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Optomechanical sideband asymmetry explained by stochastic electrodynamics
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Within the framework of stochastic electrodynamics we derive the noise spectrum of a laser beam reflected
from a suspended mirror. The electromagnetic field follows Maxwell’s equations and is described by a determin-
istic part that accounts for the laser field and a stochastic part that accounts for thermal and zero-point background
fluctuations. Likewise, the mirror motion satisfies Newton’s equation of motion and is composed of deterministic
and stochastic parts, similar to a Langevin equation. We consider a photodetector that records the power of the
field reflected from the mirror interfering with a frequency-shifted reference beam (heterodyne interferometry).
We theoretically show that the power spectral density of the photodetector signal is composed of four parts:
(i) a deterministic term with beat notes, (ii) shot noise, (iii) the actual heterodyne signal of the mirror motion,
and (iv) a cross term resulting from the correlation between measurement noise (shot noise) and backaction
noise (radiation pressure shot noise). The latter gives rise to the Raman sideband asymmetry observed with
ultracold atoms, cavity optomechanics, and with levitated nanoparticles. Our classical theory fully reproduces
experimental observations and agrees with the results obtained by a quantum theoretical treatment.
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I. INTRODUCTION

In Raman scattering a photon scatters from a target and
thereby loses or gains a quantum of vibrational energy of
the target [1,2]. The two processes are called Stokes and
anti-Stokes Raman scattering, respectively. Because of the ex-
istence of a vibrational ground state the Stokes process is more
probable, by a factor given by the Bose-Einstein distribution.
As a consequence, the Stokes and anti-Stokes peaks in a Ra-
man scattering spectrum are unequal in height and their ratio
can serve as a thermometer to determine the local temperature
[3,4]. A similar effect is observed in heterodyne spectroscopy
where the light scattered from a target is interfered with a
frequency-shifted reference beam (cf. Fig. 1). Here the spec-
trum consists of two peaks centered around the modulation
frequency of the reference beam. As in Raman scattering the
two peaks are unequal in height, an effect termed Raman side-
band asymmetry. The sideband asymmetry has been measured
with several systems, including atoms [5,6], spin systems [7],
mechanical oscillators [8–12], and levitated particles [13]. Its
practical use for thermometry has been discussed by Purdy
et al. [11].

Despite the similarity of Raman scattering and hetero-
dyne spectroscopy there is an important difference. In Raman
scattering one directly measures the scattered light, whereas
in heterodyne spectroscopy one measures an interferometric
signal. While the asymmetry in Raman scattering has a clear
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explanation the origin of the sideband asymmetry in hetero-
dyne measurements is still being debated [9,12,14–16]. Does
the sideband asymmetry originate from quantum fluctuations
of the field, the target, or both? Khalili et al. interpret the
asymmetry as arising from the quantum coherence between
the mechanical oscillator (target) and the detector, which
builds up during the measurement process and gives rise to
correlations between measurement noise and backaction noise
[14]. Weinstein et al. point out that the interpretation of the
sideband asymmetry depends on the measurement scheme
and that the imbalance can be attributed to the quantum
fluctuations of either the mechanical mode or the electro-
magnetic field [9]. Børkje substantiates this viewpoint and
finds that the interpretation depends on the choice of the
photodetector model, that is, whether the detector measures
symmetrized expectation values or normal- and time-ordered
expectation values [15]. For a detector that measures sym-
metric, nonordered expectation values, Børkje finds that the
sideband asymmetry is the result of interference between
quantum noise in the electromagnetic field and the position of
the mechanical oscillator, whereas for a detector that measures
normal- and time-ordered expectation values the sideband
asymmetry is a direct reflection of the quantum asymmetry
of the position noise of the mechanical oscillator. In a recent
study, Machado and Blanter point out that in cavity optome-
chanics the mechanical system is embedded in an optical
cavity, which further complicates the interpretation [16]. The
objective of this paper is to show that the sideband asymmetry
can be quantitatively derived without the use of quantum me-
chanics. We use stochastic electrodynamics, a classical theory
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that accounts for zero-point fluctuations [17–19], to derive
the sideband asymmetry for a simple cavity-free model. Our
results reproduce previous results and provide an intuitive
interpretation.

This article is structured as follows. Following this
Introduction we provide a short review of stochastic electro-
dynamics (Sec. II). We then use this framework to calculate
the shot noise measured by a photodetector (Sec. III). This
calculation outlines the main theoretical steps and serves
as a reference for later calculations. In Sec. IV we then
tackle the problem of a plane wave that is reflected from a
suspended mirror and then superimposed onto a frequency-
shifted reference beam. The reflected plane wave and the
frequency-shifted reference beam are directed onto a photode-
tector, which measures the optical power. Based on the optical
power we evaluate the power spectral density (PSD). In Sec. V
we analyze the different terms contributing to the PSD and
discuss the results. This is followed by Sec. VI in which we
summarize our main findings. In the Appendix, we provide
further details on our derivation, discuss the case of homodyne
detection, and, as a reference, provide a quantum-mechanical
treatment of the same problem.

II. STOCHASTIC ELECTRODYNAMICS

In stochastic electrodynamics [17–20] one assumes that
all excitations (matter and field) are composed of a deter-
ministic part and a stochastic part. Accordingly, the electric
field at position r and time t must be expressed as E(r, t ) =
E0(r, t ) + δE(r, t ), where E0 denotes the deterministic part
and δE denotes the stochastic, statistically stationary fluctua-
tions. We assume the electromagnetic field to be in thermal
equilibrium at a temperature T . This equilibrium condition
dictates a relation between the fluctuations and loss channels
of the system, whereupon the cross-spectral density of the
stochastic field at points r and r′ is governed by the fluctuation
dissipation theorem (FDT) [21–23]

SEj Ek (r, r′, ω) ≡ 1

2π

∫
R

dτ
〈
δEj (r, t )δEk (r′, t + τ )

〉
eiωτ

= μ0ω

π

[
h̄ω

2
coth

(
h̄ω

2kBT

)]
Im[Gjk (r, r′, ω)],

(1)

where δEj is the component along the Cartesian unit vector
along the j axis, τ = t − t ′ the time separation (following
from stationarity), h̄ the reduced Planck constant, kB the
Boltzmann constant, and μ0 the vacuum permeability. The
average 〈·〉 denotes a statistical average over many realiza-
tions (which coincides with the time average as the field
fluctuations are ergodic), the expression in square brackets is
the average energy of a mode with angular frequency ω that
tends to h̄|ω|/2 in the zero temperature limit, and Gjk is the
Cartesian element of the equilibrium Green’s tensor Ḡ that
consists equally of an outgoing (Ḡ+) and an incoming part
(Ḡ−) and is zero at infinity. This superposition ensures that
all charges are in equilibrium with the radiation field [24].
According to Eq. (1), fluctuations of the field are balanced
by the dissipation represented by the imaginary part of Ḡ.

