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Harmonic generation in bent graphene with artificially enhanced spin-orbit coupling
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We theoretically investigate the nonlinear response of bent graphene in the presence of artificially enhanced
spin-orbit coupling, which can occur either via adatom deposition or by placing the sheet of bent graphene
in contact with a spin-orbit-active substrate. We discuss the interplay between the spin-orbit coupling and the
artificial magnetic field generated by the bending for the cases of both Rashba and intrinsic spin-orbit coupling.
For the latter, we introduce a spin-field interaction Hamiltonian addressing directly the electron spin as a degree
of freedom. Our findings reveal that in this case, by controlling the amount of spin-orbit coupling, it is possible
to significantly tune the spectrum of the nonlinear signal, achieving, in principle, efficient conversion of light

from the terahertz to UV region.
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I. INTRODUCTION

Since its discovery in 2004 [1], graphene has attracted a
lot of interest in the scientific community, mainly due to its
exquisite, and unexpected, electronic, mechanical, and ther-
mal properties [2,3] but also due to it fascinating optical
properties, such as universal absorption [4], ultrafast broad-
band response [5], and large nonlinear optical responses [6,7],
to name a few. Most of these properties derive directly from
the presence, in the band structure of graphene, of Dirac
cones, i.e., points in k space, where valence and conduction
bands touch, thus giving rise to a gapless linear dispersion
[8]. Monolayers of graphene also admit spin-orbit coupling
(SOC) in the form of both intrinsic (A;) and Rashba (Ag)
coupling, the former originating as a true SOC due to the
relativistic nature of electrons in graphene, with the latter
occurring only in the presence of an external electric field [8].
For the particular case of A; > Ag/2, Kane and Mele discov-
ered, for a finite monolayer of graphene, that the gap opened
by SOC at the Dirac points sustains topologically protected
edge states near its boundary [9], where spin-dependent im-
purity backscattering is strongly suppressed, resulting in the
so-called quantum spin Hall (QSH) edge states. The discovery
of Kane and Mele, moreover, was so influential that it gave
birth to the exciting field of topological insulators [10], which,
soon after its discovery in the context of condensed-matter
physics, started affecting other fields of physics, giving rise to
new ideas, such as topological photonics [11,12], topological
mechanics [13], and topological atomic physics [14].

The QSH effect, however, is quite hard to observe experi-
mentally in pristine graphene since the value of the intrinsic
SOC is too small to allow its experimental verification
[15-17]. The QSH state, however, has been experimentally
observed in other systems, such as HgTe quantum wells [18],
InAs/GaSb quantum wells [19], and WTe, [20], to name a
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few. To overcome the problem of small SOC in graphene,
several different strategies have been proposed, ranging from
increasing the Rashba coupling by depositing graphene on Ni
surfaces [21,22] to a significant increase of the intrinsic SOC
by adatom deposition of different compounds [23], such as
indium, thallium, and Bi,Te; nanoparticles, the latter repre-
senting the first experimental evidence of the occurrence of
the QSH effect in graphene with artificially enhanced SOC
[24].

Contextually, several works investigated the effect of
Rashba [25-27] and intrinsic SOC on the electronic structure
of graphene in the presence of magnetic fields [28]. The latter,
in particular, has attracted considerable attention in recent
years because it can be realized by applying strain or bend-
ing to single- and multilayer two-dimensional (2D) materials
[29,30], resulting in high artificial magnetic fields, which,
contrary to real ones, cannot break time-reversal symmetry. A
comprehensive review of the topic can be found in Ref. [31].

Interestingly, however, only a few works have investigated
the effects of (pseudo)magnetic fields in the nonlinear op-
tical response of graphene, and they have mainly focused
on estimating how the third-order nonlinear susceptibility of
graphene depends on the applied magnetic field, in the limit
of strong magnetic field [32]. In a recent work, moreover, the
role of a constant, out-of-plane magnetic field in the nonlinear
response of graphene was thoroughly investigated, revealing
the possibility to use the magnetic field strength to control the
frequency conversion, up to the visible range [33]. None of
these works, however, investigated the role SOC might have in
shaping the nonlinear optical response of graphene and, more
generally, 2D materials.

