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Nonlinear index of a two-level model: The essential role of the population inversion
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Optical wave propagation in an assembly of two-level atoms is considered. An asymptotic model of nonlinear
Schrödinger (NLS) type is derived in a rigorous way by means of the perturbative expansion method. The results
of the obtained model are then compared with both a numerical solution of the initial set of equations of the
two-level model and an exact analytical cnoidal wave solution. It is seen that the evolution of the population
difference is a key factor for the accurate determination of the nonlinear index, and that the NLS approximation
allows one to determine it theoretically. The knowledge of the population difference allows one to correct the
cnoidal wave solution, which then matches the numerical solution up to the limits of our numerical accuracy.
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I. INTRODUCTION

Key parameters of nonlinear optics are the nonlinear coef-
ficients, among which the nonlinear index commonly denoted
by n2, which measures the strength of the Kerr effect and
self-focusing, has a prominent place. This quantity can be
measured by several methods, among which the most known
is probably the z-scan technique [1].

Other methods are used, and the z-scan itself has been im-
proved (see, e.g., [2,3]), yielding a considerable improvement
of the accuracy of the nonlinear index measurements. Accu-
rate measurements show in turn that as it could be expected
from theoretical speculation, the evolution of the refractive
index with respect to the incident optical intensity ceases to
be linear for high enough input intensity. A first correction to
the nonlinear index, the so-called fifth-order nonlinear refrac-
tive index n4, has been measured [4–8].

The theoretical description of the nonlinear changes in
the refractive index, however, remains, in large part, phe-
nomenological. It rests mainly on the theory of nonlinear
susceptibilities, first introduced from a quantum mechani-
cal approach [9,10], but which can also be obtained from a
classical model [11]. The susceptibility approach is almost
always restricted to the leading order. Its generalization to
higher orders, indeed, although possible in principle, involves
excessively complicated computations and such attempts are
quite rare [12]. The susceptibility approach belongs to the
family of perturbations approaches, and such a catastrophic
increase of complexity when considering higher-order terms
is very generally an intrinsic defect of them. In this paper,
however, we restrict ourselves to a two-level medium, and an
exact periodic solution of the wave equation has been found
in this case [13]. It overcomes the intrinsic difficulties due
to perturbations, at least within this restricted frame, up to
huge values of the optical intensity. Both the exact solution
and the susceptibility theory have been compared to the exact
numerical solution of the two-level model equations, which
has the advantage, with respect to an experiment, of being
insensitive to any doubtful issue about the modeling itself. The

analysis made it clear that the susceptibility approach needs to
be improved, even at moderate input intensities [14].

Its major defect, besides the intrinsic limitations of any
perturbation scheme, is that it computes a response of the
material to the wave without taking into account the feedback
of the material on the wave. This requires one to consider the
evolution of both the wave field and the material character-
istics; the perturbation approach that does this is known as
the perturbative expansion method [15,16]. It is usually used
to derive simplified asymptotic model equations for the wave
field. The relevant asymptotic model for the description of the
optical Kerr effect and of the self-focusing is the nonlinear
Schrödinger (NLS) equation. It was first introduced in [17]
and completely solved in [18].

It is well known that in a medium presenting a quadratic
nonlinearity, far enough from phase matching, an effective
Kerr effect arises due to the so-called cascading effect: a sec-
ond harmonic is generated and interacts quadratically with the
fundamental incident wave [19,20]. Theoretical computations
show that another process should have a comparable impor-
tance, this process is the formation of a wave with a typical
period comparable to the pulse length by optical rectification,
which in turn modifies the index through the electro-optic
effect. If spatiotemporal behavior is considered, this process
leads to an asymptotic model which is not merely the NLS
equation, but contains an additional field variable describ-
ing the slow wave, known as the Davey-Stewartson system
[21,22]. The rigorous mathematical proof of the validity of the
perturbative expansion method that leads to NLS has shown
that this process cannot, in principle, be neglected [23]. This
remains obviously true when the quantity which results from
the quadratic nonlinearity is not observable directly, but only
by its effects on others. We will see that it happens with the
population difference in a two-level medium.

II. MODEL AND KNOWN RESULTS

We consider a linearly polarized electromagnetic plane
wave propagating in an assembly of identical two-level atoms.
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The fundamental and excited states are labeled 1 and 2 and
have energies h̄ωa and h̄ωb, respectively, so that the tran-
sition frequency is � = ωb − ωa > 0. The Schrödinger–von
Neumann and the wave equations can be reduced to the
system [13]

∂W
∂t

= −2

h̄
qE , (1)

∂d

∂t
= −�q, (2)

∂q

∂t
= �d + 2

|μ|2
h̄

WE , (3)

∂E

∂t
= −c2 ∂B

∂z
+ N

ε0
�q, (4)

∂B

∂t
= −∂E

∂z
. (5)

Here, t and z are the time and space variables, and E and B are
the wave electric field and magnetic induction. The population
difference is defined as

W = ρ22 − ρ11, (6)

where ρ is the density matrix operator. Also,

d = ρ12μ
∗ + ρ21μ, (7)

where μ is the atomic electric dipole transition moment, is the
atomic dipole momentum, and the quantity

q = −i(ρ12μ
∗ − ρ21μ) (8)

contains all remaining components of the density matrix. c is
the speed of light in vacuum, ε0 the dielectric permittivity in
vacuum, and N the density of atoms.

