where

JE = ε0

8πc2

∫
d3r[r × �E (r, t )], (64)

and JB is obtained replacing E with cB everywhere in the
equation above. Substituting (62) into (64), and using the
following vector identity,

r × (E · ∇)F = F × E + (E · ∇)(r × F), (65)

we obtain JE = JOE + JSE , where

JOE = ε0

8πc2

∫
d3r

3∑
i=1

Ei(r × ∇)Fi, (66)

043519-6



HELICITY, CHIRALITY, AND SPIN OF OPTICAL … PHYSICAL REVIEW A 106, 043519 (2022)

and

JSE = ε0

8πc2

∫
d3r E × F

− ε0

8πc2

∫
d3r (E · ∇)(r × F). (67)

Substituting (63) into the first term of (67), we straightfor-
wardly obtain S as given by (50). It is not difficult to see
that the second term in (67) is equal to zero. In fact, defining
G = r × F, we can rewrite∫

d3r(E · ∇)(r × F) j

=
∫

dx2 dx3[E1Gj]
x1=∞
x1=−∞ + cyclic terms︸ ︷︷ ︸

surface terms = 0

−
∫

d3r (∇ · E)︸ ︷︷ ︸
= 0

Gj . (68)

We have thus demonstrated that Stewart’s optical spin JSE

coincides with S given by (50).
The orbital optical angular momentum can be calculated

from (66). By setting r = êi xi, (i = 1, 2, 3), where here and
hereafter summation over repeated indices is understood, we
can calculate JOE noting that

(r × ∇)Fi = ê j ε jkl xk
∂Fi

∂xl

= ê j ε jkl xk

∫
d3r′ ∂ Ei(r′, t )

∂t

∂

∂xl

1

|r − r′|︸ ︷︷ ︸
= − xl −x′l

|r−r′ |3

=
∫

d3r′ ∂ Ei(r′, t )

∂t

r × r′

|r − r′|3 , (69)

where (63) has been used and ε jkl is the Levi-Civita symbol
[27]. Substituting (69) into (66), we obtain

JOE = ε0

8πc2

∫
d3r

×
∫

d3r′ E(r, t ) · ∂ E(r′, t )

∂t

r × r′

|r − r′|3 , (70)

which, mutatis mutandis, reproduces Eq. (17) in [24].

B. The approach by Barnett, Cameron, and coworkers

By definition, our expression (50) for the optical spin S
coincides with the one given by the second Eq. (25) in [13],
because we use the same spin density

s(r, t ) = 1
2 [ε0 E × A + B × C]. (71)

So, the last thing left to prove is that the expression for JO = L
given by the first Eq. (25) in [13], that is,

L = 1

2

∫
d3r

3∑
j=1

[ε0Ej (r × ∇)Aj + Bj (r × ∇)Cj]

≡ LE + LB, (72)

coincides with JO = JOE + JOB calculated from (70). For
simplicity, we will verify explicitly only that LE = JOE . For
this purpose, we use (5b) and (22) with G = B to write

A⊥(r, t ) = (∇×)−1B(r, t )

=
∫

d3r′

4π

∇′ × B(r′, t )

|r − r′|
= 1

4πc2
F(r, t ), (73)

where (48) and (63) have been used. Substituting (73) into the
first term between square brackets in (72), we obtain

LE = ε0

8πc2

∫
d3r

3∑
j=1

Ej (r, t )(r × ∇)Fj (r, t ), (74)

which coincides with (66). This completes the consistency
check.

VI. CONCLUDING REMARKS

In this paper I have presented some alternative expressions
for the well-known helicity H , chirality C, and spin angular
momentum S of an optical field, based solely on observable
quantities of the electromagnetic field. The main results of this
paper are summarized as follows.

(1) Equations (51) and (52a)–(52c) give manifestly gauge-
invariant expressions for the helicity, chirality, and spin
densities of the electromagnetic field, without using the aux-
iliary transverse vector potentials A and C. The simple form
of these equations makes clear the connection between H , C,
and S, and the electric-magnetic democracy is fully displayed.

(2) In the reciprocal space the helicity, chirality, and spin
densities reveal their connection at a deeper level, as shown
by (53), (54), and (55a)–(55d). These equations also highlight
the special role played by monochromatic fields.

(3) The key to achieving these results is the inversion of the
curl operator via Helmholtz’s decomposition theorem [19]. I
have shown in Sec. II that while this inversion is ill defined for
arbitrary vector fields, it becomes perfectly well defined for
solenoidal fields. This makes it possible to obtain manifestly
gauge-invariant electromagnetic observable quantities.

