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Nonperturbative approach to the nonlinear photon echo of a V-type system
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The analysis of nonlinear spectroscopy, widely used to study the dynamics and structures of condensed-phase
matter, typically employs a perturbative approach noticing the weak interaction between the laser and the matter
of interest. However, such a perturbative approach is no longer applicable once the interaction between the laser
and the matter is strong. We adapt the method of quantum dynamical evolution into the calculation of signal and
present the response formalism of the nonlinear spectroscopy in a nonperturbative approach. In this approach,
we demonstrate that, in addition to the third-order term in the perturbative method, the higher-order terms have
essential contributions to the nonlinear signal of the two-pulse and three-pulse photon echo (2PPE and 3PPE).
The detailed calculations are demonstrated with the example of a three-level V-type system, which is widely used
in the studies of quantum optics. We consider the effect of the environment via a pure dephasing mechanism with
both the localized modes of each molecule and the shared modes between molecules.
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I. INTRODUCTION

Nonlinear spectroscopy is an increasingly important tool
for studying the dynamics of various condensed phase sys-
tems on the femtosecond timescale [1–3]. The conventional
approach [1,4–6] to the theory of nonlinear spectroscopy
utilizes a perturbative expansion to the third order of the
interaction between the external electric field and the matter
of interest. The perturbative approach has provided an-
alytical forms via the nonlinear-response functions [1,2].
The time-domain signals measured by heterodyne detec-
tion can be attributed to the different nonlinear response
functions, providing information for the underlying dynamic
processes [7–11]. The perturbative approach has successfully
explained many spectral phenomena and significantly pro-
moted the development of nonlinear spectroscopy, especially
two-dimensional spectroscopy [12,13]. However, the calcula-
tion of optical signal in terms of nonlinear response functions
is no longer applicable once the interaction between the exter-
nal electric field and the matter is stronger than the interaction
between electrons and the nucleus or the external trap fields.
For example, the strong laser field used in the photodisso-
ciation processes [14–17] is so much stronger than the trap
field from the nucleus that the valence electrons are ejected.
And one needs alternative theoretical strategies to treat such
situations with strong interaction [18–33].

The nonlinear spectroscopic signal is typically calculated
via the Maxwell equation with the induced polarization vector
P, which is directly obtained by calculating the expected value
of the polarization operator once the evolution of the wave
function or the density matrix is known. In the traditional
perturbative approach [1,4–6], the wave function and the den-
sity matrix are obtained through the analytical calculation
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with a perturbative treatment of the field-matter interaction.
To go beyond, the evolutions of the system and the environ-
ment need to be calculated with a nonperturbative method
[18]. Here we use a trajectory method to calculate the wave
function. The evolutions of the environmental degrees of free-
dom are mapped as trajectories in the phase space with the
coherent-state representation [34] widely used in the quantum
optics. The dephasing factor induced by the environment is
acquired by summing all trajectories.

In current work, we develop the nonperturbative approach
to calculate the signal of the widely used photon echo spec-
troscopy [9,35–38], which is an effective method to measure
the homogeneous broadening in the condensed phase. The
critical element of photon echo spectroscopy is to sort the
echo signal from others with the phase-matching mechanism
according to the perturbative approach. We first prove the
phase matching retained in our nonperturbative theoretical
calculation. We then analytically show that the photon echo
signal has contributions from terms, which are typically sorted
as the higher-order terms in the standard perturbation method.
With the example of the V-type three-level system, we attain
the overall polarization of the system by calculating the evo-
lution of the wave functions. We obtained the fifth- and the
seventh-order polarization in addition to the third-order polar-
ization, matching that in the perturbative method. We show
that neglecting the higher-order terms will retain the results
in the usual perturbative approach for the weak interaction.
However, these higher-order terms will affect the measured
dynamics in the two-dimensional spectroscopies [12,13] when
the coupling between the system and the electric field is rela-
tively large.

The remainder of this paper is organized as follows. We in-
troduce the basic model Hamiltonian and general notations in
Sec. II. The nonperturbative procedure for calculating nonlin-
ear spectroscopic signals of a two-pulse photon echo (2PPE)
with and without the environment is presented in Sec. III.
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FIG. 1. The energy level diagram (a) and the pulse sequence
for (b) 2PPE and (c) 3PPE experiments. The blue lines denote the
incident pump pulses under the square-pulse approximation, while
the red line denotes the signal.

The nonperturbative process for calculating nonlinear spectro-
scopic signals of a three-pulse photon echo (3PPE) with the
environment is shown in Sec. IV. The comparison between
the signal calculated with perturbative and nonperturbative
methods is illustrated in Sec. V. Conclusions and remarks are
presented in Sec. VI.

II. APPROXIMATIONS AND ASSUMPTIONS

We start by introducing the V-type system with the three
levels denoted as |g〉, |a〉, and |b〉. The Hamiltonian is H0 =
h̄ωg|g〉〈g| + h̄ωa|a〉〈a| + h̄ωb|b〉〈b|, with ωb ≈ ωa > ωg. To
simplify the formula, we set the ground-state energy as zero,
i.e., ωg = 0. The energy level diagram is shown in Fig. 1(a).
The system is coupled to the laser field with the interaction as

HI = −[h̄�ae−iνat+ik·r|a〉〈g| + H.c.]

− [h̄�be−iνbt+ik·r|b〉〈g| + H.c.], (1)

where νa and νb are the frequencies of the laser field with the
wave vector k. Here, we assume the laser field is broad enough
to cover the transition from ground state to two excited states
|a〉 and |b〉, and we consider the resonance case: νa = ωa and
νb = ωb. There are mainly two approximations in Eq. (1). One
is the long-wave approximation and the other is the rotation-
wave approximation [1]. The atomic size is of order 0.1 nm
(hydrogen atom diameter), which is much smaller than the
visible light wavelength (∼102 nm) in our system. Therefore,
the interaction Hamiltonian is written as −μ̂ · E (t ), where μ̂

is the transition dipole operator and E (t ) is the amplitude of
the electric field. The condition of the rotating-wave approxi-
mation is �/2ω � 1, where � is the coupling strength and ω

is the energy gap. In our system, such a condition is satisfied
with details discussed in the conclusion, and we ignore the
Hamiltonian with high-frequency terms such as those with
phase factors e±i(νa+ωa )t and e±i(νb+ωb)t in Eq. (1).

Before derivation, we list approximations to be used in this
work as follows.

(i) Rotating-wave approximation. It is already reflected in
the Hamiltonian. Using the rotating-wave approximation, we
ignore the high-frequency terms such as those with phase
factors e±i(νa+ωa )t and e±i(νb+ωb)t .

(ii) Square -pulse approximation: We approximate the
Gaussian laser pulse as a square pulse to simplify the deriva-
tion of the laser excitation process. The pulse duration is
assumed to be δτi (i = 1, 2, and 3).

(iii) Initially the system is on the ground state. We also
assume that the system is initially on its ground state |ψ (0)〉 =
|g〉. The light-inducing transition is around visible wave-
length in the biological system with the typical energy gap
of 1.55 eV (corresponding to 800-nm light) between the
molecular ground and excited states. At room temperature,
kBT ∼ 0.026 eV is so much smaller than the energy gap that
the molecules have no essential population on the excited
state.