An exact cnoidal wave solution to Eqs. (1)–(5) was derived
in [13], and reads as

E = Emcn

(
p

[
t − z

v

]
, k

)
, (9)

B = E

v
, (10)

W = ε0

Nh̄

χ

�
E2 − l, (11)

d = ε0

N
χE , (12)

and

q = ε0 h̄

N |μ|
χkp2

�
sn

(
p

[
t − z

v

])
dn

(
p

[
t − z

v

])
, (13)

where cn, sn, and dn are Jacobi’s elliptic functions,

χ = c2

v2
− 1 = 2lN |μ|2�

ε0 h̄[�2 − p2(1 − 2k2)]
, (14)

and

Em = h̄

|μ|kp. (15)

Here, l is the value of −W at infinity, assumed to be its value
at thermal equilibrium. These formulas yield a two-parameter
family of solutions, determined by the elliptic modulus

k (0 � k � 1), and parameter p which relates to the wave
angular frequency ω through

ω = π p

2K (k)
, (16)

where K (k) is the elliptic integral of the first kind.

III. DERIVATION OF THE NLS APPROXIMATION FOR
THE TWO-LEVEL MODEL

A. Assumptions and expansions

A NLS equation was derived from a slightly more general
model in [25]. As the susceptibility theory does, it neglects
the mean value or zero-order harmonic of the population
difference W . A more rigorous derivation, taking this term
into account, is outlined below, the details of which can be
found in the Appendix. It follows the reductive perturba-
tion method [15,16,23]. Recall that this asymptotic method
mainly consists in accounting for the cumulative effects of
small corrections over long propagation distances, through
an approximate equation satisfied by the leading term in the
expansion.

A small parameter ε is introduced, which measures both
the narrowness of the spectral width (slowly varying envelope
approximation) and the relative smallness of the amplitude
with respect to the atomic field ( small amplitude assumption).
Slow variables are defined as

τ = ε
(

t − z

V

)
and ζ = ε2z, (17)

where V will be shown to be the group velocity. The electric
field, and other dependant variables W , q, and d , are expanded
in both a Fourier series of the fundamental phase ϕ = (κz −
ωt ) and in a power series of ε [see Eq. (A2) in the Appendix].
It is assumed that, at leading order, the electric field is

E = εEeiϕ + cc + O(ε3); (18)

further assumptions are detailed in the Appendix. E =
E (1)

1 (τ, ζ ) is the envelope of the wave field, modulating a fast
oscillating wave with phase ϕ. It will be shown that E obeys
the NLS equation.

B. Resolution of the perturbation scheme

The perturbation scheme is then solved order by order. At
first order is found, as usual, the dispersion relation, which we
express by the linear refractive index n0 given by

n2
0 = 1 + 2Nl|μ|2

ε0 h̄

�

�2 − ω2
. (19)

We also obtain proportionality relations between the first-
order components of E , W , d , and q, which deter-
mine a linear propagation mode with well-defined velocity
vL = c/n0.

At second order, it is found that all second-harmonic
terms are zero, except W (2)

2 which is proportional to E2 [see
Eq. (A6)]. The fundamental frequency terms satisfy W (1)

2 =
0; at the same order is found, as usual, that V is the group
velocity, V = vg.

At order ε3, third-harmonic terms are obtained for d , q, and
E , which are not needed to obtain the asymptotic equation,
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but will be used in the approximate solution which will be
compared to numerical results. The expressions of these terms
present, in the denominator, a factor �2 − 9ω2, which seems
to express a resonance as the third-harmonic frequency of the
wave coincides with the transition frequency. We will see that
this resonance factor vanishes in the final asymptotic expres-
sion of the solution. In contrast, the population difference W
does not contain a third-harmonic term.

At third order, we show that E satisfies a differential equa-
tion of the form

i
∂E
∂ζ

+ A∂2E
∂τ 2

+ BE |E |2 + CW (0)
2 E = 0, (20)

where

B = −2Nl|μ|4
ε0 h̄3cn0

�ω

(�2 − ω2)2 , (21)

and C is given by Eq. (A15) (see the Appendix). Computation
shows that A = −κ2/2, where

κ2 = d2κ

dω2
(22)

is the group velocity dispersion.

C. Zero-order harmonic

The key element of the present paper is the shift of the zero-
order harmonic, or mean value, of the population difference
with respect to its thermal value W (0)

0 = −l . Its leading term
is W (0)

2 ; if it is ignored, as does the susceptibility theory and
as it was done in [25], Eq. (20) straightforwardly reduces to
the NLS equation, and the nonlinear coefficient B coincides
with the coefficient derived from the susceptibility theory
(see [14]).