In this paper, I use the inverse curl operator in two different
manners. The first use is exemplified by (5a) and (5b), where
I write the transverse part of the electric and magnetic vector
potentials C and A, in terms of the observable electric and
magnetic fields E and B, respectively. The second usage is
shown in (60a) and (60b), where the electric and magnetic
field are written as a “Helmholtz transform” pair.

It is perhaps surprising that such a useful and powerful
technique is not so commonly used in angular momentum
optics, with a few commendable exceptions [24,28,29].

It would be desirable if the results presented here could
stimulate further research into the physical interpretation of
the (virtually infinite) conserved quantities of the electromag-
netic field.
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APPENDIX A: NOTATION

In this Appendix we quickly review the notation used
throughout this paper, following [23]. The electric and mag-
netic fields E and B, respectively, are given by

E(r, t ) =
∫

d3k
(2π )3/2

[a(k)ei(k·r−ωt ) + a∗(k)e−i(k·r−ωt )],

(A1a)

cB(r, t ) =
∫

d3k
(2π )3/2

[b(k)ei(k·r−ωt ) + b∗(k)e−i(k·r−ωt )],

(A1b)

where ω = c|k|, and

b(k) = k̂ × a(k). (A2)

The time-independent vector amplitude a(k) can be calculated
as

a(k) = 1

2

∫
d3r

(2π )3/2

[
E(r, t ) + i

ω

∂

∂t
E(r, t )

]
× exp (−ik · r + iωt ). (A3)

We use a Cartesian coordinate system with the three per-
pendicular axes parallel to the unit vectors ê1(k̂), ê2(k̂) and
ê3(k̂) = k̂, such that

êa(k̂) · êb(k̂) = δab, and êa(k̂) × êb(k̂) = εabc êc(k̂), (A4)

where εabc denotes the Levi-Civita symbol with a, b, c ∈
{1, 2, 3}, and summation over repeated indices (Einstein’s
summation convention) is understood. Using the transverse
basis {ê1(k̂), ê2(k̂)}, we can build the so-called helicity (or
circular) polarization basis [30], {ε̂+(k̂), ε̂−(k̂)}, defined by

ε̂σ (k̂) = ê1(k̂) − i σ ê2(k̂)√
2

, (σ = ±1). (A5)

Note that according to this definition, ε̂+(k̂) represents right-
hand circular polarization, and ε̂−(k̂) represents left-hand

circular polarization. These two orthogonal unit complex vec-
tors have the following properties:

k̂ · ε̂σ (k̂) = 0, (A6a)

k̂ × ε̂σ (k̂) = i σ ε̂σ (k̂), (A6b)

ε̂∗
σ (k̂) · ε̂σ ′ (k̂) = δσσ ′, (A6c)

ε̂∗
σ (−k̂) = ε̂σ (k̂), (A6d)

ε̂σ (k̂) × ε̂∗
σ ′ (k̂) = i k̂ σ ′ δσσ ′, (A6e)

where σ, σ ′ = ±1. We can write a(k) and b(k) in the helicity
basis as

a(k) =
∑

σ=±1

aσ (k) ε̂σ (k̂), (A7a)

b(k) =
∑

σ=±1

bσ (k) ε̂σ (k̂), (A7b)

where the components

aσ (k) = ε̂∗
σ (k̂) · a(k), (A8a)

bσ (k) = ε̂∗
σ (k̂) · b(k) (A8b)

satisfy the equation

bσ (k) = i σ aσ (k), (σ = ±1). (A9)

APPENDIX B: HELICITY, CHIRALITY, AND SPIN
IN RECIPROCAL SPACE

In this Appendix we calculate the expressions of H , C, and
S in reciprocal space, in terms of the Fourier transform of the
electric and magnetic fields. In what follows, some attention
should be paid to the fact that we use the same times symbol
“×”, both to denote ordinary multiplication, as in 2 × 3 = 6,
and the vector product between two vectors.

1. Helicity in reciprocal space

It is convenient to rewrite (29) as H = HE + HB, where

HE = ε0

8πc

∫
d3r

∫
d3r′ E(r, t ) · [∇′ × E(r′, t )]

|r − r′| , (B1)

and HB is obtained from (B1) replacing E with cB, every-
where. Next, substituting (A1a) into (B1), we obtain

HE = ε0

8πc

∫
d3r

∫
d3r′ 1

|r − r′|
∫

d3k
(2π )3/2

∫
d3k′

(2π )3/2

× [a(k)ei(k·r−ωt ) + a∗(k)e−i(k·r−ωt )] · {i k′ × [a(k′)ei(k′ ·r′−ω′t ) − a∗(k′)e−i(k′ ·r′−ω′t )]}, (B2)

where (10) has been used. Calculating the scalar product in the second and third line above, we obtain after a little calculation