In this work, we investigate the effects of both intrinsic
and Rashba SOC on the nonlinear signal generated by an
ultrashort electromagnetic pulse impinging upon a flake of
bent graphene. To do so, we extend the formalism recently
developed by one of the authors in Ref. [33] to explicitly
account for the presence of a nonzero SOC coupling and
explicitly accommodate spin dynamics in the model. For the
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FIG. 1. Band structure of graphene in the vicinity of one Dirac
valley (for example, K) for both (a) the case of no SOC, where the
usual gapless, linear dispersion relation appears, and (b) the case with
SOC. Depending on the kind of SOC considered, a gap can be opened
at the Dirac point (intrinsic SOC), and the spin degeneracy of both
valence and conduction bands can be lifted (Rashba SOC).

case of intrinsic SOC, in particular, we exploit the fact that
the spin degeneracy of the electronic bands is lifted, and we
introduce a spin-field interaction Hamiltonian and compare
its action with the standard sublattice (i.e., minimal coupling)
interaction Hamiltonian. Our results show that by addressing
directly the spin degree of freedom of Dirac electrons in
graphene it is possible, by controlling the level of intrinsic
SOC, to significantly broaden the spectrum of the nonlinear
signal, allowing efficient conversion of light from the terahertz
(THz) to the UV region.

This work is organized as follows: in Sec. I we present the
basic model used in this work, namely, the Hamiltonian for a
2D material (graphene, in this specific case) in the presence
of SOC. Section III is then dedicated to the case of bent
graphene and to deriving its eigenstates and eigenvalues for
the cases of both intrinsic and Rashba SOC. In Sec. IV, we
briefly discuss how to introduce the spin-field interaction in
the graphene Hamiltonian and discuss explicitly the cases of
linear and circular polarization. Section V is then dedicated to
the discussion of the nonlinear signal in the presence of SOC.
Finally, conclusions are drawn in Sec. VI.

II. GRAPHENE HAMILTONIAN WITH SOC

Electron dynamics in graphene are typically described us-
ing a four-component spinor, ®(r,1) = (¢3¢, 92, ¢, p5)7,
where {A, B} refer to the sublattice site (associated with the
so-called pseudospin degree of freedom), referring to the two
carbon atoms per unit cell, and the indices {K, K’} indicate the
two nonequivalent valleys in k space [8]. If SOC is present, the
spin degeneracy of the two Dirac bands in each valley is lifted,
leading to a spin-resolved four-band system in each valley
(see Fig. 1). In this case, electron dynamics are completely
described by means of an eight-component spinor W(r, t) =
(®4(r, 1), @, (r,1))", where {1, |} is the spin index. To write
the Hamiltonian for graphene in the presence of SOC, notice
that W(r, ¢) depends on three independent degrees of freedom,
namely, pseudospin (sublattice), spin, and valley, each span-
ning one of three different two-dimensional subspaces, i.e.,
W(r,t) € H = Hyalley ® Hap @ Hspin, where each individual

subspace H, is spanned by its own set of Pauli matrices
o, . and dim{#} = 8. Since SOC does not mix the valley
degree of freedom, we can factor out the valley degree of
freedom and reorganize the elements of W(r, ) by introducing
the spin-resolved valley spinor ¢* = (¢?A, ‘ﬁ,g’ ¢jA, ¢jB)T,
with & = {1, —1} = {K, K’} being the valley index, so that
W(r, 1) = (¢X, p¥)7. By doing so, we can then write the
single-valley Hamiltonian in the presence of SOC as

A% = A5 + A} + Hy, (1)
where
ﬁé = vf(é Px I, ® oy + Py I® Gy) )

is the free Hamiltonian, I is the identity matrix in spin
subspace, oy, are the Pauli matrices spanning the two-
dimensional sublattice space H g,

H =£A;s.®0, 3)

(with s,, being the Pauli matrices spanning the two-
dimensional spin space Hgpin) describes intrinsic SOC, which
accounts for the case where the electron spin is oriented per-
pendicular to the graphene plane [8], and

Hy = Ar(E sy ® 0, — 5, @ 7y) 4

is the Rashba Hamiltonian, describing the case in which the
electron spin is oriented in the plane of graphene and it is
responsible for the spin-momentum locking [8].