(iv) Initially the environment is on the thermal state. In
the later discussion with system-environment interaction, we
assume environmental degrees of freedom are initially on
the thermal equilibrium state, ρenv(0) = exp[−βHenv]/Z , with
Z = Tr[exp(−βHenv)]. Here, the detailed form of Hamilto-
nian Henv for the environment is shown in the later discussion.

The pulse sequences for the 2PPE and 3PPE experiments
are illustrated in Figs. 1(b) and 1(c). For simplification, we
use the notation θi = �iδτi, where δτi is the duration of the ith
pulse (i = 1, 2, and 3). The evolution operators for the system
under the laser pulses are denoted as U L

i (δτi ), while the free
evolution operators are denoted as U 0(x), with x = τ , T , and
t . The exact expressions for the evolution operator under the
laser pulse are given in Appendix A.

III. TWO-PULSE PHOTON ECHO OF V-TYPE ATOMS

The photon echo experiments, including 2PPE and 3PPE,
have the distinct advantage of separating homogeneous broad-
ening from inhomogeneous broadening. To show how the
nonperturbative approach works, we first investigate the
2PPE, and a particular case of the 3PPE, for a V-type system
without any vibrational or environmental degrees of freedom.

Assuming that the laser pulses propagate with the wave
vectors k1 and k2, respectively, the signal is directly observed
along the −k1 + 2k2 direction in the 2PPE experiment ac-
cording to the nonperturbative approach. This phase-matching
direction is shown to be retained in the nonperturbative
method in the following discussion.

The state of the system after the two pulses with a delay τ

and the signal detection time T can be written as

|ψ2(T, τ )〉 = U0(T )U L
2 (δτ2)U0(τ )U L

1 (δτ1)|g〉. (2)

The exact expression is shown in Eq. (B1) in Appendix B.
The echo emission is obtained as the expected value of the
transition dipole operator,

P(T, τ ) ∝ 〈ψ2(T, τ )| �μ|ψ2(T, τ )〉. (3)

The transition dipole has the following form with the assump-
tion of μag = μbg = μ,

�μ = μ|a〉〈g| + μ|b〉〈g| + H.c. (4)
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FIG. 2. Double-sided Feynman diagrams of 2PPE. Panels (a),
(b), (c), and (d) correspond to the first, second, third, and last term in
Eq. (5). The solid and dashed arrows in the four diagrams represent
the incident probe pulses and the signals, respectively.

We further simplify the notation by defining si = sin θi, ci =
cos θi, ηa = �a/�, and ηb = �b/�. In any evolution operator,
the wave vector k is always presented in the form of a phase
factor e±ik·r as shown in Eq. (A3) of Appendix A. Once the
interaction between the laser pulse and the matter induces
one transition, a phase factor e±ik·r, similar to that of the per-
turbative approach, is added. Therefore, the phase-matching
mechanism remains in the nonperturbative approach.

With the phase-matching condition, we select the echo
terms with the phase factor exp[i(2k2 − k1) · r],

− iμs1c1s2
2ei(2k2−k1 )·r[η3

ae−iωa (T −τ ) + η3
be−iωb(T −τ )

+ η2
aηbe−iωbT +iωaτ + ηaη

2
be−iωaT +iωbτ

]
. (5)

The terms on the first line correspond to the photon echo, and
the terms on the second line do not have the rephasing ability
if ωa and ωb are not linearly dependent. We remark here that
the atoms or molecules are assumed to be spatially fixed with
r independent of time. Indeed, the thermal motion of atoms
and molecules could induce a blur on the directional emission,
yet it is not essential to break the phase-matching mechanism
[39].

This result is the same as that obtained by the perturbative
method, except for the coefficient s1c1s2

2 indicating the order
of terms. Therefore, we do not need to worry about the influ-
ence of higher-order terms in the 2PPE experiment, and the
perturbative method is enough to analyze the properties of the
system. The corresponding double-sided Feynman diagrams
are illustrated in Fig. 2.

We further consider the case with dephasing coupling to
the environmental degrees of freedom as

H = Hg|g〉〈g| + Ha|a〉〈a| + Hb|b〉〈b|, (6)

where

Hg =
∑

h̄ωξ a†
ξ aξ +

∑
h̄νς b†

ςbς +
∑

h̄μζ c†
ζ cζ , (7)

Ha =
∑

h̄ωξ [a†
ξ aξ + wξ (a†

ξ + aξ )] +
∑

h̄νς b†
ςbς

+
∑

h̄μζ [c†
ζ cζ + uaζ (c†

ζ + cζ )], (8)

Hb =
∑

h̄ωξ a†
ξ aξ +

∑
h̄νς [b†

ςbς + vς (b†
ς + bς )]

+
∑

h̄μζ [c†
ζ cζ + ubζ (c†

ζ + cζ )]. (9)

Here, we assume the energy levels |a〉 and |b〉 have their own
local environmental modes aξ and bς . And the two levels also
share common modes cζ , which could be the intermolecular
vibrations. Typically, we only consider the local environ-
mental modes in the discussion of energy transfer between
molecules in the condensed phase. However, such a shared
mode may exist in the strongly coupled system [40–42].
The environmental Hamiltonian Henv is explicitly written as
Henv = Hg = ∑

h̄ωξ a†
ξ aξ + ∑

h̄νςb†
ς bς + ∑

h̄μζ c†
ζ cζ .

As stated in Sec. II, we assume these environmental modes
are initially on the thermal equilibrium states, ρenv(0) =
exp[−βHenv]/Z . Instead of Fock space, we use the coherent-
state representation to simplify the derivations [34]. The
density matrix of the environment is written as

ρenv =
⊗
ξςζ

∫
d2αξ d2βςd2χζ p(αξ , βς , χζ )

× |αξβςχζ 〉〈αξβςχζ |, (10)

where |αξ 〉, |βς 〉, and |χζ 〉 are the coherent states of the
harmonic oscillator modes aξ , bς , and cζ , respectively. The
distribution is

p(αξ , βς , χζ ) =
∏
ξςζ

exp
[
− |αξ |2

n(ωξ ) − |βς |2
n(νς ) − |χζ |2

n(μζ )

]
π3n(ωξ )n(νς )n(μζ )

, (11)

where n(ω) is mean occupation number for the state with fre-
quency ω, i.e, n(ωξ ) = Tr[a†

ξ aξ ρenv], n(νς ) = Tr[b†
ςbςρenv],

and n(μζ ) = Tr[c†
ζ cζ ρenv]. We next consider the evolution of

one arbitrary state |g〉 ⊗ |αβχ〉, with corresponding subscripts
ignored to simplify the notation. The state of the system plus
the environment after two pulses is shown in Eq. (B2) in
Appendix B. The changes caused by the environment are
reflected in the processes of free evolution.

Keeping the terms with factors exp[i(2k2 − k1) · r], we
have the following contributions to the 2PPE,

−iμs1c1s2
2ei(2k2−k1 )·r[η3

ae−iωa (T −τ )〈αβχ |eiHaτ

× eiHgT e−iHaT e−iHgτ |αβχ〉
+η3

be−iωb(T −τ )〈αβχ |eiHbτ eiHgT e−iHbT e−iHgτ |gαβχ〉
+η2

aηbe−iωbT +iωaτ 〈αβχ |eiHaτ eiHgT e−iHbT e−iHgτ |αβχ〉
+ηaη

2
be−iωaT +iωbτ 〈αβχ |eiHbτ eiHgT e−iHaT e−iHgτ |αβχ〉].