However, the general theory of the perturbative expansion
method (see [16,23]) shows that great care must be taken of
the zero-harmonic component.

The relevant component of W , W (0)
2 is found at third order,

from the integration of a differential equation [see Eq. (A16)];
it is proportional to |E |2.

Inserting the obtained expression into Eq. (20) yields

i
∂E
∂ζ

− κ2

2

∂2E
∂τ 2

+ �E |E |2 = 0, (23)

which is known as the NLS equation [18], with

� = −Nl|μ|4ω�(3�2 + ω2)

n0ε0ch̄3(�2 − ω2)3 . (24)

Note that this value may also be found in [24] [Eq. (3.26)], but
without proof.

D. Solution of constant amplitude of NLS and Kerr effect

The NLS equation (23) admits the constant amplitude
solution

E = Aei�A2ζ (25)

(a more general form including a frequency shift exists, but it
is not useful here). Using (18) and the definition of the slow

variables (17), we put expression (25) in the form

E � Em cos

[
ω

(
t − z

v

)]
, (26)

with Em = 2εA and

ω

v
= κ + �

4
E2

m. (27)

The wave defined by (25) appears to be an approximate peri-
odic solution, with constant amplitude and angular frequency
ω of the two-level model. Consequently, one would expect
that it would coincide with the exact cnoidal wave solu-
tion with same angular frequency and same small amplitude,
which is Eq. (9) at the limit where k tends to zero.

To investigate this hypothesis, the complete approximate
solution is required. In the course of the derivation, it is
found that the population difference W contains both a
second-harmonic term and a rectified one, which have been
determined [see the Appendix, esp. Eqs. (A19), (A6), and
(A16)]. Explicit computation yields

WNLS = −l + l|μ|2(�2 + ω2)E2
m

h̄2(�2 − ω2)2

+ l|μ|2E2
m

h̄2(�2 − ω2)
cos 2(κNLSz − ωt ). (28)

The atomic dipole can be computed in an analogous way,
and we eventually obtain the expression

dNLS =
[
ε0

N
χ (1)(ω)Em + a1E3

m

]
cos (κNLSz − ωt )

+ a3E3
m cos 3(κNLSz − ωt ). (29)

The explicit expression of coefficients a1 and a3 is given by
Eqs. (A21) and (A22) in the Appendix. It should be noticed
that the factor (�2 − 9ω2), which accounts for a resonance as
3ω approaches the transition frequency �, which appeared in
some terms involved in the computation of d , completely van-
ishes from its final expression due to algebraic simplification.

We shown in [14] that the third-harmonic resonance pre-
dicted by the nonlinear susceptibility formalism was not seen
in the numerical solution or in the cnoidal wave one. In the
same way, no third-harmonic resonance is predicted by the
NLS approach.

From an analogous procedure, we get the approximate
solution for q as

qNLS = −ω

�

[
ε0

N
χ (1)(ω)Em + a1E3

m

]
cos (κNLSz − ωt )

− 3ω

�
a3E3

m cos 3(κNLSz − ωt ), (30)

using same the coefficients a1 and a3 as above.

IV. COMPARISON BETWEEN NLS AND NUMERICS

A. NLS works well for moderate intensities.

The system (1)–(5) is solved numerically by means of a
standard fourth-order Runge-Kutta scheme with respect to
time t , with the z derivatives being computed by fifth-order
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finite-difference formulas. We use periodic boundary condi-
tions, especially to avoid instabilities on the boundaries. This
scheme allows one to solve the evolution with respect to time
t of an initial state given for all z at some fixed time.

In order to model the response of the medium to a
monochromatic input, we use the same procedure as in [14].
The computation box is divided into two parts, the first
of which represents vacuum and the second the medium,
and the initial condition is chosen to be some square
pulse localized in the vacuum and propagating towards the
medium.

In the medium, i.e., for 0 < z < L, where 2L is the size
of the computation box, the transition dipole moment μ takes
some nonzero value, while the vacuum is modeled by setting
μ to zero for −L < z < 0. To reduce reflections and improve
numerical stability, instead of a square pulse, we use as an
input a super-Gaussian profile, as

E (t = 0) = ωwk cos

(
ωwz

c

)
exp

[
−

(
z − zc

�z

)s]
, (31)

with B(t = 0) = E (t = 0)/c, d (t = 0) ≡ 0, W (t = 0) ≡ −l ,
and q(t = 0) ≡ 0. We found it convenient to use a high
super-Gaussian order s = 20, and parameters zc = −L/2,
�z = 0.45L.

This approach quite closely models the physical response
of a medium to an input beam, insofar that the medium can be
described by a two-level model.

Reflections occur at the interfaces z = 0 and z = ±L, and
the study is thus limited to a space-time domain where the
backward reflected waves do not perturb the forward trans-
mitted ones.