In 1969 Boyer showed that the energy density of a fluc-
tuating field at zero temperature must be proportional to the
angular frequency ω (per mode); otherwise, the spectrum
would not be Lorentz invariant [25]. Planck’s constant is then
introduced as a scale parameter. Expressing the fluctuating
vacuum field as

δE(r, t ) ≡
2∑

σ=1

∫
R3

dk |δE (ωk )| nσ (k)

× cos[k·r − ωkt + θσ (k)], (2)

where ωk = c|k| is the angular frequency that corresponds to
the wave vector k, with c being the vacuum speed of light,
σ denotes the two transverse polarizations, θσ (k) is a random
phase, and δE (ωk ) is the spectrum of the fluctuating field, the
two-point correlation can be shown to read [26]

〈δEi(r, t )δEj (r′, t + τ )〉 =
∫
R3

dk
h̄ωk

16π3ε0
(δi j − kik j/k2)

× cos[k·(r − r′) + ωkτ ], (3)

where ε0 denotes the vacuum permittivity, ki the wave vector
component along the i axis, k = |k| the wave number, and
δi j the Kronecker delta. It can be shown that this result is in
accordance with the FDT in Eq. (1) in the zero-temperature
limit.

In analogy to the electric field we also decompose the
mechanical degree of freedom z(t ), i.e., the position of the
suspended mirror along the z axis, into a deterministic and a
stochastic part z(t ) = z0(t ) + δzrp(t ) + δzth(t ), where z0 and
δzrp denote the response to the deterministic and stochas-
tic parts of the electromagnetic field, respectively, and δzth

denotes the position fluctuations due to the coupling to an
effective thermal bath, e.g., residual gas at temperature T . The
corresponding FDT is [21]

Sth
zz(ω) = 1

2π

∫
R

dτ 〈δzth(t ) δzth(t + τ )〉 eiωτ

= 1

πω

[
h̄	0

2
coth

(
h̄	0

2kBT

)]
Im[χ (ω)], (4)

or equivalently Sth
zz = |χ |2Sth

FF with the force spectral density

Sth
FF = γ m

π

[
h̄	0

2
coth

(
h̄	0

2kBT

)]
. (5)

Here, the fluctuations δzth are balanced by the losses expressed
by the imaginary part of the susceptibility that reads

χ (ω) = [
m

(
	2

0− ω2 − iγω)
)]−1

, (6)

where m is the mass of the suspended mirror, 	0 its natural
mechanical frequency, and γ its damping. In Sec. IV we will
study the interaction of the stochastic field with the suspended
mirror and make use of both the FDT for the electromagnetic
field (1) and the FDT of the mechanical motion (4).

The interplay of the fluctuating electromagnetic and
mechanical degrees of freedom forms the framework of
stochastic electrodynamics. In the past, it has been applied
to various phenomena, including van der Waals and Casimir
forces [20,27], blackbody radiation [25], heat transfer [28],

043511-2



OPTOMECHANICAL SIDEBAND ASYMMETRY EXPLAINED … PHYSICAL REVIEW A 106, 043511 (2022)

FIG. 1. The field E0 of frequency ω0 is reflected from a suspended mirror. The reflected field Esc is combined with a reference field Eref

of frequency ω0 + � and directed on a photodetector that measures the power P(t ). The mirror is characterized by the susceptibility χ (ω),
which transduces the radiation pressure force F into a mirror displacement z0. A stochastic background field δE, originating from thermal and
zero-point fluctuations, is superimposed to all fields. Similarly, a stochastic displacement δz accounts for thermal and zero-point fluctuations
of the mirror.

the ground state of the hydrogen atom and the absence of
atomic collapse [29], and vacuum friction [30].

III. PHOTODETECTOR SHOT NOISE

Here we derive the shot noise measured by a photodetector.
We consider a photodetector that renders the optical power (cf.
Fig. 2)

P(t ) =
∫

A
da I (x, y, t ), (7)

where I (x, y, t ) is the intensity in the detector plane (z = 0)
and A is the detector area, which is assumed to be much
larger than any relevant wavelength. Taking into account the
finite response time τdet of the photodetector, the intensity is
defined as

I (r, t ) ≡ ε0c E(r, t ) · E(r, t )|τdet , (8)

FIG. 2. A photodetector with area A is irradiated by a deter-
ministic laser field E0(r, t ) and a fluctuating vacuum field δE(r, t ).
Interference between the two gives rise to shot noise.

where |τdet specifies that only frequencies ω/(2π ) < τ−1
det are

recorded. In the following we take the finite response time into
account by averaging the intensity in the temporal domain and
suppressing any frequency components ω/(2π ) > τ−1

det in the
spectral domain.

We are interested in the power spectral density (PSD) of
the detector signal (7), defined as

SPP(ω) ≡ 1

2π

∫
R

dτ 〈P(t )P(t + τ )〉eiωτ

= 1

2π

∫
A

da
∫

A
da′

∫
R

dτ 〈I (r, t ) I (r′, t + τ )〉eiωτ ,

(9)

with 〈I (r, t ) I (r′, t + τ )〉 being the intensity correlation func-
tion.