(12)

The first two terms characterize the photon echo sig-
nal with the phase factor e−iωa(b) (T −τ ). In the following
derivation, we present the derivations of each term for
the environmental response. Such a response can be un-
derstood as the overlap between the coherent states along
two trajectories governed by different evolution operators
[43]. One example is illustrated in Fig. 3(a), we con-
sider the overlap between the coherent state |α〉 of the
first term in Eq. (12), i.e., 〈α|eiHaτ eiHgT e−iHaT e−iHgτ |α〉 →
〈α|A(−τ )B(−T )A(T )B(τ )|α〉 with the definition of the
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(a) (b)

FIG. 3. The evolution of the coherent state along two trajecto-
ries. (a) An example of coherent state |α〉 evolution in 2PPE with
evolution time τ indicated by the green line and T indicated by the
blue line. (b) An example of coherent state |α〉 evolution in 3PPE
with evolution time τ indicated by the green line, T indicated by
the blue line, and t indicated by the red line. The solid and dashed
lines represent the same evolution time, but different evolution
operators.

evolution operators A(τ ) ≡ e−i(a†a+w(a†+a))τ and B(T ) ≡
e−ia†aT . The subscription and summation symbols are ig-
nored here. There are two evolutions of the coherent state,
A(T )B(τ )|α〉 and B(T )A(τ )|α〉. The solid (dashed) green line
represents the evolution of B(τ ) [A(τ )], and the solid (dashed)
blue line represents the evolution of A(T ) [B(T )].

Here, the dephasing effect is captured by the trajectory
factor,

Di j (τ, T ; αβχ ) = 〈αβχ |eiHiτ eiHgT e−iHj T e−iHgτ |αβχ〉, (13)

where i, j = a, b. The trajectory factor Di j (τ, T ; αβχ ) can
be evaluated by the overlap between the wave functions
of the two evolutions. Such dephasing is caused purely by
the evolution of the environment. To measure the environ-
mental dephasing, one must eliminate another dephasing
caused by the ensemble average ωi of the phase factors,
i.e., exp[−iωi(T − τ )] (i = a and b) in the first two terms
in Eq. (12) and exp[−iωiT + iω jτ ] in the last two terms in
Eq. (12). In the photon echo technique, by setting τ = T , the
disappearance of the phase factor exp[−iωi(T − τ )] in the
first two terms of Eq. (12) allows the direct observation of
dephasing caused by its coupling to environment modes with-
out any additional dephasing induced by averaging over the
distribution of transition frequencies (inhomogeneous broad-
ening). The last two terms show the dephasing between two
excited states, |a〉 and |b〉, and the ground state |g〉. The
inhomogeneity-induced dephasing through the phase term
exp[−iωiT + iω jτ ] (i, j = a, b; i �= j) cannot be eliminated
through the photon echo if ωi and ω j are not linearly depen-
dent on each other.

The total dephasing factor D(τ, T ) defined as

D(τ, T ) =
∏
ξςζ

∫
d2αξ d2βςd2χζ p(αξ , βς , χζ )Di j (τ, T ; αβχ )

(14)
is easily calculated through Eqs. (11) and (13). We take
the first term Daa(τ, T ; αβχ ) as an example and derive
the total dephasing factor Daa(τ, T ). The exact form of
Daa(τ, T ; αβχ ) is presented in Eq. (C1) in Appendix C. A
simple multivariate Gaussian integration gives the following

result,

Daa(τ, T ) = exp{−2g∗
a(τ ) − g∗

a(T ) − ga(T ) + g∗
a(τ + T )

− 2C ∗
aa(τ ) − C ∗

aa(T ) − Caa(T ) + C ∗
aa(τ + T )},

(15)

where

ga(t, Te) =
∫

dωJa(ω)[(1 − cos ωt ) coth(ω/2kTe)

+i(−ωt + sin ωt )], (16)

Caa(t, Te) =
∫

dμJaa(μ)[(1 − cos μt ) coth(ν/2kTe)

+i(−νt + sin νt )]. (17)

Here ga(t, Te) and Caa(t, Te) are the line-shape functions at
temperature Te. The spectral density is defined as Ja(ω) =∑

w2
ξ δ(ω − ωξ ) and Jaa(μ) = ∑

u2
aς δ(μ − μς ).

At the echo time T = τ , the intensity will have the follow-
ing form,

S(τ ) = S(0)�′
aa(τ ), (18)

where

�′
aa(τ ) ≡ |Daa(τ, τ )|2

= exp {−2[4Pa(τ ) + 4Pc(τ ) − Pa(2τ ) − Pc(2τ )]},
(19)

with Pa(t ) = Re[ga(t )] and Pc(t ) = Re[Caa(t )]. Until here, we
have derived the well-known photon echo formalism for the
two-level system (|g〉, |a〉), and Eq. (19) clearly shows the
photon echo signal intensity is determined only by system-
environment coupling.

For the V-type system, we have another term,

Dab(τ, T ) = exp[−g∗
a(τ ) − gb(T ) − C ∗

aa(τ ) − Cbb(T )]

× exp[−C ∗
ab(τ ) − C ∗

ab(T ) + C ∗
ab(τ + T )],

(20)

where

Cab(t, Te) =
∫

dμJab(μ)[(1 − cos μt ) coth(ν/2kTe)

+i(−νt + sin νt )], (21)

and the spectral density is defined as Jab(μ) =∑
uaςubς δ(μ − μς ). Besides the dephasing of |g〉〈a|

during the waiting time τ and |b〉〈g| during the
waiting time T with the term exp[−g∗

a(τ ) − gb(T )],
we have additional dephasing due to the shared modes
for the two excited states represented by the term
exp[−C ∗

aa(τ ) − C ∗
ab(τ ) − C ∗

ab(T ) − Cbb(T ) + C ∗
ab(τ + T )].

However, the observed coherence for the delay time T and
τ is always between the ground state (|g〉) and the excited
states (|a〉 and |b〉) illustrated by the Feynman diagrams in
Fig. 2, with no access to the coherence between two excited
states. To get more dynamics information about the three-level
system, we study the 3PPE and show the accessibility of
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observation of coherence between two excited states in the
next section.

IV. THREE-PULSE PHOTON ECHO OF V-TYPE ATOMS

Section II demonstrates that the nonperturbative method is
equivalent to the perturbative method in 2PPE spectroscopy.
To show the difference between the two methods, we then
study the 3PPE, a typical way to measure the homogeneous
broadening.

Assuming that the three pulses propagate with the wave
vectors k1, k2, and k3, respectively, the signal is directly
observed along the −k1 + k2 + k3 direction in the 3PPE
experiment. And the phase-matching direction is the same
as that of the perturbative method. Here, the derivation for
the system without coupling to the environment is skipped.
We directly consider the V-type system with coupling to the

environment. The state of the system after three pulses is

|ψ3(τ, T, t )〉 = U0(t )U L
3 (δτ3)U0(T )U L

2 (δτ2)

× U0(τ )U L
1 (δτ1)|gαβχ〉, (22)

whose exact expression is shown in Eq. (B3) in Appendix B.
Following a similar derivation procedure in the 2PPE, we

keep the terms with the phase factor exp[i(−k1 + k2 + k3) ·
r]. It has 20 terms in total, including 8 third-order terms,
8 fifth-order terms, and 4 seventh-order terms. Here, by the
number of the order, we follow the language of the perturba-
tive methods with the assumption of weak interaction between
the system and the three laser fields. Previously, the response
function formalism was established based on the perturbative
theory, and the higher-order (larger than third-order) terms are
ignored. Compared to the traditional perturbative approach,
these 20 terms corresponding to the photon echo are grouped
according to their order and listed as follows.