In graphene, the magnitude of both SOC terms is gen-
erally small, with the Rashba term being Ap >~ 10 neV per
V/nm [34], when an electric field is applied, and the intrinsic
SOC term A; =~ 24 neV [35]. These effects, however, can be
artificially enhanced by suitable adatom deposition, such as
indium and thallium [23], or by putting the graphene sheet
in contact with tellurite-based nanoparticles [24]. This results
in an increase of the SOC of graphene of many orders of
magnitude.

It is worth noticing that although in the remainder of this
paper we will refer only to artificially enriched graphene, the
model presented in this work can be easily adapted to any
2D material in the presence of SOC, such as transition-metal
dichalcogenides (TMDs).

III. BENT GRAPHENE IN THE PRESENCE OF SOC

The discussion above is valid for an unstrained single layer
of graphene. When strain, or bending, is taken into account, an
artificial gauge field (AGF) emerges whose explicit expression
depends on the nature of the strain or bending applied to the
monolayer [36]. In the absence of out-of-plane modulations,
such an induced AGF can be generally written as

A<S) = :|:C(uxx - Myy)ﬁ + 2Clxlxy§’, (5)

where C is a suitable constant and u,, = d,u, — d,u,, is the
strain tensor [37]. Assuming a strain profile like the one
described in Ref. [33] and pictorially represented in Fig. 2,
we obtain an AGF A®) = —Byx, corresponding to a uniform
magnetic field oriented perpendicular to the graphene plane,
i.e., B = B2. The interaction of electrons in graphene with
the AGF defined above can be introduced through minimal
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FIG. 2. (a) Pictorial representation of a rectangular flake of
graphene, deformed into an arc. (Adapted from Ref. [33].) The radii
of the upper and lower edges are, respectively, R and R'. (b) Flattened
equivalent geometry of the bent graphene flake in (a). The curvature
induced by the bending is replaced with an artificial gauge field A,
which gives rise to a uniform pseudomagnetic field B = B Z parallel
to the z direction. The width w and length ¢ of the flattened flake
can be calculated from the bent structure and might be extended
to infinity for making calculations easier, as this operation does not
change the essential role the pseudomagnetic field has in light-matter
interaction.

coupling, namely, by replacing the kinetic momentum p of the
electron with the canonical momentum, i.e., p — p + eA®,
in Eq. (2). This is equivalent to introducing a magnetic inter-
action Hamiltonian

H =evp AV @0, = —vpeByE[®o,  (6)

into Eq. (2). Since we are also considering the electron spin
as a degree of freedom, simply adding the interaction term
above to Eq. (2) is not enough, as we have to add an extra
term to account for the interaction of the electron spin with the
synthetic magnetic field, i.e., a Zeeman term of the following
form [38]:

I—?Z = AZ Sy ® HAB, (7)

where [45 is the identity matrix in sublattice space and Ay =
gsupB/2 (with g, being the gyromagnetic factor and g being
the Bohr magneton).

The total single-valley Hamiltonian for SOC in the pres-
ence of an AGF is then given by I-?tit =H¢ + I-?g + A5, and
we can use it in the Dirac equation for electrons in the pres-
ence of SOC and under the action of an AGF as follows:

ad N
i ) = 3 He 90 0)). 8)

g==+1

To solve the above equation, we write |{(r,?)) as a linear
combination of the instantaneous eigenstates of ﬁtil with
time-dependent expansion coefficients [39]. To do so, al-
though I-?[it admits closed-form eigenstates in the form of
parabolic cylinder functions for the general case of both intrin-
sic and Rashba SOC present in the system [28], in this work
we discuss the two cases separately. This will provide a much
easier framework and will allow us to gain better insight into
the role each of these two mechanisms plays in the nonlinear
optical response of graphene.

A. Instantaneous eigenstates of ﬁf

»¢ for only intrinsic SOC

To start with, we neglect Rashba coupling and set Az =0.
As intrinsic SOC cannot lift the spin degeneracy of the bands

near the Dirac point and only introduces a nonzero gap pro-
portional to A;, the two spin states {|1), |])} can be treated
independently, and the spin index 8 = £1 = {1, |} enters
only as a parameter (and not as a quantum number) in the ex-
pression of the eigenstates and eigenvalues of I-Zil. As aresult,
we can then write the single-valley—single-spin Hamiltonian
as