HE = ε0

8πc

∫
d3r

(2π )3

∫
d3r′ 1

|r − r′|
∫

d3k
∫

d3k′ |k′|

× {α(k, k′) exp [i(r · k + r′ · k′) − i(ω + ω′)t] − β(k, k′) exp [i(r · k − r′ · k′) − i(ω − ω′)t]} + c.c., (B3)
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where we have defined

α(k, k′) = i a(k) · [k̂′ × a(k′)], (B4a)

β(k, k′) = i a(k) · [k̂′ × a∗(k′)], (B4b)

with ω′ = c|k′|, and c.c. stands for complex conjugate. It is not difficult to show that we can rewrite HE as

HE = ε0

8πc

∫
d3r

(2π )3

∫
d3k

∫
d3k′ |k′| eir·k

×
(

{α(k,−k′) exp [−i(ω + ω′)t] − β(k, k′) exp [−i(ω − ω′)t]}
∫

d3r′ e−ir′ ·k′

|r − r′|︸ ︷︷ ︸
= e−ir·k′

4π/|k′|2

)
+ c.c.

= ε0

2c

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| [α(k,−k′)e−i(ω+ω′ )t − β(k, k′)e−i(ω−ω′ )t ] + c.c., (B5)

where we have made the change of variables k′ → −k′ in the part of the integrand proportional to α(k, k′). Using the helicity
basis (A5), we can rewrite

α(k,−k′) = −
∑

σ,σ ′=±1

σ ′aσ (k)aσ ′ (−k′)[ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)], (B6)

and

β(k, k′) =
∑

σ,σ ′=±1

σ ′aσ (k)a∗
σ ′ (k′)[ε̂σ (k̂) · ε̂∗

σ ′ (k̂′)], (B7)

where (A6c)–(A6e) and (A7a) have been used.
Substituting (B6) and (B7) into (B5), we eventually obtain

HE = − ε0

2c

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)

× σ ′aσ (k)[aσ ′ (−k′)e−i(ω+ω′ )t + a∗
σ ′ (k′)e−i(ω−ω′ )t ] + c.c. (B8)

To calculate HB we simply take the expression above for HE and we replace aσ (k) with bσ (k) = iσaσ (k), according to (A9).
This implies that

σ ′aσ (k)aσ ′ (−k′) → σ ′bσ (k)bσ ′ (−k′) = −σaσ (k)aσ ′ (−k′), (B9a)

σ ′aσ (k)a∗
σ ′ (k′) → σ ′bσ (k)b∗

σ ′ (k′) = σaσ (k)a∗
σ ′ (k′). (B9b)

From this result and (B8), it follows that

H = HE + HB

= − ε0

c

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)

× aσ (k)

{
aσ ′ (−k′)

(
σ ′ − σ

2

)
exp [−i(ω + ω′)t] + a∗

σ ′ (k′)
(

σ ′ + σ

2

)
exp [−i(ω − ω′)t]

}
+ c.c. (B10)

Integration of this expression with respect to d3r yields (2π )3

times the delta function δ(k′ − k), so that

δ(k′ − k)ε̂σ (k̂) · ε̂∗
σ ′ (k̂′) = δ(k′ − k)δσσ ′ . (B11)

Using this result, we directly obtain

H = − ε0

c

∑
σ=±1

σ

∫
d3k
|k| |aσ (k)|2 + c.c.

= 2 ε0

c

∫
d3k
|k| [|a−(k)|2 − |a+(k)|2]. (B12)

We show now that this result is in agreement with the
expressions for H given in the literature in terms of photon-
number operators [see, e.g., Eq. (2.8) in [10]]. First, we use
our notation to rewrite Eq. (10.4-39) in [31], which gives the
electric-field quantum operator in a finite quantization volume
L3, as

Ê(r, t ) =
∑
k,σ

√
h̄ ω

2ε0L3
[i âkσ εkσ ei(k·r−ωt ) + H.c.], (B13)
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where H.c. stands for the Hermitian conjugate of the pre-
ceding term. To compare this expression with E(r, t ) given
by (A1a), we must convert the integral in (A1a), to a sum
according to the general rule [see, e.g., Eq. (10.8-4) in [31]],

∑
k

→
( L

2π

)3 ∫
d3k, (B14)

so that (A1a) becomes

E(r, t ) = (2π )3/2

L3

∑
k,σ

[aσ (k)ε̂σ (k̂)ei(k·r−ωt ) + c.c.], (B15)

where (A7a) has been used. From the comparison between
(B13) and (B15), it follows that