Third-order terms. The factor exp[i(−k1 + k2 + k3) · r] are ignored in the following formulas. Here, �ab = ωb − ωa is the
energy spacing between the state |a〉 and the state |b〉.

1 −iμη3
as1c1s2c2s3c3eiωa (τ−t )〈αβχ |eiHaτ eiHg(T +t )e−iHat e−iHg(T +τ )|αβχ〉,

2 −iμη3
bs1c1s2c2s3c3eiωb(τ−t )〈αβχ |eiHbτ eiHg(T +t )e−iHbt e−iHg(T +τ )|αβχ〉,

3 −iμηaη
2
bs1c1s2c2s3c3eiωbτ−iωat 〈αβχ |eiHbτ eiHg(T +t )e−iHat e−iHg(T +τ )|αβχ〉,

4 −iμη2
aηbs1c1s2c2s3c3eiωaτ−iωbt 〈αβχ |eiHaτ eiHg(T +t )e−iHbt e−iHg(T +τ )|αβχ〉,

5 −iμη3
as1c1s2s3

(
η2

b + η2
ac2

)(
η2

b + η2
ac3

)
eiωa (τ−t )〈αβχ |eiHa (τ+T )eiHgt e−iHa (t+T )e−iHgτ |αβχ〉,

6 −iμη3
bs1c1s2s3

(
η2

a + η2
bc2

)(
η2

a + η2
bc3

)
eiωb(τ−t )〈αβχ |eiHb(τ+T )eiHgt e−iHb(t+T )e−iHgτ |αβχ〉,

7 −iμηaη
2
bs1c1s2s3

(
η2

a + η2
bc2

)(
η2

b + η2
ac3

)
eiωbτ−iωat+i�abT 〈αβχ |eiHb(τ+T )eiHgt e−iHa (t+T )e−iHgτ |αβχ〉,

8 −iμη2
aηbs1c1s2s3

(
η2

b + η2
ac2

)(
η2

a + η2
bc3

)
eiωaτ−iωbt−i�abT 〈αβχ |eiHa (τ+T )eiHgt e−iHb(t+T )e−iHgτ |αβχ〉. (23)

Fifth-order terms.

9 −iμη3
aη

2
bs1c1s2(c2 − 1)s3

(
η2

b + η2
ac3

)
eiωbτ−iωat 〈αβχ |eiHbτ eiHaT eiHgt e−iHa (t+T )e−iHgτ |αβχ〉,

10 −iμη2
aη

3
bs1c1s2(c2 − 1)s3

(
η2

a + η2
bc3

)
eiωaτ−iωbt 〈αβχ |eiHaτ eiHbT eiHgt e−iHb(t+T )e−iHgτ |αβχ〉,

11 −iμη4
aηbs1c1s2

(
η2

b + η2
ac2

)
s3(c3 − 1)eiωaτ−iωbt 〈αβχ |eiHa (τ+T )eiHgt e−iHbt e−iHaT e−iHgτ |αβχ〉,

12 −iμηaη
4
bs1c1s2

(
η2

a + η2
bc2

)
s3(c3 − 1)eiωbτ−iωat 〈αβχ |eiHb(τ+T )eiHgt e−iHat e−iHbT e−iHgτ |αβχ〉,

13 −iμη3
aη

2
bs1c1s2(c2 − 1)s3

(
η2

b + η2
ac3

)
eiωaτ−iωat+i�abT 〈αβχ |eiHaτ eiHbT eiHgt e−iHa (t+T )e−iHgτ |αβχ〉,

14 −iμη2
aη

3
bs1c1s2(c2 − 1)s3

(
η2

a + η2
bc3

)
eiωbτ−iωbt−i�abT 〈αβχ |eiHbτ eiHaT eiHgt e−iHb(t+T )e−iHgτ |αβχ〉,

15 −iμη2
aη

3
bs1c1s2

(
η2

a + η2
bc2

)
s3(c3 − 1)eiωbτ−iωbt+i�abT 〈αβχ |eiHb(τ+T )eiHgt e−iHbt e−iHaT e−iHgτ |αβχ〉,

16 −iμη3
aη

2
bs1c1s2

(
η2

b + η2
ac2

)
s3(c3 − 1)eiωaτ−iωat−i�abT 〈αβχ |eiHa (τ+T )eiHgt e−iHat e−iHbT e−iHgτ |αβχ〉. (24)

Seventh-order terms.

17 −iμη3
aη

4
bs1c1s2(c2 − 1)s3(c3 − 1)eiωa (τ−t )〈αβχ |eiHaτ eiHbT eiHgt e−iHat e−iHbT e−iHgτ |αβχ〉,

18 −iμη4
aη

3
bs1c1s2(c2 − 1)s3(c3 − 1)eiωb(τ−t )〈αβχ |eiHbτ eiHaT eiHgt e−iHbt e−iHaT e−iHgτ |αβχ〉,

19 −iμη4
aη

3
bs1c1s2(c2 − 1)s3(c3 − 1)eiωaτ−iωbt+i�abT 〈αβχ |eiHaτ eiHbT eiHgt e−iHbt e−iHaT e−iHgτ |αβχ〉,

20 −iμη3
aη

4
bs1c1s2(c2 − 1)s3(c3 − 1)eiωbτ−iωat−i�abT 〈αβχ |eiHbτ eiHaT eiHgt e−iHat e−iHbT e−iHgτ |αβχ〉. (25)

In the perturbative approach, the terms 9–20 are not consid-
ered due to their negligible contributions to total photon echo

signal intensity. In all responses of the third-order, terms 1–4
represent the ground-state dynamics |g〉〈g| during the second
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a g
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a b
a g

g a
g g

bb

g g

g a

a g

g g

(17)

g g
g b

b g
g g

FIG. 4. Double-sided Feynman diagrams for 20 terms in 3PPE. Terms (1)–(8) are third-order terms in Eq. (23), terms (9)–(16) are fifth-
order terms in Eq. (24), and terms (17)–(20) are seventh-order terms in Eq. (25). The sequence numbers (1)–(20) are consistent with those in
the 20 terms. The solid and dashed arrows in the three diagrams are the same as those in Fig. 2.

delay time T , while term 5 (6) corresponds to the dynamics
of the excited state |a〉〈a| (|b〉〈b|). The corresponding double-
sided Feynman diagrams are illustrated in Fig. 4.

We next utilize two-dimensional spectroscopy, a powerful
experimental technique that probes the nonlinear optical re-
sponse of materials, to study the effect of higher-order terms
on the signal. In essence, the traditional one-dimensional
spectroscopy, which measures the linear response, reveals the
excitations in a system, whereas the two-dimensional spec-
troscopy reveals the dynamics caused by these excitations
[44]. Through the two-dimensional spectroscopy, we get the
dynamics of the system and explain the spectral phenomena.