AE = Uf(s PxOx + PyOy — eB)’S Ux)
+BE Ajo; + Az), ©))
and then H} = I-?f ® H%, and therefore, |yé(r, 1)) =
Wi, 0) @ [¥ (1),
Written in the form above, it is easy to recognize Eq. (9)
as a gapped Landau Hamiltonian whose eigenvalues and

eigenstates can be written in terms of harmonic oscillator
eigenstates in the y direction as [40]

W8 4013 p0) = NE €5 50108 (), (10)
with

Y

|56 (m) = 0(g)<”n,ﬁ ¢n1<n>)’

dn(n)

where O(£) =1 for £ =1 (K valley) and O(£) = —o.0
for £ = —1 (K’ valley). Here, ¢,(n) are normalized one-
dimensional harmonic oscillator eigenstates [41] [with
$_1(n) =01, n = (—y + 203 p,)/Lp (with L5 = /Ti/eB be-
ing the magnetic length), Ni’ s 18 a normalization constant,
P (12)

hawe/n

and E,‘Z"ﬂ = ahiw./n+ (Ar/hw.)? + BA, are the eigenvalues
of Eq. (9) (with w. = vp~/2/€5 being the cyclotron fre-
quency). n € Ny indicates the Landau levels in the conduction
(¢ = 1) and valence (¢ = —1) bands. Notice, moreover, that
since the total Hamiltonian factors in spin space, there cannot
be a common n = 0 Landau level, as in the case of no intrinsic
SOC [33], but rather two separate levels, with spin-dependent
eigenvalues Ey g = —B(A; — Az) and spin-polarized eigen-

states
. 3 L>1/4 0 )
[©6.5) = (271 go(n) ) (13)

The corresponding band structure in the vicinity of the Dirac
point for the first few Landau levels is shown schematically in
Fig. 3.

B. Instantaneous eigenstates of I:Ifot for only Rashba SOC

We now turn our attention to the case where only Rashba
SOC is present; that is, we set A; =0 = Ay in the total
Hamiltonian. Since the Rashba coupling term Ay introduces
a coupling between the spin states, we cannot factor Hg, in
block-diagonal form anymore. We then need to deal with
the full four-dimensional Hamiltonian ﬁtit = H¢ +I:II§ . Its
eigenstates and eigenvalues, however, can still be computed

analytically, and they can still be expressed in terms of
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FIG. 3. First few Landau energy levels in the vicinity of the Dirac
point in the presence of intrinsic SOC. As can be seen, the main effect
of the intrinsic SOC is to open a gap between valence and conduction
bands (lifting the band degeneracy at the Dirac point). The lifting of
the spin degeneracy of each level is due to the Zeeman coupling. The
dashed lines, depicting the band structure of unperturbed, pristine
graphene, have been added to help the visualization of the band
structure.

harmonic oscillator states [28] as follows:

n/S

|¢5,‘§(y, t;px)) = quﬂ l( Bx—

where now n € Z and

P01, ), (14)

inARan—l¢11—l(n)
i AR Er?,ﬁ an®n(n)
[(E2,) —nlawputn) | (D)

[( ﬂ) “ an1bnr1(n)

| =5 s () =

where a, = ots
explicit expression is, in general, a complicated function of
Apg and hiw, (see Ref. [28] for details). For the particular case
& = Ag/hw, < 1, i.e., small Rashba coupling, however, we
can find the following approximate analytical expression for
the eigenvalues:

vn!and EJ ; are the eigenvalues of HE . whose

2

E) = ahwc(l + %)«/n +14 0@, (16a)
82

Ey = ahwc<1 - 3>ﬁ + 0(e*). (16b)

Notice that in this limit Htil admits two zero-energy states,

one corresponding to n = 0 (| Eg”f)) and the other one corre-
sponding to n = —1 (|Ei’ﬁ+)).

Notice, moreover, that for Ag = 0, i.e., ¢ = 0 in Eq. (16),
the condition E; | . = E; _ holds, which implies a degen-
eracy of Landau levels. ThlS degeneracy is then lifted for
Ap > 0, and in this case (and only this case) it makes sense to
label the eigenstates with the index 8 = &+, which, however,
should not be associated with a genuine spin index since for
the case of Rashba coupling, the bands are still degenerate in
spin.

ho,e? ¢\/ E0+

’
N E*lﬁ* = EU,* =0

7 v ~
- SSUEY
Vv

0,+

FIG. 4. Landau energy levels in the vicinity of the Dirac point
for the case of nonzero Rashba coupling and for n = {0, 1}. Contrary
to the case of intrinsic SOC, in this case we observe the presence of
a doubly degenerate zero state. The dashed lines, depicting the band
structure of unperturbed, pristine graphene, have been added to help
with the visualization of the band structure.