The expression (19) of the linear index n0 shows that prop-
agation is impossible for

� < ω < ω1 =
√

�2 + 2Nl|μ|2�
ε0h̄

. (32)

From (24), it is seen that the nonlinear coefficient � of the
NLS equation changes its sign at ω = �, it is positive for fre-
quencies above the resonance (ω > ω1), and negative below it
(ω < �). Elementary analysis shows that κ2 is positive for ω

below some angular frequency ω0, which lies in the domain
where no propagation occurs (� < ω0 < ω1). As a result,
κ2 > 0 for ω < � and negative for ω > ω1, and the product
−κ/2 × � is always positive. Hence the NLS equation (23)
always supports solitons, and its constant amplitude solution
is unstable through modulation instability [26,27]. Notice that
if the population difference W0 is disregarded, the nonlinear
coefficient � in the NLS equation is replaced with the coeffi-
cient B of Eq. (20), given by (21). It is seen that B is always
negative, and hence this erroneous value of the nonlinear
coefficient would predict a defocusing NLS, without soliton
formation, for frequencies above the resonance. Numerical
resolution of system (1)–(5) shows that modulation instability
and soliton formation actually occur.

The analysis must be restricted to the time-space domain
were the instability did not yet develop, and the continuous
wave still exists. This is consequent with nonlinear index
measurements, which also must be performed before soli-

ton formation occurs, although spatial transverse instability
is more frequently involved in experiments than longitudinal
temporal one.

For technical reasons, among others, in order to reduce
spurious reflections, the refraction index must not be far from
one. Therefore, we use a quite low transition dipole moment,
set to μ = 0.3ea0, where a0 = 4πε0 h̄2/(me2) is the Bohr
radius (with m and −e the mass and electric charge of the
electron). For numerical convenience, we inspect the behav-
iors below and above resonance with two different values of
the resonance wavelength, namely, λr = 0.5 μm and 1.7 μm.
The length of the computation box is close to 120 μm, half
of which represents the medium, and the evolution time is
500 fs or 600 fs. However, the domain where the wave can
be considered as having constant amplitude is much smaller.

The velocity of the numerical solution is evaluated with
the same method as detailed in [14]: each of the relations
v = E/B and χ = d/E allows the computation of an approx-
imation of the velocity v, the effective susceptibility χ , and
the effective index n = c/v = √

1 + χ , provided that the ratio
of the two fields can be estimated. This cannot be achieved
in direct space because of huge inaccuracies when the de-
nominators vanish, but can be in Fourier space. We check
that the difference between the two estimates is always much
smaller than the accuracy of the analytical expressions under
investigation.

The cnoidal wave model is computed through Eqs. (9)–
(13), with the velocity given by (14); the parameters p and k
are found by numerically solving Eqs. (16) and (15), for fixed
values of the angular frequency ω and the maximal amplitude
Em. ω is set to its input value, which is well conserved by the
computation, and Em is evaluated from the numerical data, by
taking the maximum of |E | over a domain where the wave
amplitude can be considered as constant, which seems to be
the most accurate way to do it.

The NLS approximation is given by (26) and (28)–(30),
with the same amplitude and angular frequency as above and
the velocity (27).

Let us first consider frequencies below the resonance
(ω < �). We use λr = 0.5 μm, which yields � =
3.7699 rad fs−1, angular frequencies ranging from 2 to
3 rad fs−1, and values of the elliptic modulus k ranging
from 0.15 to 0.8, which would correspond to input
intensities ranging from 7600 GW/cm2 to a huge value
as 370 × TW/cm2. A strong enough nonlinearity is required,
on one hand, in order to decrease the computation time and
box size, and, on the other hand, in order to increase the
nonlinear shift of the index well above the limited numerical
accuracy. Huge intensities are considered to investigate the
domain where the NLS approximation will fail.

All components E , w, d , and q of the numerical solution
can be compared to the corresponding analytic expressions,
as given by both the cnoidal wave solution and the NLS
approximation; see an example in Fig. 1. The agreement is
quite satisfactory, and it has been shown in [14] that it is much
better than the theory of susceptibilities. Notice, however, that
appreciable fluctuations of W , d , and q, i.e., all components
of the density matrix, occur immediately after the interface
(z = 0). Some shift of the population difference W can be
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(a)

(b)

(c)

(d)

FIG. 1. The evolution of a square pulse, (a) electric field E ,
(b) population difference W , (c) atomic dipole momentum d ,
(d) auxiliary field q. For clarity, only a small part of the computation
box (one-eighth) is shown, starting just at the interface. Blue solid
line: numerical solution; red dotted line: cnoidal wave solution; green
dash-dotted line: NLS approximation; pink long dashes: cnoidal
wave solution corrected according to W0 given by the NLS approx-
imation; light-blue short dashes: cnoidal wave solution corrected
according to the numerically obtained value of W0. The resonance
wavelength is λr = 0.5 μm, and the parameters of the initial data are
ωw = 1.3092 rad fs−1, k = 0.4.

seen; it is reproduced by the NLS model, not by the cnoidal
wave solution.