The field E(r, t ) incident on the detector is the sum of a
deterministic monochromatic field at frequency ω0 = ck0

E0(r, t ) = E0 cos(k0z − ω0t ) nx, (10)

polarized along the x axis and a fluctuating vacuum field
with zero mean 〈δE〉 = 0. Neglecting terms second order in
fluctuations the intensity (8) can be represented as

I (r, t ) � ε0c|E0(r, t )|2 + 2ε0c E0(r, t ) · δE(r, t ) (11)

≡ I0 + δI (r, t ), (12)

where 〈δI〉 = 0 and I0 ≡ ε0cE2
0 /2. The intensity correlation

function can then be written as

〈I (r, t ) I (r′, t + τ )〉 = I2
0 + 〈δI (r, t ) δI (r′, t + τ )〉, (13)

where

〈δI (r, t ) δI (r′, t + τ )〉 = 2ε2
0c2E2

0 cos[k0(z − z′) − ω0τ ]

× 〈δEx(r, t ) δEx (r′, t + τ )〉, (14)

which depends on the two-point correlation function
〈δEx(r, t ) δEx (r′, t + τ )〉 of the fluctuating vacuum field at the
surface of the detector.
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We now introduce Eq. (13) and Eq. (14) into the expression
for the PSD in Eq. (9) which yields

SPP(ω) = P̄2δ(ω) + 2ε0c
P̄

A

∫
A

da
∫

A
da′

× [SEE (r, r′, ω+ω0) + SEE (r, r′, ω−ω0)], (15)

where P̄ = AI0 = (A/2)ε0cE2
0 is the power of the incident

field, δ(ω) is the Dirac delta function, and SEE ≡ SExEx ; see
Eq. (1). To proceed we need to derive SEE associated with
vacuum fluctuations.

We integrate the two-point correlation function (3) over the
detector plane (z = 0) and obtain∫

A
da

∫
A

da′ 〈δEx(r, t ) δEx (r′, t + τ )〉

= h̄cA

8πε0

∫ ∞

0
dkzkz (eickzτ + c.c.), (16)

where we restricted the integration domain to kz ∈ [0,∞] to
include the fields that propagate towards the detector. This
immediately leads to∫

A
da

∫
A

da′ SEE (r, r′, ω) = h̄|ω|A
8πε0c

. (17)

Inserting Eq. (17) into Eq. (15) yields

SPP(ω) = P̄2 δ(ω)

+ 2ε0c P̄

(
h̄|ω − ω0|

8πcε0
+ h̄|ω + ω0|

8πcε0

)
, (18)

which, for frequencies |ω| 	 ω0, reduces to

SPP(ω) � P̄2 δ(ω) + P̄
h̄ω0

2π
. (19)

This result is consistent with Schottky’s analysis based on the
assumption of discrete detection events of energy h̄ω0 [31].
As shown in Appendix A, the result (19) can be equivalently
derived using the fluctuation dissipation theorem (1).

IV. HETERODYNE MEASUREMENT OF
A SUSPENDED MIRROR

Based on the results of the previous section we now pro-
ceed to analyzing the system of interest illustrated in Fig. 1. A
deterministic electromagnetic field E0 with center frequency
ω0 is reflected (scattered) from a suspended perfect mirror (re-
flection coefficient r = 1). The scattered field Esc is combined
with a frequency-shifted (deterministic) reference field Eref

with center frequency ω0 + �. The fields are then directed
on a photodetector that measures the power P, from which we
derive an expression for the PSD. A stochastic background
field δE, originating from thermal and zero-point fluctuations,
is superimposed to all fields. The mirror is characterized
by the susceptibility χ (ω), which transduces the radiation
pressure force into a mirror displacement z0 + δzrp, where
z0 originates from the response to the deterministic field and
δzrp from the response to the stochastic electromagnetic field.
The parameters of the mirror are its mass m, its mechanical
eigenfrequency 	0, and its damping γ . Moreover, an addi-
tional stochastic displacement δzth accounts for fluctuations of

the mirror originating from a coupling to an external thermal
bath, e.g., residual gas at temperature T . In the following we
choose the origin of the coordinate system to coincide with the
static mirror displacement z0 so that the mirror displacement
δz = δzrp + δzth originates exclusively from fluctuations.

A mirror displacement of δz changes the optical path length
by 2δz and hence the reflected (scattered) field becomes

Esc(z, t ) = −E0 Re[e−ik0(z−2δz) e−iω0t ] nx. (20)

At the location of the detector the scattered field (Esc) and the
reference field (Eref ) read as

Esc(t ) = −E0 cos[2k0δz − ω0t]nx, (21)

Eref (t ) = X cos[(ω0 + �)t]nx + Y sin[(ω0 + �)t]nx, (22)

where we suppressed common phase terms and utilized the
quadratures X and Y in the expression for the reference field.
For small mirror displacements (k0δz 	 1) we expand to first
order and obtain

Esc(t ) = −E0[cos(ω0t ) + 2k0δz(t ) sin(ω0t )]nx, (23)

where we have allowed the displacement δz to be time depen-
dent. This is valid in the adiabatic limit 	0 	 ω0; that is, at
any instant of time the mirror can be regarded as being fixed.
According to Eq. (23) the position fluctuations are imprinted
on the phase quadrature of the field.

We introduce the Fourier transform defined as E(r, ω) ≡
(2π )−1

∫
R dt E(r, t ) exp(iωt ) so that the Fourier transform of

the intensity (8) can be represented as

I (x, y, ω) = ε0c
∫
R

dω′ E(x, y, ω′) · E(x, y, ω − ω′), (24)

which allows us to express the PSD (9) as

SPP(ω) =
∫

A
da

∫
A

da′
∫
R

dω′ 〈I (x, y, ω) I∗(x′, y′, ω′)〉.
(25)

In order to obtain the statistical average experimentally, one
records a time trace P(t ) over a finite time period and
then evaluates the Fourier transform P(ω) and the product
P(ω) P∗(ω′). This procedure is repeated many times, and at
the end one takes the average 〈P(ω) P∗(ω′)〉 of the individual
results. Note that in the following we are repeatedly using
the fact that for a statistically stationary process different
frequency components do not correlate, as dictated by the
Wiener-Khinchin theorem. This can formally be expressed as
〈P(ω) P∗(ω′)〉 ∝ δ(ω−ω′).