The band structure in the vicinity of the Dirac point for
the case of nonzero (but small) Rashba coupling, including
the two zero-energy states and the states corresponding to
n = {0, 1} in both the valence and conduction bands, is re-
ported in Fig. 4.

IV. INTERACTION WITH THE
ELECTROMAGNETIC FIELD

We now consider the interaction of a flake of bent graphene
in the presence of SOC with an external electromagnetic
field, and we then calculate its nonlinear response. To ac-
count for such an interaction, we employ minimal coupling
and simply make the electromagnetic vector potential A(r)
appear via the minimal substitution p — [p + eA® + eA(?)],
so that the effects of both an actual (electromagnetic pulse)
and artificial (bending) gauge field are described within the
same formalism. Throughout this whole section, we assume
the electromagnetic vector potential is written as A(?) =
A(t)e‘i‘“L’f' + c.c., where f is a suitable polarization vector,
wy, is the pulse carrier frequency, and the pulse shape is as-
sumed to be Gaussian, i.e., A(t) = E T exp[—(¢t — to)z/tz],
with E; being the pulse amplitude and t being its duration.
We, moreover, assume for simplicity that the electromagnetic
field impinges normally on the bent graphene sheet. This
assumption is justified by the fact that our model Hamiltonian
for graphene automatically takes into account a recentering of
k space around the position of the Dirac points.

Accounting for all the aforementioned assumptions, in this
section we will therefore consider the following form of the
single-valley Dirac equation:

WG, 0) = (A + B O] Gy n), ()
where the interaction term I-Alim(t) will assume different ex-
plicit forms, depending on the kind of interaction we are
considering, as discussed below.

In general, however, the interaction term ﬁim(t) can be
gauged by means of the phase transformation

|WE (x, y, 1)) = [ dp, e F5e OO E(y 1 p)),  (18)

043517-4



HARMONIC GENERATION IN BENT GRAPHENE WITH ...

PHYSICAL REVIEW A 106, 043517 (2022)

where G(r) = h™! f(; ds Hiy(s). Following the reasoning
from Ref. [33], we can calculate the instantaneous eigenstates
of the equation above, which we define as |®n 8 (1)), for which

we have |®” ﬂ(t)) |<I>E Z(t)) for the case of intrinsic SOC

and |®§ g(t)) |= n,g(t» for the case of Rashba coupling.
To solve Eq. (17), we then employ the ansatz

WGt p)) = e 700 Y S hn|@5 (L p). (19)
n,a,pB

which amounts to considering the general electron dynamics
for SOC bent graphene interacting with an external field as a
weighted superposition of instantaneous Landau eigenstates.
Substituting this ansatz into Eq. (17) leads to solving a differ-
ential equation system for the expansion coefficients c;; 4(¢):

SVIOESDY Z(®%|ﬂim(r)l®é S, (20)

where o, 8 = {—1, 1}. Notice that the states |OS g) are or-
thogonal with respect to the index n and the number of
eigenstates involved in the sum above is essentially regulated
by the initial conditions.

We then consider two different regimes of light-matter
interaction: first, we consider the usual sublattice coupling and
assume that the impinging electromagnetic field is linearly
polarized along the x direction (namely, the one indicated by
£ in Fig. 2); that is, we choose f = &. The minimal coupling
Hamiltonian in this case reads

}?int(t) =€eVf Hs 02y %‘Ax(t)o'x' (21)

Second, we introduce a spin-field interaction term which
couples the photon and electron spin directly, thus granting us
access to spin dynamics. To do so, we consider the case of a
circularly polarized pulse, for which we choose f = h;, where
h, = (X +ir§)/+/2 is the helicity basis [42] and A = 1 is
the photon spin angular momentum (SAM), corresponding
to left-handed (A = +1) or right-handed (A = —1) circular
polarization. In this case, since the impinging pulse is carrying
SAM, we can introduce an extra interaction Hamiltonian that
describes the SAM-electron spin interaction, rather than the
usual sublattice interaction described by Eq. (21), of the form

H3E (1) = evp Au(t) s, ® Lup, (22)

nt

where the superscript SF stands for spin field to emphasize the
nature of the interaction and distinguish the above interaction
Hamiltonian from Eq. (21).