Since only a few optical oscillations are represented in
Fig. 1, the difference in the velocities obtained for the various
solutions can hardly be seen. Figure 2 shows a set of values of
the nonlinear shift �nNL of the refraction index for a moder-
ate nonlinearity determined by the elliptic modulus k = 0.15,
which would correspond, for the choice of the other parame-
ters, to input intensities ranging between about 7600 to about
8800 GW/cm2. It is seen that the NLS approximation (green
line) yields a much better approximation of the numerical so-
lution (blue line) than the cnoidal wave solution (red line) (the
two remaining curves will be discussed later). It remains true
for a a much stronger nonlinearity; however, the improvement
is less important. See in Fig. 3 the example of k = 0.4, which
would correspond to intensities about 61 to 63 TW/cm2, for
analogous parameters. Here the error resulting from the use of
the cnoidal solution is twice the error arising with NLS (with
opposite sign), while the same factor is about 5 for the case of
a weaker nonlinearity, shown in Fig. 2.

An example of the evolution of the various estimations of
�nNL as a function of the wave amplitude Em is shown in
Fig. 4. Here, Em is the actual amplitude in the medium, as

FIG. 2. The nonlinear shift of the refractive index �nNL vs the
wave angular frequency ωw , for an elliptic modulus k = 0.15. The
color code is the same as in Fig. 1. The resonance wavelength is
λr = 0.5 μm.

FIG. 3. Same as Fig. 2, but with elliptic modulus k = 0.4.

FIG. 4. The nonlinear shift �nNL of the refractive index against
the wave amplitude Em. The color code is the same as in Fig. 1.
The input assumes p = 1.2481 rad fs−1, with an elliptic modulus k
varying from 0.17 to 0.8. The resonance wavelength is λr = 0.5 μm.
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FIG. 5. The nonlinear shift of the refractive index �nNL vs the
wave angular frequency ω, above the resonance and close to it, for
an elliptic modulus k = 0.15. The color code is the same as in Fig. 1.
The resonance frequency is λr = 1.7 μm.

evaluated from the numerical solution, which is a bit smaller
than the input amplitude in this range of parameters. The
angular frequency is not exactly constant, but varies as the fre-
quency of the cnoidal wave solution (9) for fixed p and varying
k. It is seen that although the NLS approximation is more
accurate at small and moderate amplitudes, the cnoidal wave
solution yields a more accurate value of the nonlinear shift of
the index when the amplitude is very high, the threshold being
located between the elliptic modulus k = 0.5 and 0.6, which
would correspond to considerable intensities of about 100 and
160 TW/cm2, for this set of parameters.

The situation is slightly different for values of the wave
frequency that are higher than the resonance (ω > �). It is
well known that the refractive index of the two-level model
is less than 1 in this case, even in the linear case. Recall
that c/n is the phase velocity; it is easily checked by direct
computation that the corresponding group velocity is less than
c. The same happens with the classical Lorentz theory, for
which the frequency profile of the susceptibility is exactly
the same.

Figure 5 presents an example of the computation of the
nonlinear shift �nNL of the refractive index, above the reso-
nance. Parameters have been chosen, however, in such a way
that the index remains real whatever approximation is used,
and the resonance effect clearly appears. In this domain, the
�nNL computed according to the cnoidal wave solution has
the wrong sign, while the NLS approximation gives a rea-
sonable value. The approximation is quite accurate far away
enough from resonance, where the nonlinear index remains
moderate, but becomes much less accurate close to the res-
onance, as can be seen for a logarithmic plot of the error
nan − nnum, i.e., the difference between the index obtained
numerically nnum and nan, the one derived from an analyt-
ical formula, either the cnoidal wave solution or the NLS
approximation, for the same data as in Fig. 5; see Fig. 6. The
intensities range here between 7.5 TW/cm2 and 46 TW/cm2.
The same evolution is found when the increase of nonlinearity
is driven by the wave amplitude rather than by the proximity
to resonance; see an example in Fig. 7.

FIG. 6. The error nan − nnum, for the same data as in Fig. 5, on a
logarithmic scale.

B. Explanation and improvement for high intensities
by means of cn

Figure 8 shows an example of profiles, in some special
case with ω > �. As previously, we plot all components E ,
W , d , and q of the numerical solution and compare them
with the corresponding analytic expressions, as given by both
the cnoidal wave solution and the NLS approximation. The
intensity considered here is very large, about 13 TW/cm2,
which allows one to observe the development of modulation
instability and the formation of a soliton train on a distance
as short as the half length L = 120 μm of the computation
box. It is seen that at this stage of soliton formation, the phase
evolution computed from the constant amplitude solution of
the NLS equation still reasonably agrees with that of the
numerical solution.