To get the two-dimensional spectrum Si(ωτ , T, ωt ), we
apply Fourier transform for the first and third delay times
t and τ to get the two-dimensional spectrum, namely,

Si(ωτ , T, ωt ) = F[Ri(τ, T, t )] (i = 1, 2, . . . , 20). For exam-
ple, the Fourier transform of term 1 results in a peak around
(ωa,−ωa), noticing the response term of the environment
will not present a significant change of oscillation frequencies
during the first and third waiting times τ and t . In the later
discussion, we flip the sign of the second axis to be posi-
tive as S′

i (ωτ , T, ωt ) ≡ Si(ωτ , T,−ωt ) and give the signal as
|S′

i (ωτ , T, ωt )|2.
We group the 20 response terms based on their position

on the two-dimensional spectrum and show them in Table I.
During the waiting time T , the coherence dynamics for signal
calculated by the traditional perturbative method at the off-
diagonal peak (ωa, ωb) show a beating with the frequency as
energy difference �ab between two excited states, which is
contributed by the term 8. However, due to the contribution of
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TABLE I. Classification of 20 terms. These 20 terms are divided
into four categories according to their spectral positions on the two-
dimensional Fourier spectrum. We also list the corresponding order
and T -time dynamics of each term.

Position Terms Order T dynamics

4 Third order Ground state |g〉〈g|
8 Third order Coherence |b〉〈a|

(ωa, ωb) 10 Fifth order Excited state |b〉〈b|
11 Fifth order Excited state |a〉〈a|
19 Seventh order Coherence |a〉〈b|
3 Third order Ground state |g〉〈g|
7 Third order Coherence |a〉〈b|

(ωb, ωa) 9 Fifth order Excited state |a〉〈a|
12 Fifth order Excited state |b〉〈b|
20 Seventh order Coherence |b〉〈a|
1 Third order Ground state |g〉〈g|
5 Third order Excited state |a〉〈a|

(ωa, ωa) 13 Fifth order Coherence |a〉〈b|
16 Fifth order Coherence |b〉〈a|
17 Seventh order Excited state |b〉〈b|
2 Third order Ground state |g〉〈g|
6 Third order Excited state |b〉〈b|

(ωb, ωb) 14 Fifth order Coherence |b〉〈a|
15 Fifth order Coherence |a〉〈b|
18 Seventh order Excited state |a〉〈a|

an additional higher-order term 19, the coherence dynamics in
our nonperturbative method at the off-diagonal peak (ωa, ωb)
exhibit different oscillations at frequencies �ab and 2�ab. We
have contributions from higher-order terms to the dynamics of
each peak.

In the traditional perturbative method, the design of the
3PPE allows the direct probe of the dephasing between the
two electronic energy levels |a〉 and |b〉 via the off-diagonal
terms. The oscillation pattern enables the separation of co-
herence dynamics from population dynamics and we can get
more information about the molecules, which is why 3PPE is
commonly used with respect to 2PPE.

The decoherence factor for 3PPE is different from that
in 2PPE, especially for the processes with the coherence
dynamics along delay time T . A schematic diagram of the
evolution of the coherent state |α〉 in term 8 is illustrated
in Fig. 3(b). There are two evolutions of the coherent state,
e−iHb(t+T )e−iHgτ |α〉 and e−iHgt e−iHa (τ+T )|α〉. The red lines rep-
resents the evolution of t . We only consider the environmental
factor in the coherence pathway of term 8. The trajectory de-
coherence factor for term 8 is D8(τ, T, t ; α, β, χ ), presented
in Eq. (C2) in Appendix C. The integration over all the tra-
jectories with the weight function p(αξ , βς , χζ ) results in the
decoherence factor

D8(τ, T, t ) = exp [−g∗
a(T + τ ) − gb(t + T ) − C ∗

aa(T + τ )

−Cbb(t + T ) + C ∗
ab(T + t + τ )

−C ∗
ab(τ ) + Cab(T ) − C ∗

ab(t )]. (26)

Decoherence factors for all terms in Sec. IV are presented in
Appendix D.

V. COMPARISONS

In the two sections above, we have derived both the 2PPE
and the 3PPE formalism with the nonperturbative method. To
compared with the traditional perturbative approach, we focus
on the 3PPE formalism and discuss the effect brought about
by the higher-order terms.

For simplicity, we use the well-known Kubo stochastic
model [45], where the line-shape function is given by [46]

g(t ) = (�τ0)2

[
e−t/τ0 + t

τ0
− 1

]
. (27)

Here τ0 is the environmental correlation time, and � is the
fluctuation amplitude of the excited states induced by the
coupling to the environment. To clarify the advantage of our
nonperturbative approach, we first consider the case where
levels |a〉 and |b〉 do not have shared environmental modes cζ ,
namely, Caa(t ) = 0, Cbb(t ) = 0, and Cab(t ) = 0. And we also
assume the equal coupling strength wξ = vς , which implies
ga(t ) = gb(t ) = g(t ). The correlation time and the fluctua-
tion amplitude are chosen as τ0 = 1 ps and � = 15 cm−1,
respectively. The pulse durations are 35 fs. The energy-level
gaps of the two excited states are ωa = 1.25 × 104 cm−1 and
ωb = 1.31 × 104 cm−1, respectively.

Figure 5 shows the 3PPE signal of the V-type system with
relatively small coupling strengths �a = 53 cm−1 and �b =
53 cm−1. The first row [Figs. 5(a)–5(d)] shows the signal
calculated from the conventional perturbative approach and
the second row [Figs. 5(e)–5(h)] shows the signal obtained
with our nonperturbative approach. Through the vertical com-
parison of Figs. 5(a) and 5(e), Figs. 5(b) and 5(f), Figs. 5(c)
and 5(g), and Figs. 5(d) and 5(h), we find that the spectral
features are roughly the same for both of the methods. We also
compare the dynamics along the waiting time T in Fig. 5(i).
The blue and red lines are the evolution of the diagonal peak
(ωa, ωa) and the off-diagonal peak (ωa, ωb) for the third-order
terms; meanwhile, the green and cyan lines are the evolu-
tion of the diagonal peak (ωa, ωa) and the off-diagonal peak
(ωa, ωb) for the total-order terms. The slight oscillation of the
solid blue line is caused by the discrete Fourier transform. It is
clear that the dynamics along the waiting time T are basically
the same for both the diagonal and the off-diagonal peaks.
The oscillation of the green line comes from the fifth-order
coherence terms 13 and 16, yet it is relatively small. The
red and cyan lines are almost identical, indicating the same
information containing coherence terms that cause vibrations,
and the coherence brought about by higher-order terms can be
ignored.

Now, we turn to the case with strong couplings. In
Eqs. (23), (24), and (25), the coupling strengths between
the laser and the matter only affect the formula coeffi-
cients si and ci, which vary periodically with the coupling
strength. Therefore, we only consider relatively strong cou-
pling strengths �δτ ∼ π/4. In Fig. 6, the coupling strengths
are �a = 106 cm−1 and �b = 106 cm−1. We find that the
spectral features are roughly the same in Figs. 6(a)–6(h)
for both methods. However, the distinctly different evolu-
tion over waiting time T is presented in Fig. 6(i) between
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FIG. 5. Two-dimensional (2D) spectra and the dynamics along the waiting time T for the weak interaction. Panels (a)–(d) show the
third-order terms and panels (e) and (f) show the total-order terms for T = 0, 5, 10, and 20 fs, respectively. (i) The dynamics along the waiting
time T for the diagonal (ωa, ωa) and off-diagonal (ωa, ωb) peaks for third-order terms and total-order terms. The solid blue line and the dashed
green line describe the information of the diagonal peak, and the solid red line and the dashed cyan line describe the information of the
off-diagonal peak. These spectra for any fixed T are obtained via 2D fast Fourier transform of the time domain signal scanned from 0 to 5 ps
with a 0.5-fs time step for both τ and t . In the figure, we plot the absolute values of the transform result. And the coupling strengths between
the system and the electric field are �a = 53 cm−1 and �b = 53 cm−1.