Notice that H3F (¢) makes sense as interaction Hamiltonian
only when the electron spin can be addressed as an indepen-
dent degree of freedom, namely, only in the intrinsic SOC
case, with a nonzero Zeeman effect. In all other cases, where
the spin degeneracy is not lifted, the interaction Hamiltonian
cannot be written in this form, as one would not be able to
define Pauli matrices for the spin states since spin is not an
available degree of freedom.

Dirac current and nonlinear signal

The nonlinear response of graphene can be estimated by
first calculating the electric current generated by the inter-

action of the electromagnetic field with the graphene layer,
namely,

50 = [ dxdy (WL 1w0) 23)

where J, is a suitable current operator whose definition de-
pends on the kind of interaction described above, namely,
J. =1, ®a, for the interaction described by Eq. (21) and
J. =5, ®1Ip for the spin-field interaction described by
Eq. (22). From the Dirac current, we can then calculate the
spectrum of the emitted radiation, the so-called nonlinear sig-
nal, as a function of frequency as

I(w) « |0 J(@)]?, (24)

where J(w) is the Fourier transform of the Dirac current J(¢).

V. NONLINEAR SIGNAL

We now have all the tools needed to investigate the nonlin-
ear response of bent graphene in the presence of artificially
enhanced SOC, considering the effects of both the sublat-
tice and spin-field interactions. We assume a pseudomagnetic
field of magnitude B =2 T and an impinging electromag-
netic pulse with amplitude E; = 107 V/m and a duration
of t =50 fs, with a carrier frequency of w; =78 THz,
fully resonant with the transition from between the low-
est and the zeroth state in the case of no SOC and nearly
resonant between the lowest and second-lowest states in
the case when SOC is present. As initial conditions, we
assume, for the cases of both intrinsic and Rashba SOC,
¢’ (0) = (100100)"/+/2. For the case of intrinsic SOC,
this initial condition corresponds to assuming equal pop-
ulations of the lowest spin-up and spin-down states, i.e.,
¢’ (0) = (¢} ;(0) .4 (0) € L (0) ¢ | (0) cg, 1 (0), € (0)) . For
the case of Rashba coupling, on the other hand, since spin
is not a viable quantum number anymore, the initial con-
dition above just reduces to assuming equal populations in
the + and — states of the valence band since ¢’ (0) =
(¢} _(0)co,—(0)¢§ _(0) ¢y (0) e—1.4+(0) cf (0N

A. Linear polarization

We start by first discussing the case of sublattice cou-
pling with an x-polarized impinging field. To this aim, we
mainly consider the effect of intrinsic (A;) SOC because,
as we will show, the influence of Rashba (Ag) SOC is not
very significant. To corroborate this statement, we first per-
formed simulations using typical values of both intrinsic and
Rashba SOC for the case of artificially enhanced graphene,
and we chose A; =5 meV and Ar = 15 meV. The result of
these simulations is reported in Fig. 5. As can be seen from
Fig. 5(a), the presence of SOC of any kind does not drastically
change the nonlinear response of bent graphene, but rather
introduces small changes, mainly in the spectral region around
the fundamental frequency and in the high-harmonics region.

Let us first discuss the impact of the Rashba coupling
(pink line in Fig. 5). We see from Fig. 5(b) that the main
spectral region where Rashba SOC affects the nonlinear signal
is the low-frequency region, around the fundamental fre-
quency w; = w;. In this region, in fact, the nonlinear spectrum
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FIG. 5. (a) Spectrum of radiation emitted by artificially enhanced bent graphene for the case of impinging x polarization and (b) a zoom
of the low-frequency part of the spectrum, i.e., 0 < w < 4w,. The black dashed line indicates the position of the fundamental frequency (i.e.,
® = w; = w;). The solid blue line corresponds to the case of no SOC and serves as a reference for the discussion. The red and green dashed
lines represent, respectively, low and high intrinsic SOC achievable with usual enhancement processes, while the pink dashed line represents
the same situation, but for the Rashba coupling. For these plots, the following parameters are used: T = 50 fs, w, = 78 THz, B =2 T, and

E, =107 V/m.

near the fundamental is slightly deformed. Overall, however,
Fig. 5 clearly shows how even a big chosen value of Ag = 15
does not introduce significant changes in the nonlinear spec-
trum. This observation then allows us to conclude that Rashba
SOC does not really contribute significantly to the nonlinear
signal and cannot therefore be used as an active control pa-
rameter to shape and engineer the nonlinear response of bent
graphene.