A. Evaluation of the detector signal

The electric field at the detector is composed of three parts

E(r, t ) = Esc(r, t ) + Eref (r, t ) + δE(r, t ), (26)

where Esc is the field scattered (reflected) from the mirror
(23), Eref is the frequency-shifted reference field (22), and δE
are the background fluctuations. After inserting the fields into
Eq. (8), accounting for the finite response time of the detector,
and suppressing terms quadratic in fluctuations, we obtain an
expression for the intensity I ≡ ε0c(i1/2 + i2 + i3). The first
term i1 denotes the deterministic intensity of the reference
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beam and the reflected beam, respectively, with frequency
components at ω = 0 and ω = ±�, namely

i1(ω) = (
E2

0 + E+E−
)
δ(ω)

− E0E−δ(ω + �) − E0E+δ(ω + �), (27)

where we have defined E± ≡ X ± iY . The second term i2
denotes the terms responsible for shot noise, that is,

i2(ω) = −E0 δEx(ω − ω0) − E0 δEx(ω + ω0)

+ E+ δEx(ω − ω0 − �) + E− δEx(ω + ω0 + �).
(28)

Finally, i3 denotes the interferometric signal of the mirror’s
position, the actual measurement

i3(ω) = −ik0E0[E− δz(ω + �) − E+ δz(ω − �)]. (29)

To ease the notation we dropped the x, y dependence in the
arguments of δEx. The PSD of the detector signal is calculated
according to Eq. (25) and yields four terms:

SPP(ω) = S(1)
PP (ω) + S(2)

PP (ω) + S(3)
PP (ω) + S(4)

PP (ω). (30)

The first term is the deterministic signal, the second the shot
noise, the third the signal (mirror motion), and the fourth a
cross term between signal and shot noise (product of i2 and i3).
It is the latter that gives rise to the sideband asymmetry. The
remaining two cross terms (product of i1 and i2 and product of
i1 and i3) are zero because they are linear in fluctuations and
average to zero. In the following we derive each of the four
terms separately.

1. Deterministic signal

Using the powers of incident and reference beams P̄ =
(A/2)ε0cE2

0 and P̄ref ≡ (A/2)ε0c|E+|2, respectively, we ob-
tain

S(1)
PP � P̄2

ref δ(ω) + P̄P̄ref δ(ω + �) + P̄P̄ref δ(ω − �), (31)

where we made use of the fact that only same-frequency
components correlate and assume now and in the following
that the power of the reference beam is larger than the power
of the incident beam (P̄ref � P̄).

2. Shot noise

The intensity correlation function of the shot-noise terms
(i2) reads

〈i2(ω) i∗2 (ω′)〉
= E2

0 〈δEx(ω − ω0) δE∗
x (ω′ − ω0)〉

+ E2
0 〈δEx(ω + ω0)δE∗

x (ω′ + ω0)〉
+ E+E− 〈δEx(ω − ω0 − �)δE∗

x (ω′ − ω0 − �)〉
+ E+E− 〈δEx(ω + ω0 + �)δE∗

x (ω′ + ω0 + �)〉 . (32)

The corresponding PSD becomes

S(2)
PP (ω) = P̄

4π
h̄ (|ω − ω0| + |ω + ω0|)

+ P̄ref

4π
h̄ (|ω − ω0 − �| + |ω + ω0 + �|), (33)

where we made use of Eq. (17). For frequencies |ω ± ω0| �
ω0 and |ω ± (ω0 + �)| � ω0 we find

S(2)
PP (ω) � P̄ref

2π
h̄ω0. (34)

3. Interferometric signal

The intensity correlation function generated by the in-
terference of the reference field Eref and the scattered field
Esc is

〈i3(ω) i∗3(ω′)〉 = k2
0E2

0 E+E−[〈δz(ω+�) δz∗(ω′+�)〉
+ 〈δz(ω−�) δz∗(ω′−�)〉]. (35)

The PSD becomes

S(3)
PP (ω) = 4k2

0 P̄P̄ref

∫
R

dω′〈δz(ω − �) δz∗(ω′ − �)〉

+ 4k2P̄P̄ref

∫
R

dω′〈δz(ω + �) δz∗(ω′ + �)〉.
(36)

The two integrals in Eq. (36) correspond to the PSD of the
mirror displacement which we write as

δz(t ) = δzrp(t ) + δzth(t ). (37)

In terms of the susceptibility (6) we can represent Eq. (37) in
the frequency domain as

δz(ω) = χ (ω) [Frp(ω) + Fth(ω)], (38)

where Frp is the Fourier transform of the radiation pressure
force. It can be expressed as [20]

Frp(ω) = 2

c

∫
Am

da δI (x, y, ω), (39)

with Am being the mirror area and δI the Fourier transform of
the fluctuating incoming intensity, namely

δI (ω) = ε0c E0 δEx(ω + ω0) + ε0c E0 δEx(ω − ω0). (40)

Again using Eq. (17) it immediately follows that the PSD of
the force reads

Srp
FF = 4h̄ω0

2πc2
P̄, (41)

which is the radiation pressure shot noise.
Srp

FF heats the motion of the mirror while the intrinsic
damping γ in Eq. (6) cools it. The steady-state energy E∞ =
m	2

0〈δz2
rp〉 is calculated as

E∞ = m	2
0

∫ ∞

−∞
dω |χ (ω)|2Srp

FF = 2P̄

mc2

h̄ω0

γ
, (42)

where we have used Eq. (6) and Eq. (41). Introducing the
photon recoil heating rate  defined as the energy added to
the mirror (in units of h̄	0) per unit time we can express
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the steady-state energy as the ratio of heating and cooling as
E∞ = h̄	0 /γ . With the help of Eq. (42) we then obtain

 = 4P̄

2mc2

ω0

	0
, (43)

which is also referred to as the quantum backaction rate.
Since Frp and δzth are uncorrelated, Eqs. (38) and (41) yield