We are mostly interested, however, in the domain where
the wave amplitude can be considered as constant (up to
z = 80 μm or a few more in Fig. 8). The agreement between
the analytical and numerical profiles is rather satisfactory for
all components except the population difference W . W not
only oscillates, but its mean values increase during the pulse,

FIG. 7. The nonlinear shift of the refractive index �nNL vs the
wave amplitude Em. The color code is the same as in Fig. 1. The
input assumes p = 1.45 rad fs−1, with an elliptic modulus k varying
from 0.001 to 0.2. The resonance wavelength is λr = 1.7 μm.
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(a)

(b)

(c)

(d)

FIG. 8. The evolution of a square pulse, (a) electric field E ,
(b) population difference W , (c) atomic dipole momentum d ,
(d) auxiliary field q. Only the part of the computation box represent-
ing the two-level medium is shown. The color code is the same as in
Fig. 1. The resonance wavelength is λr = 1.7 μm, the parameters of
the initial data are ωw = 1.6091 rad fs−1, k = 0.15.

with respect to its value in the absence of light. The NLS
approximation, however, provides this mean value W0 with
a reasonable accuracy. The cnoidal wave solution, in contrast,
does not; further, it yields unphysical values W < −1. If we
carefully consider its derivation, (see Ref. [13]), we see that
the parameter −l could be identified as the value of W in
the absence of wave only for a localized wave, i.e., a soliton,
since it is the exact traveling solution. Otherwise, it is only a
constant shift above which W oscillates, as

W = N

ε0 h̄χ�
d2 − l. (33)

We see here that the identification of −l as the value of
the population difference W at thermodynamic equilibrium
is valid for solitons only, while it remains an indeterminate
constant for the cnoidal wave. This constant, however, can be
evaluated by means of the NLS approximation, using expres-
sion (28) of W , as

W0 = −l + l|μ|2E2
m

h̄2

[
(�2 + ω2)

(�2 − ω2)2 − 1

|�2 − ω2|
]
. (34)

Replacing l by −W0 in expressions (9)–(15) of the cnoidal
wave solution yields a third analytic solution, which is shown
by the pink dashed lines in all of the above figures. The values
obtained by this improved cnoidal wave model are very close
to the ones given by the NLS approximation. In other words,
the cnoidal wave model is very accurate but does not provide

the mean value W0 of the population difference which is
a key parameter, while NLS does allow one to compute it.
However, the NLS approximation is a perturbation approach,
and consequently its validity, in its very principle, is restricted
to small or at least moderate values of the intensity, and
its accuracy decreases as the wave amplitude increases. We
obtain, however, estimations of the nonlinear shift of the index
�nNL with still reasonable accuracy, even for quite large wave
intensities, as show in the above examples.

For higher intensities, the cnoidal wave model is expected
to remain valid; however, the analytic expression (34) of W0

does not. To find some nonperturbative analytic expression
of it would obviously be an issue of interest, but we leave
it for further investigation and use instead the value of W0

computed from the numerical solution. The corresponding
corrected value of l can be reinserted in the expressions (9)–
(15) of the cnoidal wave solution; the result is reported in all
previous figures (light blue short dashes). The agreement is
remarkable, showing that the main limitations to the accuracy
of the cnoidal wave model (in the frame of the two-level atom
model) are essentially due to W0.

In Figs. 2–7 above, the cn solution corrected with W0 given
by the NLS approximation (pink long dashes) always remains
very close to the NLS approximation itself (green dash-dotted
line). This happens even when both appreciably depart from
the numerical solution, which is almost perfectly fitted by the
cn solution with the numerical W0. This implies that among
all higher-order corrections to the NLS approximation, the one
which involves W0 is far more important than the other, which
could possibly be disregarded with respect to it.

The remaining inaccuracies come, on one hand, from the
accuracy of the numerical resolution itself, which will remain
finite whatever improvements can be implemented, and, on
the other hand, from the dynamics of the population differ-
ence W itself. A transient regime arises as the pulse enters
the medium, and it may show appreciable fluctuations of the
oscillation amplitude of W , as can be seen, for example, in
Fig. 1. On the other side of the pulse, modulation instability
leads to soliton formation. It is obviously accompanied by
fluctuations of the amplitude of W , which tends to be much
larger than the fluctuations of the wave amplitude itself; see,
e.g., Fig. 8.

V. CONCLUSION

We considered optical wave propagation within the frame
of a two-level model and, using the perturbative expansion
method, derived an asymptotic model of NLS type. The zero-
harmonic or mean value term in the Fourier expansion of
the population difference has been computed by this method;
it appreciably modifies the nonlinear coefficient of the NLS
equation and, consequently, the nonlinear shift of the refrac-
tive index. Especially for frequencies above the resonance, it
changes the sign of this shift.

The NLS approximation not only yields the NLS
equation itself, i.e., an asymptotic equation that describes the
evolution of the field envelope, but also a complete approx-
imate solution to the initial set of equations of the two-level
model, which we have compared both with its numerical
solution and with an exact analytical cnoidal wave solution.
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It made prominent the importance of the evolution of the
population difference for the accurate determination of the
nonlinear index. However, disregarding this evolution may
induce not only quantitative, but also qualitative error. Indeed,
above the transition frequency, the nonlinear coefficient drawn
from the susceptibility theory or from the rough NLS approx-
imation, which does not take the population difference into
account, has the wrong sign and would predict the stability
of continuous waves, while modulation instability and soliton
formation occur. Since, close to a resonance, the nonlinear
coefficient is essentially due to it, the question of whether the
nonlinear index changes its sign at a resonance is accessible in
experiment.