On the other hand, we clearly see from Fig. 5(b) that the
intrinsic SOC has a much higher impact on the nonlinear
response of bent graphene. In fact, although we can see from
Fig. 5(a) that a significant change in magnitude of the SOC
from A; = 5 meV (dashed red line) to A; = 15 meV (dashed
green line) does not have a great impact on the high-frequency
side of the spectrum, where it introduces only a slight redis-

—_

o
®

o
)

o
~

o
[N

Nonlinear Signal [arb. units]

o

tribution of energy [see, for example, the A;-dependent peak
modulation around the 18th harmonic in Fig. 5(a)], it has quite
a significant impact on the low-frequency part of the nonlinear
signal. A careful investigation of Fig. 5(b), in fact, reveals
that although the usual harmonic-oscillator-like structure of
low-order harmonics [33] is preserved also in the case of
SOC, higher values of A; tend to redistribute energy around
the second harmonic in a more efficient way than lower (or
absent) values of SOC. For A; = 15 meV, in particular, we see
the emergence of a train of almost equally spaced noninteger
harmonics, covering the range [wy, 4 wi].

This observation sparks the interesting question of whether
this trend can be pushed forward and intrinsic SOC can be
used to effectively control the shape of the nonlinear response,
at least in some frequency region. If this were the case,

()

0 1 2 3 4
w/wy

FIG. 6. (a) Spectrum of radiation emitted by artificially enhanced bent graphene for the case of impinging x polarization and (b) a zoom
of the low-frequency part of the spectrum, i.e., 0 < @ < 4w;. The black dashed line indicates the position of the fundamental frequency
(i.e., w = wy = w;). The solid blue line corresponds to the case of no SOC and serves as a reference for the discussion. The dashed red line
corresponds to A; = 15 meV and depicts the same situation as the green dashed line in Fig. 5. The dashed green and magenta lines correspond,
respectively, to A; = 30 meV and A; = 50 meV. For these plots, the following parameters are used: t = 50 fs, w, = 78 THz, B =2 T, and

E, = 10" V/m.
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FIG. 7. Spectrum of emitted radiation in the case of a left-handed
circularly polarized impinging pulse for the case of low intrinsic
SOC values. The black dashed line indicates the position of the
fundamental frequency (i.e., @ = w; = w,). For this plot, the fol-
lowing parameters are used: T = 50 fs, w, = 160 THz, B =2 T, and
E; =107 V/m.

artificially enhancing graphene could be a viable choice to
tune its optical properties, even in “real time.”

To this aim, in Fig. 6 we compare the nonlinear signal
produced by artificially enhanced graphene with progressively
increasing values of intrinsic SOC, i.e., A; = 15 meV (dashed
red line in Fig. 6), A; = 30 meV (dashed green line in Fig. 6),
and A; = 50 meV (dashed magenta line in Fig. 6). As can
be seen, increasing the intrinsic SOC has different effects in
different parts of the nonlinear spectrum. For high harmonics
(w = 15wy), increasing the amount of SOC in the system has
the direct result of progressively broadening the harmonic
peaks until, for A; = 50 meV, we obtain a single, broad peak
with higher intensity than the initial harmonics (blue line in
Fig. 6). For the range 5»; < 15w, on the other hand, no sig-
nificant changes seem to appear, as the basic structure of the
nonlinear spectrum remains essentially the same, up to a small
redistribution of energy between the harmonics. The situation
for frequencies, i.e., w < 5w, however, is quite different, as
can be seen from Fig. 6(b). While for small values of A; the
characteristic equally spaced spectrum is still visible, although

slightly redshifted, for high values of Ay, the situation changes
drastically as the harmonic-oscillator-like peaks, typical of
the nonlinear response in this region [33], disappear and a
single, intense peak appears at approximately the noninteger
frequency @ = Sw/2. Moreover, comparing the blue curve
(mo SOC) with all the others reveals how the presence of
SOC makes the peak at the fundamental frequency o = w;
disappear, meaning that SOC encourages a total redistribution
of energy from the pump pulse to the different harmonics
created in the material. This is an indication of how SOC can
be used to tune the nonlinear response of artificially enhanced
graphene to generate devices for efficient conversion of light
to specific frequencies that do not need to be integer multiples
of some fundamental frequency.