Szz(ω) = |χ (ω)|2(Srp
FF + Sth

FF

)
, (44)

where Sth
FF is given by the FDT in Eq. (5). Equation (36) now

yields

S(3)
PP (ω) = 4k2

0 P̄P̄ref[|χ (ω + �)|2 + |χ (ω − �)|2]

× (
Srp

FF + Sth
FF

)
. (45)

The expression consists of two noise sidebands at ω = � ±
	0 of equal amplitude. Both of these sidebands are made of
two contributions, one stemming from the intrinsic position
fluctuations of the mirror (δzth) and another induced by ra-
diation pressure shot noise (δzrp). The latter is referred to as
measurement backaction. For a high-Q oscillator (γ 	 	0)
and a frequency shift much larger than the oscillation fre-
quency (� � 	0), we arrive at

S(3)
PP (� ± 	0) � 4k2

0 P̄P̄ref

2z2
zp

πγ

(


γ
+ n̄ + 1

2

)
, (46)

where z2
zp = h̄/(2m	0) is the mean-square amplitude of

the zero-point motion and n̄ ≡ [exp(h̄	0/kBT ) − 1]−1 is the
mean thermal occupation number. Finally, for kBT/ h̄	0 	 1
we arrive at

S(3)
PP (� ± 	0) � 4k2

0 P̄P̄ref

2z2
zp

πγ

(


γ
+ 1

2

)
. (47)

4. Correlation between imprecision and backaction

The last term contributing to the intensity correlation func-
tion is a cross term between i2 and i3, that is,

〈i2(ω) i∗3 (ω′)〉 + 〈i3(ω) i∗2 (ω′)〉
= −2k0E0E+E−Im[〈δEx(ω + ω0 + �) δz∗(ω′ + �)〉

− 〈δEx(ω − ω0 − �) δz∗(ω′ − �)〉]. (48)

In order to evaluate Eq. (48), let us first derive an expression
for the correlation function 〈δEx(ω ± (ω0 ± �)) δz∗(ω′ ±
�)〉. Introducing Eq. (38) and using the fact that δEx and δzth

are uncorrelated 〈δExδz∗
th〉 = 0 leads to

〈δEx(ω ± ω0)δz∗(ω′)〉
= χ∗(ω′)〈δEx(ω ± ω0)F ∗

rp(ω′)〉

= 2ε0E0χ
∗(ω′)

∫
Am

da 〈δEx(ω ± ω0) δE∗
x (ω′ ± ω0)〉,

(49)

where we have shifted both arguments by ±� for better read-
ability. The integral in Eq. (49) can directly be evaluated using
Eq. (17), which yields

〈δEx[ω ± (ω0 + �)]δz∗(ω′ ± �)〉

= h̄|ω ± (ω0 + �)|E0

4πc
χ∗(ω ± �)δ(ω − ω′). (50)

Inserting Eq. (50) in Eq. (48) immediately leads to the final
expression

S(4)
PP (ω) = 4k2

0 P̄P̄ref
h̄

2π
Im[χ (ω + �) − χ (ω − �)], (51)

for frequencies |ω ± (ω0 + �)| � ω0. Again considering a
high-Q oscillator (γ 	 	0) and a frequency shift much larger
than the oscillation frequency (� � 	0) we obtain

S(4)
PP (� ± 	0) � ∓ 4k2

0 P̄P̄ref

z2
zp

πγ
, (52)

that is, one sideband has a positive amplitude, whereas the
other one has a negative amplitude. When combined with S(3)

PP
we find that one sideband gets reduced and the other one
increased in amplitude.

The derivation of the motional sideband asymmetry using
stochastic electrodynamics is the main result of this article.
In the following we show how this result manifests itself in
balanced photodetection.

B. Balanced photodetection

Balanced detection consists of measuring a differential sig-
nal with a pair of photodetectors. This eliminates the signal
that is common to both photodetectors, that is, any dc signal
or classical variations in laser power (relative intensity noise).
Combining the four contributions of the PSD and rejecting all
deterministic terms yields

SPP(ω) = P̄ref

2π
h̄ω0 + 4k2

0 P̄P̄ref [|χ (ω + �)|2

+ |χ (ω − �)|2]
(
Srp

FF + Sth
FF

)

+ 4k2
0 P̄P̄ref

h̄

2π
Im[χ (ω + �) − χ (ω − �)] .

(53)

We recall that P̄ and ω0 are the power and frequency of the
laser incident on the mirror, and P̄ref and ω0 + � are the power
and the frequency of the reference beam, respectively. The
result (53) is expressed in terms of the susceptibility χ (ω) in
Eq. (6), the radiation pressure shot noise Srp

FF in Eq. (41), and
the PSD of the mirror fluctuations Sth

zz = |χ |2Sth
FF in Eq. (4).

The first line is the shot noise (assuming � 	 ω0 and P̄ 	
P̄ref) and the second and third lines are the heterodyne side-
bands, which differ in magnitude due to correlations between
measurement and backaction. The difference in amplitudes
is proportional to twice the PSD of the mirror’s zero-point
motion limT →0 Sth

zz(	0) = z2
zp/(πγ ) = h̄/(2πmγ	0), a phe-

nomenon referred to as sideband asymmetry. As an example,
we show in Fig. 3 the PSD for the case of kBT = 3h̄	0.

V. DISCUSSION

In the analysis presented here, the sideband asymmetry has
its origin in the cross term S(4)

PP (ω) and can be traced back to
the correlation between two pathways for field fluctuations to
reach the detector, a direct path (represented by i2) and an
indirect path via reflection from the mirror (represented by
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FIG. 3. Heterodyne spectrum SPP(ω) for kBT = 3h̄	0 featuring
a sideband asymmetry. The signal (red) is on top of a background
due to shot noise (gray). It is assumed that γ 	 	0 	 �.

i3). Field fluctuations that reach the detector via the indirect
path impart radiation pressure on the mirror and the resulting
displacement gives rise to optical path length modulation.
For the zero-temperature limit this path length modulation
corresponds to the zero-point motion of the mirror, resulting in
a motional sideband asymmetry of 2 × limT →0 Sth

zz(	0). This
viewpoint agrees with the interpretation by Weinstein et al.
[9].