perturbative and nonperturbative methods. The green line
has a larger additional oscillation than the blue line, and
the cyan line also has different oscillation compared to the
red line. To learn more about these oscillations, we per-
form discrete Fourier transforms of the signal in Fig. 6(i)
scanned from 0 to 500 fs with a 0.5-fs time step for time
T ; the result is shown in Fig. 6(j). To compare the effects
of higher-order terms on the signals of the diagonal and
the off-diagonal peaks, respectively, the blue solid and the
green dashed lines share the left y axis, and the red solid
and the cyan dashed lines share the right y axis. There are
two frequencies: ω1 ∼ �ab and ω2 ∼ 2�ab. The two oscil-
lation frequencies of the green line are the result of the
contribution of terms 13 and 16 to the signal. The oscil-
lation frequency ω1 in the red line is the result of the
contribution of term 8 to the signal. Due to the contribu-
tion of term 19 in the higher-order terms to the signal,
the cyan line has an oscillation ω2 compared to the red
line. Clearly, the high-order terms will modify the dynamics

presented in the signal and cannot be ignored in strong
interaction.

To clarify the influence of the shared modes, we next
consider the case where levels |a〉 and |b〉 have shared envi-
ronmental modes cζ with the same coupling strength uaζ =
ubζ = uζ , namely, Caa(t ) = Cbb(t ) = Cab(t ). Here, we still
use the Kubo model with the line-shape function Eq. (27).
And we assume the equal coupling strength wξ = vς = uζ ,
which implies the parameters in the line-shape function are
identical for the three environmental modes.

We consider the same coupling strengths in Fig. 6, and
the results are presented in Fig. 7. The spectral features are
roughly the same according to the 2D Fourier transform spec-
tra, panels (a)–(h), in Figs. 7 and 6. Actually, the dynamics
along the waiting time T in Fig. 7(i) are same as that in
Fig. 6(i), and the oscillation frequencies of the signal reflected
in Fig. 7(j) are also similar. This indicates that the shared
modes only affect the amplitude of the signal without causing
additional decoherence.
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FIG. 6. Two-dimensional spectra and the dynamics along the waiting time T for the strong interaction. Panels (a)–(d) show the third-order
terms and panels (e) and (f) show the total-order terms for T = 0, 5, 10, and 20 fs, respectively. The coupling strengths between the system and
the electric field are �a = 106 cm−1 and �b = 106 cm−1. (i) The dynamics along the waiting time T for the diagonal (ωa, ωa) and off-diagonal
(ωa, ωb) peaks for third-order terms and total-order terms. (j) The fast Fourier Transform shows the frequency of oscillation of each line in
panel (i).

VI. CONCLUSIONS AND REMARKS

In this paper, we have theoretically derived the nonlin-
ear responses of 2PPE and 3PPE using a nonperturbative
approach, starting from the Hamiltonian with and without
coupling to the environment, and we have obtained the an-
alytical expressions of the response functions based on a
three-level V-type system.

In 2PPE, our methods are same as the traditional meth-
ods, with only a slight difference in amplitude. In 3PPE,
the expressions have additional fifth- and seventh-order terms
compared to those in the perturbation method. In order to
explore the effect of these higher-order terms, we then utilize
the Kubo model and find that, in the case of strong coupling,
the nonperturbative approach shows additional features in the
signal. During the dynamics at time T , the oscillatory be-
haviors of the diagonal and off-diagonal peaks have changed
greatly, and these changes come from the contributions of

higher-order terms. However, in the case of weak coupling,
the changes of the oscillatory behaviors are not obvious. Our
nonperturbative approach is more suitable than the perturba-
tive method for strong coupling.

Finally, we further examine the impact of the shared mode.
We found that the shared mode only affects the amplitude
of the signal without causing additional decoherence in the
dynamics along time T .

In our discussion, we utilize the simplest model (a three-
level V-type system) to present the effective nonperturbative
method to describe the evolution of system dynamics in the
strong field. For real systems with more energy levels, the cur-
rent method of computing the evolution of the wave function
shall be applicable by including these levels in the calculation
of the evolution operator U L

i (δτi ) of the field-matter interac-
tion Hamiltonian HI .

Next we discuss the limits and applications of the non-
perturbative method. The coefficients of the third-order term
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FIG. 7. Two-dimensional spectra and the dynamics along the waiting time T for the strong interaction containing shared modes c j . The
parameters are the same as those in Fig. 6.

and the fifth-order term vary periodically with �a(b)δτ ,
where δτ = 35 fs. When Mod[�a(b)δτ/(2π )] in the range
0.5–2.6, the nonperturbative method is more useful than
the perturbative method. It should be noted that, when the

condition �a/(2ωa) � 1 does not hold, the influence of the
rotating-wave approximation needs to be considered. In such
a situation, the field-matter interaction Hamiltonian HI in
Eq. (1) needs to be modified.

APPENDIX A: EVOLUTION OF THREE-LEVEL SYSTEM UNDER LASER PULSE

The three levels are denoted as g, a, and b. The Hamiltonian of the three-level V-type system is H0 = h̄ωg|g〉〈g| + h̄ωa|a〉〈a| +
h̄ωb|b〉〈b|, with ωb ≈ ωa > ωg. To simplify the formula, we set ωg = 0. Interacting with the laser pulse, the system is coupled to
the laser field,

HI = −[h̄�ae−iνat+ik·r|a〉〈g| + H.c.]

− [h̄�be−iνbt+ik·r|b〉〈g| + H.c.], (A1)

where ν is the frequency of the laser field with the wave vector k. And in the interaction picture, the Hamiltonian would be time
independent,

H int
I = −[h̄�aeik·r|a〉〈g| + H.c.]

− [h̄�beik·r|b〉〈g| + H.c.]. (A2)
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The general solution of the current system under the interaction with the laser pulse can be presented by the state as

|�(t )〉 = Cg(t )|g〉 + Ca(t )|a〉 + Cb(t )|b〉,
where

Cg(t ) = Cg(0) cos �t + i

(
�ae−ik·r

�
Ca(0) + �be−ik·r

�
Cb(0)

)
sin �t,

Ca(t ) = i
�aeik·r

�
sin �tCg(0) + �2

b + �2
a cos �t

�2
Ca(0) + [cos �t − 1]�a�b

�2
Cb(0),

Cb(t ) = i
�beik·r

�
sin �tCg(0) + [cos �t − 1]�a�b

�2
Ca(0) + �2

a + �2
b cos �t

�2
Cb(0). (A3)

For the special cases that are initially on the ground state Cg(0) = 1 to be used in the derivation, we have

Cg(t ) = cos �t, (A4)

Ca(t ) = i
�aeik·r

�
sin �t, (A5)

Cb(t ) = i
�beik·r

�
sin �t . (A6)