To conclude this section, we would like to point out that
although this situation is highly unlikely to be observed in
graphene, where even with artificial enrichment the SOC val-
ues achievable still remain in the meV regime, our results
could be useful to describe the effect of SOC on the nonlinear
signal of 2D materials in general, whose electronic properties
can be described by a graphene-like Hamiltonian. TMDs, in
particular, are a good example of that since SOC is already
quite large in such materials and it could be enhanced even
further with techniques similar to those utilized for graphene.

B. Circular polarization

We now turn our attention to the spin-field interaction
Hamiltonian and investigate what kind of nonlinear signal
such an interaction reveals. Here, as we did in the previous
section, we concentrate on only intrinsic SOC and discuss the
cases for both small and large values of A;, whose results
are depicted in Figs. 7 and 8, respectively. In both figures,
the laser parameters are the same as those used for the case
of linear polarization, except for the carrier frequency, which
in Fig. 8 changes with increasing SOC to match the different
values of SOC used for the simulations, so that the impinging
electromagnetic pulse will always be resonant with an actual
transition between a level in the valence band and one in the
conduction band and no detuning will be present.

For small values of Aj, as can be seen from Fig. 7, the
situation is similar to the case of linear polarization, and no

Z : (a) (b) I (c)
g ! A, =30 meV A, =40 meV ! A, =50 meV
= 081 =180 THz =198 THz M ®,=218 THz
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FIG. 8. Spectrum of emitted radiation in the case of a left-handed circularly polarized impinging pulse for the case of high SOC values.
The laser frequency w;, has been adjusted to the various levels of intrinsic SOC to ensure that the impinging pulse has no detuning. Notice how
the spectrum broadens with increasing values of A;, reaching, in (c), almost the 30th harmonic. The black dashed line indicates the position of
the fundamental frequency (i.e., = w; = ;). For these plots, the following parameters are used: T = 50 fs, B = 2 T, and E; = 10’ V/m.
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appreciable changes can be observed. However, for values
of A; > 15 meV (see the green line in Fig. 7), we start
observing a significant blueshift of the nonlinear response.
Notice, moreover, that the blueshift is not constant over the
whole spectrum, and it is chirped in such a way that lower
frequencies experience a smaller shift than the higher ones.
This blueshift can be interpreted, with the help of Fig. 3, as
the progressive increase of the gap between the (still equally
spaced) Landau levels in valence and conduction bands, which
become bigger as A; increases.

If we increase A; even further, as shown in Fig. 8, we
witness a progressive broadening of the harmonic spectrum
and the possibility, at very high SOC values [see Fig. 8(c)], of
efficiently generating high-order harmonics. In particular, in
the case shown in Fig. 8(c), we can excite the 28th harmonic
of the fundamental frequency w; = 217 THz, corresponding
to a wavelength of about X3 = 310 nm, well within the UV
region of the electromagnetic spectrum.

VI. CONCLUSIONS

In this work, we theoretically investigated the effect of
spin-orbit coupling on the nonlinear response of a sheet of

graphene under the action of an artificial magnetic field for the
cases of both Rashba and intrinsic SOC. The latter, in partic-
ular, allows for direct spin-field coupling via the Hamiltonian
in Eq. (22), which shows interesting features.

Our results show that although for realistic values of both
intrinsic and Rashba SOC in graphene no significant changes
are induced in the nonlinear signal by SOC, controlling the
amount of intrinsic SOC in 2D materials in the presence of an
artificial magnetic field can result in a broadening of the spec-
trum of harmonics and can even allow efficient conversion of
light from the THz to UV regions of the electromagnetic spec-
trum. This might lead to novel ways of generating spatially
varying frequency-generation devices based on 2D materials,
which could be achieved, for example, by inhomogeneously
depositing SOC-active compounds over the surface of the 2D
material, thus creating a de facto gradient of intrinsic SOC
through the material surface.
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