Note that the sideband asymmetry is independent of tem-
perature, that is, the difference between the two sidebands
amounts to 2 × z2

zp/(πγ ) no matter how hot the mirror is. This
difference can be used as a ruler to determine the temperature
of the mirror. To see this we note that, for sufficiently small
shot noise, the amplitude of the blue sideband at ω = � + 	0

(anti-Stokes sideband) is proportional to the mean thermal
occupation number n̄ [cf. Eq. (46)], whereas the amplitude of
the red sideband at ω = � − 	0 (Stokes sideband) is propor-
tional to n̄ + 1 with the same proportionality constant. Thus,
by means of the sideband difference, we can determine n̄ and
hence the temperature of the mirror. Determining the temper-
ature of a thermal bath by means of the sideband asymmetry
is denoted sideband thermometry [11].

Let us now introduce the total PSD Stot
zz describing the

mirror displacement δz. The mean-square displacement can
be expressed in terms of SPP as

〈δz2〉 =
∫
R

dω Stot
zz (ω) = (

4k2
0 P̄P̄ref

)−1
∫
R

dω SPP(ω), (54)

and can be calculated using Eq. (53). In the derivation of
Eq. (53) we assumed that the power P̄ that is received by the
photodetector is the same as the power that is incident on the
mirror (the P̄ in the expression of Srp

FF ). However, due to im-
perfect detection (photon losses, photon absorption, and finite
detector efficiency), this might not be the case. To account for
such imperfect detection we introduce the detection efficiency
η ∈ [0, 1] and substitute all the P̄ in Eq. (53) by ηP̄ while
leaving the P̄ in the expression of Srp

FF unchanged. With the
help of Eq. (53), Eq. (54), and defining the measurement noise

Sim
zz (ω) ≡ h̄ω0/(8πk2

0ηP̄), we then obtain

Stot
zz (ω) = Sim

zz (ω) + Sfluct
zz (ω)

+ [|χ (ω + �)|2 + |χ (ω − �)|2] Srp
FF , (55)

where we defined

Sfluct
zz (ω) ≡ [|χ (ω + �)|2 + |χ (ω − �)|2]Sth

FF (56)

+ h̄

2π
Im[χ (ω + �) − χ (ω − �)]. (57)

This term describes intrinsic fluctuations (thermal and zero
point) that are independent of laser power P̄. On the other
hand, measurement noise Sim

zz scales inversely with P̄ and
radiation pressure shot noise Srp

FF scales linearly with P̄;
see Eq. (41). Therefore, there is an optimum power P̄ that
minimizes the total noise Stot

zz . This minimum occurs when
measurement noise equals radiation pressure shot noise,
that is,

Sim
zz (ω) = [|χ (ω + �)|2 + |χ (ω − �)|2] Srp

FF (ω), (58)

a condition referred to as standard quantum limit (SQL).
Because γ 	 � the spectra of χ (ω ± �) do not over-
lap and hence one can only be resonant with one of the
terms in the bracket. Using Sim

zz = h̄ω0/(8πk2
0ηP̄) and Srp

FF =
4h̄ω0P̄/(2πc2) we find

Sim
zz Srp

FF = 1

η

h̄2

4π2
. (59)

The inclusion of thermal noise makes this product worse and
in general Sim

zz Srp
FF � h̄2/(4π2η). This Heisenberg relation is

a factor of four worse than the Heisenberg relation for ho-
modyne detection (� = 0) (cf. Appendix B). The difference
is analogous to the well-known signal-to-noise difference be-
tween homo- and heterodyne detection in spectroscopy.

In Appendix C we use the input-output formalism to show
that a quantum framework leads to the same result as Eq. (53).
In general, we can expect stochastic electrodynamics to yield
the same predictions of quantum mechanics as long as the
dynamics of the system and the measurement process are
linear. Indeed, in order to demonstrate a genuine quantum
phenomenon—a phenomenon that cannot be explained by
classical mechanics even after the introduction of zero-point
fluctuations—we must introduce nonlinearities in the system,
as discussed in Appendix C.

VI. CONCLUSIONS

Using stochastic electrodynamics and a linearized theory
of light-matter interaction we have derived the heterodyne
spectrum resulting from the reflection of a laser beam from
a suspended mirror. We find that the sideband asymmetry
results from the correlation of two ways that field fluctuations
can reach the detector: a direct path and an indirect path via
reflection from the mirror. Our result for the power spectral
density of the detected power agrees with the results obtained
by other methods, such as input-output theory based on quan-
tum Langevin equations [9] or quantum linear response theory
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[14] (cf. Appendix C). We stress that our calculation requires
no quantum mechanics and that a sideband asymmetry can
be quantitatively explained by classical means if one assumes
zero-point fluctuations, that is, that light and matter fluctuate
at zero temperature. The theory outlined here can be readily
extended to the motion of other systems that respond linearly
to the electromagnetic field (e.g., levitated particles [32,33])
and adjusted for finite detection efficiencies and finite gas
pressures. The Raman sideband problem studied in this paper
adds to the list of problems that can be successfully treated by
stochastic electrodynamics.
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APPENDIX A: DETECTOR SHOT NOISE
DERIVED VIA FDT

We make use of the FDT (1) and the equilibrium scalar
Green’s function

G0(r, r′, ω) = eik|r−r′ | + e−ik|r−r′ |

8π |r − r′| . (A1)

The first term corresponds to the outgoing Green’s function
G+

0 and the second term to the incoming Green’s function G−
0 .

The equal superposition ensures that there is no net energy
transport (equilibrium), i.e., the time-averaged Poynting vec-
tor is zero at any point in space. The dyadic Green’s function is
derived as Ḡ(r, r′, ω) = [I + k−2∇ ⊗ ∇]G0(r, r′, ω), where
I denotes the 3 × 3 identity matrix and ⊗ the dyadic product.
We consider only vacuum fields propagating towards the de-
tector and hence the incoming part of the equilibrium Green’s
function Ḡ− needs to be set to zero.