APPENDIX B: THE STATE AFTER EVOLUTION

We first give the exact expression of the state in 2PPE. The state of the system without environment after the two pulses with
a delay τ can be written as

|ψ2(T, τ )〉 =
[

cos θ1 cos θ2 − ei(k1−k2 )·r sin θ1 sin θ2

(
�2

a

�2
e−iωaτ + �2

b

�2
e−iωbτ

)]
|g〉

+ i cos θ1 sin θ2
�aeik2·r−iωaT

�
|a〉

+ i
sin θ1eik1·r−iωaT

�3

{
�a

(
�2

b + �2
a cos θ2

)
e−iωaτ + [cos θ2 − 1]�2

a�be−iωbτ
}|a〉 + i cos θ1 sin θ2

�beik2·r−iωbT

�
|b〉

+ i
sin θ1eik1·r−iωbT

�3

{
[cos θ2 − 1]�2

a�be−iωaτ + �b
(
�2

a + �2
b cos θ2

)
e−iωbτ

}|b〉. (B1)

The state of the system coupled with the environment after the two pulses with a delay τ can be written as

|ψ2(τ, T )〉 = [
c1c2e−iHg(T +τ ) − η2

as1s2ei(k1−k2 )·r−iωaτ e−iHgT e−iHaτ − η2
bs1s2ei(k1−k2 )·r−iωbτ e−iHgT e−iHbτ

]|gαβχ〉
+ [

iηac1s2eik2·r−iωaT e−iHaT e−iHgτ + iηas1
(
η2

b + η2
ac2

)
eik1·r−iωaτ−iωaT e−iHaT e−iHaτ

+ iηbs1(c2 − 1)ηaηbeik1·r−iωbτ−iωaT e−iHaT e−iHbτ
]|aαβχ〉

+ [
iηbc1s2eik2·r−iωbT e−iHbT e−iHgτ + iηas1(c2 − 1)ηaηbeik1·r−iωaτ−iωbT e−iHbT e−iHaτ

+ iηbs1
(
η2

a + η2
bc2

)
eik1·r−iωbτ−iωbT e−iHbT e−iHbτ

]|bαβχ〉. (B2)

We then give the exact expression of the state in 3PPE. The state of the system coupled with the environment after the three
pulses with a delay τ and T can be written as

|ψ3(τ, T, t )〉 = [
c1|g〉e−iHgt + iηas3|a〉eik3·r−iωat−iHat + iηbs3|b〉eik3·r−iωbt−iHbt

]
⊗ [

c1c2e−iHg(T +τ ) − η2
as1s2ei(k1−k2 )·r−iωaτ e−iHgT e−iHaτ − η2

bs1s2ei(k1−k2 )·r−iωbτ e−iHgT e−iHbτ
]|αβχ〉

+ [
iηas3|g〉e−ik3·r−iHgt + (

η2
b + η2

ac3
)|a〉e−iωat−iHat + (c3 − 1)ηaηb|b〉e−iωbt−iHbt

]
⊗ [

iηac1s2eik2·r−iωaT e−iHaT e−iHgτ + iηas1
(
η2

b + η2
ac2

)
eik1·r−iωa (τ+T )e−iHa (τ+T )

+iηaη
2
bs1(c2 − 1)eik1·r−iωbτ−iωaT e−iHaT e−iHbτ

]|αβχ〉
+ [

iηbs3|g〉e−ik3·r−iHgt + (c3 − 1)ηaηb|a〉e−iωat−iHat + (
η2

a + η2
bc3

)|b〉e−iωbt−iHbt
]

⊗ [
iηbc1s2eik2·r−iωbT e−iHbT e−iHgτ + iηas1(c2 − 1)eik1·r−iωaτ−iωbT e−iHbT e−iHaτ

+iηaη
2
bs1

(
η2

a + η2
bc2

)
eik1·r−iωb(τ+T )e−iHb(τ+T )]|αβχ〉. (B3)
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APPENDIX C: TRAJECTORY DEPHASING FACTOR

The trajectory factors Daa(τ, T ; αβχ ) and D8(τ, T, t ; α, β, χ ) in 2PPE and 3PPE, respectively, are presented. By computing
the evolution of the coherent state and taking the overlap, we can get

Daa(τ, T ; αβχ ) = exp
[−2g0∗

a (τ ) − g0∗
a (T ) − g0

a(T ) + g0∗
a (τ + T )

]
× exp

[−2C 0∗
a (τ ) − C 0∗

a (T ) − C 0
a (T ) + C 0∗

a (τ + T )
]

× exp[i2(wIm(α){1 − 2 cos ωτ + cos [ω(T + τ )]}wRe(α){2 sin ωτ − sin [ω(T + τ )]})]

× exp[i2(uaIm(χ ){cos μτ + cos [μ(T + τ )]} + uaRe(χ ){2 sin μτ − sin [μ(T + τ )]})], (C1)

D8(τ, T, t ; α, β, χ ) = exp
[−g0∗

a (T + τ ) − g0
b(t + T )

]
× exp

[−C 0
bb(t + T ) − C 0∗

aa (T + τ ) − C 0∗
ab (τ ) + C 0∗

ab (T + t + τ ) + C 0∗
ab (T ) − C 0∗

ab (t )
]

× exp[i2w(Re(α) sin [ω(T + τ )] + Im(α){1 − cos [ω(T + τ )]})]

× exp[i2v(Re(β ){sin (ντ ) − sin [ν(T + τ + t )]} + Im(β ){− cos (ντ ) + cos [ν(T + τ + t )]})]

× exp(i2Re(χ ){ub sin (μτ ) − ub sin [μ(T + t + τ )] + ua sin [μ(T + τ )]})

× exp(i2Im(χ ){−ub cos (μτ ) + ua + ub cos [μ(T + t + τ )]} − ua cos [μ(T + τ )]). (C2)

The other trajectory factors are also calculated in the same way.

APPENDIX D: THREE-PULSE PHOTON ECHO DEPAHSING FACTOR

Through the simple multivariate Gaussian integration of trajectory factors with respect to α, β, and χ in 3PPE, the trajectory
dephasing factors of each term are given. The trajectory dephasing factors of the third-order terms are

D1(τ, T, t ) = exp [−g∗
a(τ ) − g∗

a(T + τ ) + g∗
a(T + t + τ ) + g∗

a(T ) − g∗
a(T + t ) − ga(t )]

× exp [−C ∗
aa(τ ) − C ∗

aa(T + τ ) + C ∗
aa(T + t + τ ) + C ∗

aa(T ) − C ∗
aa(T + t ) − Caa(t )],

D2(τ, T, t ) = exp [−g∗
b(τ ) − g∗

b(T + τ ) + g∗
b(T + t + τ ) + g∗

b(T ) − g∗
b(T + t ) − gb(t )]

× exp [−C ∗
bb(τ ) − C ∗

bb(T + τ ) + C ∗
bb(T + t + τ ) + C ∗

bb(T ) − C ∗
bb(T + t ) − Cbb(t )],

D3(τ, T, t ) = exp [−ga(t ) − g∗
b(τ )]

× exp [−Caa(t ) − C ∗
bb(τ ) − C ∗

ab(T + τ ) + C ∗
ab(T + t + τ ) + C ∗

ab(T ) − C ∗
ab(T + t )],

D4(τ, T, t ) = exp [−g∗
a(τ ) − gb(t )]

× exp [−C ∗
aa(τ ) − Cbb(t ) − C ∗

ab(T + τ ) + C ∗
ab(T + t + τ ) + C ∗

ab(T ) − C ∗
ab(T + t )],

D5(τ, T, t ) = exp [−g∗
a(T + τ ) − g∗

a(τ ) + g∗
a(T + t + τ ) + ga(T ) − g∗

a(t ) − ga(T + t )]