E(r, t ) → Ê(r, t ), if aσ (k) →
[

h̄ ωL3

2(2π )3ε0

]1/2

âkσ . (B16)

This implies that we can define the classical quantities nkσ

corresponding to the quantum photon-number operators n̂kσ ,
as

nkσ ≡ 2(2π )3ε0

h̄ωL3
|aσ (k)|2 → â†

kσ âkσ ≡ n̂kσ . (B17)

So, if we rename nk− and nk+, as nkL and nkR, respectively,
where the subscripts L and R label left- and right-handed
circular polarization, we can rewrite (B12) with the help of
(B14), as

H =
∑

k

h̄(nkL − nkR), (B18)

in agreement with [10].

2. Chirality in reciprocal space

We have two distinct expressions for C, given by (30) and
(37). Here we rewrite both equations in the reciprocal space.

a. Chirality in reciprocal space from (30)

The expression of

CE = ε0

2

∫
d3r E · (∇ × E), (B19)

in the reciprocal space, can be directly calculated substituting
(A1a) into (B19), as follows:

CE = ε0

2

∫
d3r

∫
d3k

(2π )3/2

∫
d3k′

(2π )3/2

× [a(k)ei(k·r−ωt ) + a∗(k)e−i(k·r−ωt )]

· {i k′ × [a(k′)ei(k′ ·r−ω′t )

− a∗(k′)e−i(k′ ·r−ω′t )]}, (B20)

where (10) has been used. The evaluation of the scalar product
in (B20) above gives

CE = ε0

2

∫
d3r

(2π )3

∫
d3k

∫
d3k′ |k′| eir·(k−k′ )

× {α(k,−k′) exp [−i(ω + ω′)t]

− β(k, k′) exp [−i(ω − ω′)t]} + c.c., (B21)

where (B4a) and (B4b) have been used. Next, substituting
(B6) and (B7) into (B21), we obtain

CE = − ε0

2

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′|k′|eir·(k−k′ )

× ε̂σ (k̂) · ε̂∗
σ ′ (k̂′) σ ′aσ (k)

× [aσ ′ (−k′)e−i(ω+ω′ )t + a∗
σ ′ (k′)e−i(ω−ω′ )t ]

+ c.c. (B22)

To calculate CB we replace aσ (k) with bσ (k) = iσaσ (k), in
(B22). Using (B9a) and (B9b) we can eventually write

C = CE + CB

= − ε0

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| |k′|2

× ε̂σ (k̂) · ε̂∗
σ ′ (k̂′) aσ (k)

×
{

aσ ′ (−k′)
(

σ ′ − σ

2

)
exp [−i(ω + ω′)t]

+ a∗
σ ′ (k′)

(
σ ′ + σ

2

)
exp [−i(ω − ω′)t]

}
+ c.c. (B23)

Performing the integration in real space with respect to d3r,
we obtain

C = − ε0

∑
σ=±1

σ

∫
d3k |k||aσ (k)|2 + c.c.

= 2 ε0

∫
d3k |k|[|a−(k)|2 − |a+(k)|2]. (B24)

Finally, using (B14)–(B17) it is not difficult to show that we
can write the chirality in a quantumlike language as

C =
∑

k

h̄ c|k|2(nkL − nkR). (B25)

b. Chirality in reciprocal space from (37)

In this case it is not necessary to make new calculations
because by comparing (37) with (B1), we can see that

CE = −1

c
HE

∣∣∣∣
E(r,t )→ ∂2E(r,t )

∂t2

. (B26)
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Then, we can use this relation and (B10) to write directly

C = −ε0

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| |k|2ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)

× aσ (k)

{
aσ ′ (−k′)

(
σ ′ − σ

2

)
exp[−i(ω + ω′)t] + a∗

σ ′ (k′)
(

σ ′ + σ

2

)
exp [−i(ω − ω′)t]

}
+ c.c. (B27)

3. Spin in reciprocal space

We calculate

S = ε0

8π c2

∫
d3r

∫
d3r′

E(r, t ) × ∂E(r′, t )

∂t
|r − r′| + ε0

8π c2

∫
d3r

∫
d3r′

c2 B(r, t ) × ∂B(r′, t )

∂t
|r − r′|

≡ SE + SB, (B28)

in reciprocal space. Substituting (A1a) into (B28), we obtain

SE = ε0

8πc2

∫
d3r

∫
d3r′ 1

|r − r′|
∫

d3k
(2π )3/2

∫
d3k′

(2π )3/2
(−ic|k′|)