Using the angular spectrum representation of the Green’s
function [20] it immediately follows that

∫
A

da G+
xx(r, r′, ω) = ic

4ω
. (A2)

With the help of Eq. (1) we now obtain

∫
A

da SEE (r, r′, ω) = μ0c

4π

[
h̄ω

2
coth

(
h̄ω

2kBT

)]
. (A3)

Inserting Eq. (A3) into Eq. (15), assuming that |ω ± ω0| �
ω0, and taking the zero-temperature limit yields

SPP(ω) � P̄2 δ(ω) + P̄
h̄ω0

2π
, (A4)

in agreement with the result in Eq. (19).

APPENDIX B: HOMODYNE DETECTION

To obtain the solutions for the homodyne case we cannot
simply set � = 0 in the final results since we assumed � �
	0. We therefore return to the intensity at the detector and set

� = 0. This yields I ≡ ε0c (i1/2 + i2 + i3), where

i1(ω) = (X̃ 2 + Y 2) δ(ω), (B1)

i2(ω) = (X̃ + iY ) δEx(ω − ω0) + (X̃ − iY ) δEx(ω + ω0),
(B2)

i3(ω) = −2k0E0Y δz(ω), (B3)

where we have defined X̃ ≡ X − E0. As before, the three
terms i1, i2, and i3 give rise to a PSD of a balanced homodyne
detection scheme with four terms

Shom
PP (ω) = P̃ref

2π
h̄ω0 + 16k2

0 P̄P̃ref sin(2θ )
h̄

4π
Re[χ (ω)]

+ 16k2
0 P̄P̃ref sin2θ |χ (ω)|2(Srp

FF + Sth
FF

)
, (B4)

where P̃ref ≡ (A/2)ε0c(X̃ 2 + Y 2)/2, cos θ ≡ X̃/(X̃ 2 +
Y 2)1/2, and sin θ ≡ −Y/(X̃ 2 + Y 2)1/2. Note that θ is the
phase between the signal (field reflected from a suspended
mirror) and the reference beam. Following the same steps as
in the heterodyne detection scheme it immediately follows
that for θ = π/2 the product of imprecision and backaction is

Sim
zz Srp

FF = 1

η

h̄2

16π2
, (B5)

which is a factor of four better than the Heisenberg relation
for heterodyne detection (59). Note that angles θ �= π/2 can
reduce Shom

PP below the shot-noise limit and give rise to pon-
deromotive squeezing.

APPENDIX C: QUANTUM TREATMENT OF THE
SIDEBAND ASYMMETRY

We show that the results derived in the main article agree
with a quantum-theoretical treatment of the problem. First, we
briefly define and motivate the expression for the Hamiltonian
that generates the dynamics between the suspended mirror
and the electromagnetic field. Second, we derive the Langevin
equation for the center-of-mass operator and the input-output
relation for the quadratures of the electromagnetic field. Fi-
nally, we combine all results to derive an expression for the
power spectral density (PSD) obtained by an ideal balanced
heterodyne (homodyne) detection scheme and show that it
agrees with Eq. (53) [Eq. (B4)] in the article.

We consider a suspended mirror of mass m and natural
frequency 	0 in the presence of a state of the electromagnetic,
where all modes are in vacuum except for a highly populated
coherent mode at frequency ω0. In the system described by
Fig. 1, the populated mode is a plane wave of angular fre-
quency ω0 propagating along the z axis. The total Hamiltonian
Ĥ = Ĥc.m. + Ĥem + Ĥint consists of three parts. The first term,

Ĥc.m. = h̄	0b̂†b̂, (C1)

generates the free dynamics of the suspended mirror with op-
erators that fulfill the bosonic commutation rules [b̂, b̂†] = 1.
The center-of-mass operator reads ẑ = zzp(b̂ + b̂†) with zzp =√

h̄/(2m	0). The origin of the coordinate system is chosen to
coincide with the mirror’s equilibrium position in the presence
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of the coherent beam. The second term,

Ĥem = h̄
∑

ε

∫
R3

dk �(k)â†
ε (k)âε (k), (C2)

generates the free dynamics of the electromagnetic field in
the presence of the mirror with operators that fulfill the
bosonic commutation rules [âε (k), â†

ε′ (k′)] = δεε′δ(k − k′).
The indices ε ∈ {1, 2} and k ∈ R3 fully characterize each
eigenmode of the electromagnetic field at frequency ω(k) =
c|k|. Note that the Hamiltonian is defined in a reference frame
rotating at frequency ω0 of the strongly populated coherent
mode, where �(k) ≡ ω(k) − ω0. The third term generates
the coupled dynamics induced by radiation pressure. For
(〈ẑ2〉)1/2 smaller than any relevant length scale associated to
the electromagnetic fields, and in a frame that is displaced
with respect to the coherent mode, the Hamiltonian can be
linearized in ẑ and reads

Ĥint = h̄
∑

ε

∫
R3

dk[Gε (k)â†
ε (k) + G∗

ε (k)âε (k)](b̂ + b̂†).

(C3)
Note that a closed expression for the coupling strengths Gε (k)
can be derived and expressed in terms of the eigenmodes of
the electromagnetic field [34,35].

It is now straightforward to derive the Langevin equa-
tion for ẑ by first deriving the Heisenberg equation dẑ/dt =
[ẑ, Ĥ ]/(ih̄) in a time local form and including a phenomeno-
logical damping rate γ due to coupling to an additional
thermal environment (residual gas) at a temperature T [36].
In the spectral domain we have

ẑ(ω) = χ (ω)[F̂rp(ω) + F̂th(ω)], (C4)

where the susceptibility reads χ (ω) = [m(	2
0 − ω2 −

iγω)]−1. The above operator-valued equation corresponds
to that of a driven harmonic oscillator with zero-mean
driving 〈F̂rp(ω)〉 = 〈F̂th(ω)〉 = 0. The first driving term
F̂rp(ω) = h̄

√
[âin(ω) + â†

in(ω)]/zzp originates from the
radiation-pressure induced interaction with a single collective
mode of the electromagnetic field, the so-called input
interacting mode [37]

âin(ω) ≡ lim
t0→−∞

1√


∑
ε

∫
R3

dk G∗
ε (k)