It appeared that the cnoidal wave solution had to be cor-
rected using an adequate value of the constant part of the
population difference, which can be the expression of this
quantity derived by means of the NLS approximation, if the
amplitude is moderate, or the value obtained by the numerical
solution, if the nonlinearity is so high that the perturbation
scheme fails. Then the corrected cnoidal wave solution is in
almost perfect agreement with the numerical solution, within
the limits of our numerical accuracy.

The present study, however, is devoted to the continuous
wave, or rather to pulses with long enough duration and con-
stant enough amplitude so that they quite accurately match the
continuous-wave model. We observed that the population dif-
ference may strongly fluctuate, at least when the pulse enters
the medium and when it suffers modulation instability. Actual
optical pulses, however, do not have a square profile, unless
they are specifically prepared to match it. Profiles are usually
bell shaped, with the most regular ones being frequently close
to Gaussians or hyperbolic secants. Both this different shape
and the actual pulse duration might influence the dynamics
of the population difference, especially in the transient stage.
One can imagine that this influence may have consequences
on the dependency of the nonlinear shift of the index on the
pulse duration and profile. Hence the study of the actual evo-
lution of the population difference, including its fluctuations,
would give further insight to the question.

The conclusions of this paper are, in principle, restricted
to the purely theoretical lossless two-level model. In actual
materials, many transitions are involved and absorption cannot
be neglected. For conservative models, a study analogous to
the present one can be performed. It should work in the same
way on all of its aspects except the exact analytical solution,
which may fail to exist for other models. An asymptotic model
of the NLS type is expected in any situation. It is expected
that the features observed here should occur for each of the
population differences corresponding to any atomic transi-
tions involved in the interaction between the light pulse and
the actual material. Absorption can be incorporated into the
analysis; in this case, the asymptotic model is expected to
contain some absorption term in addition to the usual terms of
the NLS equation. The absorption will occur for each atomic
transition and modify the population differences. As it is well
known, e.g., from the self-induced transparency, absorption
is strongly dependent on the populations and modifies them.
As a consequence, it cannot be expected that this further effect
would cancel the one made prominent above; it should, rather,
increase it.
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APPENDIX: DERIVATION OF THE NLS APPROXIMATION
FOR THE TWO-LEVEL MODEL

1. Assumptions and expansions

In this Appendix, we present the technical detail of the
derivation of the asymptotic equation of the NLS type. It is
more convenient to write the equations of the two-level model
in the form (1)–(3), while Eqs. (4) and (5) are rewritten as

∂2E

∂z2
= 1

c2

∂2

∂t2

(
E + N

ε0
d

)
. (A1)

Using the small parameter ε, we define slow variables as in
(17) with no a priori assumption on the value of the velocity
V . The electric field is expanded in both a Fourier series of the
fundamental phase ϕ = (κz − ωt ) and in a power series of ε,
as

E =
∞∑
j=1

j∑
p=− j

ε jE (p)
j (τ, ζ )eipϕ. (A2)

W , q, and d are expanded in the same way, and the leading
order of the electric field is fixed by (18).

In the same way, we assume that the expansions of
d and q start with the terms d (±1)

1 and q(±1)
1 , while W (0)

0 = −l
represents the population difference at thermal equilibrium.

2. Resolution of the perturbation scheme

The expansions are then introduced in the set of equations,
and the resulting system is solved order by order. First a
nontrivial equation arises at order ε, and it is found that W (1)

1 ,
d (0)

1 , and q(0)
1 vanish, and that

q(1)
1 = iω

�
d (1)

1 , d (1)
1 = 2Y �

D
E, (A3)

where we have set for shortness

Y = l|μ|2
h̄

, D = �2 − ω2, (A4)

while the wave equation yields the dispersion relation, as κ =
n0ω/c, with the linear refractive index n0 defined as

n2
0 = 1 + Q

D
, with Q = 2NY �

ε0
, (A5)

which can be made explicit to yield (19).
The first term in the expansion of the population difference,

W (0)
1 , is found at the following order ε2 only; it is zero. At

this order, it is also found that all second-harmonic terms E (2)
2 ,

d (2)
2 , and q(2)

2 are zero, except

W (2)
2 = 2Y

h̄D
E2. (A6)
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The fundamental frequency terms satisfy W (1)
2 = 0,

q(1)
2 = iω

�
d (1)

2 − 2Y

D

∂E
∂τ

, (A7)

d (1)
2 = 2Y �

D
E (1)

2 + 4iY ω�

D2

∂E
∂τ

, (A8)

while E (1)
2 remains free, with the wave equation yielding the

condition that V is the group velocity, V = vg = dω/dκ .
Regarding the zero-harmonic components, it is found that

q(0)
2 vanishes and that d (0)

2 is proportional to E (0)
2 , while no

information about E (0)
2 and W (0)

2 is obtained at this order.
At order ε3, third-harmonic terms are obtained.