× exp [−C ∗
aa(T + τ ) − C ∗

aa(τ ) + C ∗
aa(T + t + τ ) + Caa(T ) − C ∗

aa(t ) − Caa(T + t )],

D6(τ, T, t ) = exp [−g∗
b(T + τ ) − g∗

b(τ ) + g∗
b(T + t + τ ) + gb(T ) − g∗

b(t ) − gb(T + t )]

× exp [−C ∗
bb(T + τ ) − C ∗

bb(τ ) + C ∗
bb(T + t + τ ) + Cbb(T ) − C ∗

bb(t ) − Cbb(T + t )],

D7(τ, T, t ) = exp [−ga(T + t ) − g∗
b(T + τ )]

× exp [−Caa(T + t ) − C ∗
bb(τ + T ) − C ∗

ab(τ ) − C ∗
ab(t ) + Cab(T ) + C ∗

ab(τ + T + t )],

D8(τ, T, t ) = exp [−g∗
a(T + τ ) − gb(t + T )]

× exp [−Cbb(t + T ) − C ∗
aa(T + τ ) − C ∗

ab(τ ) + C ∗
ab(T + t + τ ) + Cab(T ) − C ∗

ab(t )]. (D1)

The trajectory dephasing factors of the fifth-order terms are

D9(τ, T, t ) = exp [−g∗
a(t ) + g∗

a(T + t ) − ga(T + t ) − g∗
a(T ) + ga(T ) − g∗

b(τ )]

× exp [−C ∗
aa(t ) + C ∗

aa(T + t ) − Caa(T + t ) − C ∗
aa(T ) + Caa(T ) − C ∗

bb(τ )]

× exp [C ∗
ab(T + t + τ ) − C ∗

ab(T + t ) − C ∗
ab(T + τ ) + C ∗

ab(T )],

D10(τ, T, t ) = exp [−g∗
a(τ ) − g∗

b(t ) + g∗
b(T + t ) − gb(T + t ) − g∗

b(T ) + gb(T )]

× exp [−C ∗
aa(τ ) − C ∗

bb(t ) + C ∗
bb(T + t ) − Cbb(T + t ) − C ∗

bb(T ) + Cbb(T )]

× exp [C ∗
ab(T + t + τ ) − C ∗

ab(T + t ) − C ∗
ab(T + τ ) + C ∗

ab(T )],
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D11(τ, T, t ) = exp [−g∗
a(τ ) − gb(t ) − C ∗

aa(τ ) − Cbb(t )]

× exp [−C ∗
ab(T + τ ) + C ∗

ab(T + τ + T ) + Cab(T ) − Cab(T + t ) + Cab(t ) − C ∗
ab(t )],

D12(τ, T, t ) = exp [−ga(t ) − g∗
b(τ ) − Caa(t ) − C ∗

bb(τ )]

× exp [−C ∗
ab(T + τ ) + C ∗

ab(T + τ + t ) + Cab(T ) − Cab(T + t ) + Cab(t ) − C ∗
ab(t )],

D13(τ, T, t ) = exp [−2g∗
a(τ ) + g∗

a(T + t + τ ) − ga(T + t ) − g∗
a(T + t ) − g∗

b(T )]

× exp [−2C ∗
aa(τ ) + C ∗

aa(T + t + τ ) − Caa(T + t ) − C ∗
aa(T + t ) − C ∗

bb(T )]

× exp [C ∗
ab(τ ) − C ∗

ab(T + τ ) + C ∗
ab(T + t ) − C ∗

ab(t ) + Cab(T ) + C ∗
ab(T )],

D14(τ, T, t ) = exp [−g∗
a(T ) − 2g∗

b(τ ) + g∗
b(T + t + τ ) − gb(T + t ) − g∗

b(T + t )]

× exp [−C ∗
aa(T ) − 2C ∗

bb(τ ) + C ∗
bb(T + t + τ ) − Cbb(T + t ) − C ∗

bb(T + t )]

× exp [C ∗
ab(τ ) − C ∗

ab(T + τ ) + C ∗
ab(T + t ) − C ∗

ab(t ) + Cab(T ) + C ∗
ab(T )]

D15(τ, T, t ) = exp [−ga(T ) − gb(t ) − g∗
b(t ) + g∗

b(T + τ + t ) − 2g∗
b(T + τ )]

× exp [−Caa(T ) − Cbb(t ) − C ∗
bb(t ) + C ∗

bb(T + τ + t ) − 2C ∗
bb(T + τ )]

× exp [C ∗
ab(T + τ ) − C ∗

ab(τ ) + 2Cab(T ) + Cab(t ) − Cab(T + t )]

D16(τ, T, t ) = exp [−gb(T ) − ga(t ) − g∗
a(t ) + g∗

a(T + τ + t ) − 2g∗
a(T + τ )]

× exp [−Cbb(T ) − Caa(t ) − C ∗
aa(t ) + C ∗

aa(T + τ + t ) − 2C ∗
aa(T + τ )]

× exp [C ∗
ab(T + τ ) − C ∗

ab(τ ) + 2Cab(T ) + Cab(t ) − Cab(T + t )]. (D2)

The trajectory dephasing factors of the seventh-order terms are

D17(τ, T, t ) = exp [−g∗
a(τ ) − g∗

a(T + τ ) + g∗
a(T + τ + t ) + g∗

a(T ) − g∗
a(T + t ) − ga(t )]

× exp [−C ∗
aa(τ ) − C ∗

aa(T + τ ) + C ∗
aa(T + τ + t ) + C ∗

aa(T ) − C ∗
aa(T + t ) − Caa(t )],

D18(τ, T, t ) = exp [−g∗
b(τ ) − g∗

b(T + τ ) + g∗
b(T + τ + t ) + g∗

b(T ) − g∗
b(T + t ) − gb(t )]

× exp [−C ∗
bb(τ ) − C ∗

bb(T + τ ) + C ∗
bb(T + τ + t ) + C ∗

bb(T ) − C ∗
bb(T + t ) − Cbb(t )],

D19(τ, T, t ) = exp [−2g∗
a(τ ) − g∗

a(T ) − ga(T ) + g∗
a(T + τ ) − 2g∗

b(T ) − g∗
b(t ) − gb(t ) + g∗

b(T + t )]

× exp [−2C ∗
aa(τ ) − C ∗

aa(T ) − Caa(T ) + C ∗
aa(T + τ ) − 2C ∗

bb(T ) − C ∗
bb(t ) − Cbb(t ) + C ∗

bb(T + t )]

× exp [C ∗
ab(τ ) − 2C ∗

ab(T + τ ) + C ∗
ab(T + τ + t ) + 3C ∗

ab(T ) + 2Cab(T ) − Cab(T + t ) − C ∗
ab(T + t ) + Cab(t )],

D20(τ, T, t ) = exp [−2g∗
b(τ ) − g∗

b(T ) − gb(T ) + g∗
b(T + τ ) − 2g∗

a(T ) − g∗
a(t ) − ga(t ) + g∗

a(T + t )]

× exp [−2C ∗
bb(τ ) − C ∗

bb(T ) − Cbb(T ) + C ∗
bb(T + τ ) − 2C ∗

aa(T ) − C ∗
aa(t ) − Caa(t ) + C ∗

aa(T + t )]

× exp [C ∗
ab(τ ) − 2C ∗

ab(T + τ ) + C ∗
ab(T + τ + t ) + 3C ∗

ab(T ) + 2Cab(T ) − Cab(T + t ) − C ∗
ab(T + t ) + Cab(t )].

(D3)
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