× âε (k)ei�(k)t0δ(ω + �(k)), (C5)

fulfilling the bosonic commutation rule [âin(ω), â†
in(ω′)] =

δ(ω + ω′)/(2π ) and where  denotes the photon recoil heat-
ing rate. The second driving term F̂th(ω) originates from the
coupling to the additional thermal environment at temperature
T . Note that the symmetrized correlation functions of the
forces read

〈{F̂rp(ω), F̂rp(ω′)}〉
2

= h̄2

2πz2
zp

δ(ω + ω′), (C6)

〈{F̂th(ω), F̂th(ω′)}〉
2

= h̄2γ

2πz2
zp

coth(h̄	0/2kbT )

2
δ(ω + ω′),

(C7)

with {Â, B̂} ≡ ÂB̂ + B̂Â. Comparing Eq. (C6) with Eq. (41)
we can express the recoil heating rate in terms of the power

P̄ of the incoming coherent mode, that is,  = 2P̄/(mc2) ×
ω0/	0 [cf. Eq. (43)].

Before proceeding, let us point out differences and simi-
larities between the classical and quantum treatments of the
case at hand. In both cases, the (quantum) Langevin equa-
tions lead to Eq. (C4) for the position in the Fourier domain.
The difference between the two frameworks lies in the fact
that in the quantum case, ẑ(t ) represents an operator in the
Heisenberg picture. As such, it does not in general commute
with itself at different times and any measurable quantity
that is sensitive to this commutator differs from its classical
counterpart. For linear dynamics, however, and for a detection
system that measures only the symmetrized correlation func-
tion, any commutator vanishes from the measured signals.
As long as Eqs. (C6) and (C7) hold, fluctuation electrody-
namics delivers the same result that can be derived with the
full quantum treatment of this section. In order to observe a
measurable difference between the two formalisms, we need
to introduce nonlinearities in the equations of motion or in the
measurement process. In this case, the commutator between
operators does in general imprint a signature on the recorded
trajectories.

The center-of-mass operator is imprinted in the quadratures
of the electromagnetic field, as reflected in the input-
output relation of the generalized quadrature X̂ (θ, ω) ≡
â(ω) exp(−iθ ) + â†(ω) exp(iθ ) [37–39], namely

X̂out(θ, ω) = X̂in(θ, ω) −
√

4 sin(θ )
ẑ(ω)

zzp
, (C8)

where the output interacting mode reads

âout(ω) ≡ lim
t0→∞

1√


∑
ε

∫
R3

dk G∗
ε (k)

× âε (k)ei�(k)t0δ(ω + �(k)). (C9)

Let us now consider an ideal balanced heterodyne detection
scheme with a detector that measures the symmetrized corre-
lation function, and a reference field with a large power P̄ref

and detuning � with respect to ω0. Choosing an ideal refer-
ence field gives access to the following PSD of the generalized
output quadrature [40]

Stot
het(ω) ≡ 1

2π

∫
R

dτ

× 〈〈{X̂out(θ (t ), t ), X̂out(θ (t + τ ), t + τ )}〉〉t

2

× exp(iωτ ), (C10)

with a time-dependent phase θ (t ) ≡ t�. Note that the inte-
grand is averaged in t over a period 2π/� to account for
the finite response time τ � 2π/� of the photodetector. It
directly follows that

Stot
het(ω) = 1

4

∑
σ=±

Sout
Xθ Xθ

(ω + σ�) + Sout
YθYθ

(ω + σ�)

+ i

4

∑
σ=±

σ
[
Sout

XθYθ
(ω + σ�) − Sout

Yθ Xθ
(ω + σ�)

]
,
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where we have defined

Sout
Xθ Xθ ′ (ω) ≡

∫
R

dω′ 〈{X̂out(θ, ω), X̂out(θ ′, ω′)}〉
2

, (C11)

with Ŷ (θ, ω) = X̂ (θ + π/2, ω). Also note that an ideal bal-
anced homodyne detection scheme gives access to the PSD
of the generalized output quadrature Stot

hom(ω) ≡ Sout
Xθ Xθ

(ω). To
derive an expression for both the heterodyne and homodyne
case we use the input-output relation Eq. (C8) to arrive at

Sout
Xθ Xθ ′ (ω) = Sin

Xθ Xθ ′ (ω) + Szz(ω) + Sin
Xθ z(ω) + Sin

zXθ ′ (ω), (C12)

with θ ′ − θ = 0 for homodyne detection and θ − θ ′ ∈
{0,±π/2} for heterodyne detection.

Let us now identify the role of each term in Eq. (C12), in
analogy to the main article. The first term corresponds to the
photodetector shot noise that originates from the correlation
function of the interacting mode 〈{âin(ω), â†

in(ω′)}〉 = δ(ω +
ω′)/(2π ) when all modes are in vacuum in the displaced
frame. We obtain

Sin
Xθ Xθ ′ (ω) = cos(θ − θ ′)

2π
. (C13)

The second term corresponds to the interferometric signal of
the center-of-mass position which, using Eq. (C4), reads

Szz(ω) = 4

z2
zp

sin θ sin θ ′|χ (ω)|2(Srp
FF + Sth

FF

)
, (C14)

with

Srp
FF = h̄2

2πz2
zp

, (C15)

Sth
FF = h̄2γ

4πz2
zp

, (C16)

which results from the correlation functions of the driving
terms Eq. (C6), and Eq. (C7) and where we have assumed
h̄	0 	 kBT . The last two terms are responsible for the
sideband asymmetry and result from the correlations
between the signal and the interacting mode in vacuum,
that is, 〈{ẑ(ω), âin(ω′)}〉 = h̄

√
χ (ω′)δ(ω + ω′)/(2πzzp).

They read

Sin
Xθ z(ω) + Sin

zXθ ′ (ω) = h̄

πz2
zp

[χ∗(ω) cos θ sin θ ′

+ χ (ω) sin θ cos θ ′]. (C17)

Combining all of the above results it immediately follows
that Stot

het = SPP/(P̄refh̄ω0) and Stot
hom = Shom

PP /(P̄refh̄ω0) in full
agreement with Eq. (B4) and Eq. (53) in the main article.
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