First, we get

q(3)
3 = 3iω

�
d (3)

3 , d (3)
3 = 2Y �

D3
E (3)

3 − 4Y 2�

l h̄D3D
E3, (A9)

where we set D3 = �2 − 9ω2 for shortness. Using these ex-
pressions in the wave equation yields

E (3)
3 = −2QY

lh̄
(
n2

0 − n2
3

)
D3D

E3, (A10)

where n3 is the linear index for the third harmonic, defined by

n2
3 = 1 + Q

D3
. (A11)

In contrast, W (3)
3 is zero. These expressions are not needed

to derive the NLS equation, but will be used to compare the
present approximation with the numerical results.

The second-harmonic terms E (2)
3 , d (2)

3 , and q(2)
3 are zero,

while

W (2)
3 = 4Y

h̄D
EE (1)

2 + 4iY ω

h̄D2
E ∂E

∂τ
. (A12)

The fundamental harmonic components are

q(1)
3 = iω

�
d (1)

3 − 2Y

D

∂E (1)
2

∂τ
− 4iY ω

D2

∂2E
∂τ 2

, (A13)

d (1)
3 = 2Y �

D
E (1)

3 + 4iY ω�

D2

∂E (1)
2

∂τ
− 2Y �

lD
W (0)

2 E

− 4Y 2�

l h̄D2
E |E |2 − 2Y �(�2 + 3ω2)

D3

∂2E
∂τ 2

, (A14)

while W (1)
3 is proportional to EE (0)

2 . Using d (1)
3 in the wave

equation shows that E satisfies the differential equation (20),
the coefficients of which are expressed as

B = −ωQY

n0l h̄cD2
, C = −ωQ

2n0lcD
. (A15)

3. Zero-order harmonic

The importance of this point has been emphasized in the
body of the paper.

The equation that gives W (0)
2 is found at order ε3. It reduces

to

∂W (0)
2

∂τ
= 4Y

h̄D2
(�2 + ω2)

∂|E |2
∂τ

. (A16)

Here, W (0)
2 is obtained after integration, fixing the value of

the integration constant by the assumption that if the pulse is
localized, i.e., E vanishes at infinity, then W (0)

2 does also.
Making use of the obtained expression in Eq. (20) yields

the NLS equation (23), in which

� = −QY ω

n0l h̄cD3
(3�2 + ω2), (A17)

or, coming back to initial parameters, expression (24).
The zero-harmonic terms d (0)

3 and q(0)
3 are proportional to

E (0)
3 and ∂E (0)

2 /∂τ , respectively. However, the equations for
E (0)

2 and E (0)
3 are only found at orders ε4 and ε5, respectively.

It is seen that

∂2E (0)
j

∂τ 2
= 0, (A18)

for both j = 2 and 3, which, together with the assumption of
a localized pulse, show that E (0)

2 = E (0)
3 = 0. Consequently,

d (0)
2 , W (1)

3 , d (0)
3 , and q(0)

3 are also zero. We will not compute
W (0)

3 , which is not needed.

4. Solution of constant amplitude of NLS and Kerr effect

To investigate this hypothesis, the complete approximate
solution is required. In the course of the derivation, both the
second-harmonic and the rectified field terms of the popula-
tion difference W have been computed. It can be expressed
as

W = W (0)
0 + ε2W (0)

2 + ε2
(
W (2)

2 e2iϕ + cc+) + O(ε3),

(A19)

in which the second-order terms in the expansion of W
are given by formulas (A6) and (A16). Explicit computation
yields the expression (28) of W .

Pursuing the derivation a bit further, we can compute the
harmonic terms that reduce to a third harmonic for d and q
(we will neglect the third-harmonic term of E ), so that

d = εd (1)
1 eiϕ + ε3

(
d (1)

3 eiϕ + d (3)
3 e3iϕ

) + cc + O(ε4), (A20)

and an analogous expression of q. Here, d (1)
1 , d (1)

3 , and d (3)
3

are given by (A3), (A14), and (A9), respectively. The second
involves the expression (A16) of W (0)

2 , while d (3)
3 involves

E (3)
3 , which is given by (A10). For the stationary solution

(25), the derivative terms are zero and we can impose that the
higher-order arbitrary amplitudes E (1)

j ( j � 2) also are zero.
We write, finally, the atomic dipole as expression (29), in

which the coefficients a1 and a2 are expressed as

a1 = −l|μ|4�(3�2 + ω2)

h̄3(�2 − ω2)3 (A21)
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and

a3 = l|μ|4�
8h̄3ω2(�2 − ω2)

. (A22)

The third-harmonic resonance factor D3 = (�2 − 9ω2),
which appears in the denominator of the expressions of d (3)

3

involving E (3)
3 , and n3 [Eqs. (A9)–(A11)], completely

vanishes from the expression of a3 due to algebraic
simplification.

Using (A3), (A13), and (A9) in (30), and reducing the
expression for the case of the stationary solution, we get the
approximate solution for q given by (30).
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