× [a(k)ei(k·r−ωt ) + a∗(k)e−i(k·r−ωt )] × [a(k′)ei(k′ ·r′−ω′t ) − a∗(k′)e−i(k′ ·r′−ω′t )]. (B29)

Performing the vector products, we obtain

SE = − ε0

8πc

∫
d3r

(2π )3

∫
d3r′ 1

|r − r′|
∫

d3k
∫

d3k′ |k′|

× {α(k, k′) exp [i(r · k + r′ · k′) − i(ω + ω′)t] − β(k, k′) exp [i(r · k − r′ · k′) − i(ω − ω′)t]} + c.c., (B30)

where we have defined

α(k, k′) = i a(k) × a(k′), (B31a)

β(k, k′) = i a(k) × a∗(k′). (B31b)

A few more calculations give

SE = − ε0

8πc

∫
d3r

(2π )3

∫
d3k

∫
d3k′ |k′| eir·k

×
(

{α(k,−k′) exp [−i(ω + ω′)t] − β(k, k′) exp [−i(ω − ω′)t]}
∫

d3r′ e−ir′ ·k′

|r − r′|︸ ︷︷ ︸
= e−ir·k′

4π/|k′|2

)
+ c.c.

= − ε0

2c

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| [α(k,−k′)e−i(ω+ω′ )t − β(k, k′)e−i(ω−ω′ )t ] + c.c., (B32)

where we made the change of variables k′ → −k′ in the part of the integrand proportional to α(k, k′).
In the helicity basis (A5), we can write

α(k,−k′) = i
∑

σ,σ ′=±1

aσ (k)aσ ′ (−k′)[ε̂σ (k̂) × ε̂∗
σ ′ (k̂′)], (B33a)

β(k, k′) = i
∑

σ,σ ′=±1

aσ (k)a∗
σ ′ (k′)[ε̂σ (k̂) × ε̂∗

σ ′ (k̂′)], (B33b)

where (A6e) and (A7a) have been used. Next, substituting (B33a) and (B33b) into (B32), we obtain

SE = − ε0

2c

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| [i ε̂σ (k̂) × ε̂∗
σ ′ (k̂′)]

× aσ (k)[aσ ′ (−k′)e−i(ω+ω′ )t − a∗
σ ′ (k′)e−i(ω−ω′ )t ] + c.c. (B34)
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SB is obtained from SE by replacing aσ (k) with bσ (k) = iσaσ (k), in (B34). Eventually, we obtain

S = SE + SB

= −ε0

c

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| [i ε̂σ (k̂) × ε̂∗
σ ′ (k̂′)]

× aσ (k)

{
aσ ′ (−k′)

(
1 − σσ ′

2

)
exp [−i(ω + ω′)t]

− a∗
σ ′ (k′)

(
1 + σσ ′

2

)
exp [−i(ω − ω′)t]

}
+ c.c. (B35)

To put this expression in a form useful for the comparison with (B10), (B23), and (B27), we note that

−σ

(
σ ′ − σ

2

)
=
(

1 − σσ ′

2

)
and σ

(
σ ′ + σ

2

)
=
(

1 + σσ ′

2

)
. (B36)

Substituting (B36) into (B35), we obtain

S = SE + SB

= ε0

c

∑
σ,σ ′=±1

∫
d3r

(2π )3

∫
d3k

∫
d3k′ eir·(k−k′ )

|k′| [i σ ε̂σ (k̂) × ε̂∗
σ ′ (k̂′)]

× aσ (k)

{
aσ ′ (−k′)

(
σ ′ − σ

2

)
exp [−i(ω + ω′)t] + a∗

σ ′ (k′)
(

σ ′ + σ

2

)
exp [−i(ω − ω′)t]

}
+ c.c., (B37)

where, according to (A6b),

i σ ε̂σ (k̂) × ε̂∗
σ ′ (k̂′) = ε̂σ (k̂)[k̂ · ε̂∗

σ ′ (k̂′)] − k̂[ε̂σ (k̂) · ε̂∗
σ ′ (k̂′)]. (B38)

As a last step, we perform the integration with respect to d3r in (B37), to obtain, after a little calculation,

S = − ε0

c

∑
σ=±1

σ

∫
d3k

k

|k|2 |aσ (k)|2 + c.c.

= 2 ε0

c

∫
d3k

k̂
|k| [|a−(k)|2 − |a+(k)|2]. (B39)

Finally, using (B14)–(B17) it is not difficult to show that we can write the spin in a quantumlike language as

S =
∑

k

h̄ k̂(nkL − nkR). (B40)
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