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Frequency conversion in microresonators has revolutionized modern-day nonlinear and quantum optics. Here,
we present a theory of the multimode second harmonic generation in microresonators under conditions when
the parametric conversion back to the pump spectrum dominates through the large domain in the resonator
parameter space. We demonstrate that the spectral tunability of the sideband generation in this regime is governed
by a discrete sequence of the so-called Eckhaus instabilities. We report the transition to mode locking and the
generation of solitons, which have a double-pulse structure in the pump field. These solitons exist outside the
bistability interval and on a slightly curved background.
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I. INTRODUCTION

Frequency conversion and comb generation in optical res-
onators and microresonators are transforming the research
and applications of nonlinear and quantum optics. They
impact precision frequency metrology, mode locking, soli-
ton photonics, and quantum and classical processing of
information [1–3]. Microresonators made with the materi-
als possessing the second-order, i.e., χ (2), nonlinearity allow
generating frequency combs at twice or half of the pump
frequency at the comparatively low input powers, see, e.g.,
Refs. [4–9]. Another advantage of χ (2) resonators is that the
side-band generation relying on the χ (2) effects does not criti-
cally depend on the dispersion sign, which facilitates working
with visible and near-infrared sources. Though the generation
of χ (2) solitons in micro and bow-tie resonators has been
demonstrated [7,10], it remains far from being as developed as
the soliton techniques in Kerr resonators [11]. This, in its turn,
hinders the development of applications of the χ (2)-based
soliton mode locking in microresonators.

The initiation of the Kerr frequency comb happens via the
generation of two weak side bands ω±μ from the two pump
photons ωp, i.e., h̄ωp + h̄ωp = h̄ωμ + h̄ω−μ, while the onset
of the χ (2)-mediated side-band generation is more complex.
Our recent analysis in Ref. [12] showed that the operator
driving the initial stage of the second harmonic generation in
the multimode χ (2) resonators involved simultaneous and in-
terdependent sum-frequency and parametric down-conversion
terms. If the pump frequency is ωp, then its second harmonic,
2ωp, is allowed to down-convert via the parametric process to
the two side bands of the pump field, i.e.,

h̄2ωp = h̄ωμa + h̄ω−μa. (1)

Here and below, the subscripts a and b are used for the
pump and second harmonic side bands, respectively. μ =
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0,±1,±2, . . . , numbers the side-band orders. The laser pho-
ton can also sum up with its own side band to generate side
bands of the second harmonic, i.e.,

h̄ωp + h̄ωμa = h̄ωμb. (2)

The magnitude of the ωμa to ω−μa side-band coupling, con-
trolling the rate of the parametric down-conversion in Eq. (1),
is determined by the amplitude of the second harmonic, which
is critically susceptible to the phase-matching. On the other
hand, the magnitude of the ωμa to ωμb coupling, controlling
the rate of the sum-frequency process in Eq. (2), is determined
by the pump amplitude [12]. Thus, by tuning the phase-
matching, one can adjust the balance between parametric and
sum-frequency processes.

The authos of Ref. [12] considered the case when the
sum-frequency dominated the parametric conversion. They
featured the Rabi oscillations between the ωμa and ωμb

states assisting with the quantum memory designs [13,14]
and photon-photon polariton quasiparticles [15]. They also
showed that the frequency comb generation thresholds and
soliton existence conditions can be derived by applying the
formalism of the dressed states similar to the two-level atom
theory [12]. The present work is a companion to Ref. [12],
where a comprehensive list of modern and historical refer-
ences on χ (2) effects in resonators can be found.

Here we deal with the resonator geometry as in Ref. [12],
but consider the case of near phase-matching, such that the
sum-frequency and parametric conversion rates become com-
parable. However, both rates are typically inferior to the much
faster frequency scale set by the difference in the repetition
rates of the first and second harmonics. This resonator opera-
tion condition is common in practice, see, e.g., Refs. [16,17],
however, the theory for the multimode second-harmonic gen-
eration under such conditions remained unknown and is
developed below.

The resonator considered here has ∼20 GHz repetition rate
and ∼1 GHz repetition rate difference of the first and second
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harmonics, which implies that the initially overlapping ωp and
2ωp pulses would be on opposite sides of the linear resonator
only after a few tens of round trips. Since the repetition rate
difference characterizes how fast the pulses walk away one
from the other, it is called the walk-off parameter. The “walk-
off” term is common and is also shared between the fiber and
other resonator contexts, see, e.g., Refs. [18–21].

The methodology applied below is inherited from our
recent theory of the parametric processes in the microres-
onator half-harmonic generation [22]. This approach relies
on the slowly (relative to 1 GHz) varying amplitudes leading
to the analytically solvable coupled-mode model. The two-
color bright soliton pulses are hard to expect for such a large
walk-off. However, they exist and have a two-hump structure
in the pump field.

II. MODEL

We assume that the pump laser ωp is tuned around the
resonator mode with the frequency ω0a so that the multimode
intraresonator pump field and its second harmonic are ex-
pressed as

AeiMϑ−iωpt + c.c., A =
∑

μ

aμ(t )eiμθ ,

Bei2Mϑ−i2ωpt + c.c., B =
∑

μ

bμ(t )eiμθ ,

θ = ϑ − D1t . (3)

Here M is the absolute mode number corresponding to the
frequency ω0a, ϑ = (0, 2π ] is the angular coordinate, θ is
the coordinate in the reference frame rotating with the user
defined rate D1, and μ = 0,±1,±2, . . . , is the relative mode
number. aμ, bμ are the amplitudes of the pump (fundamental)
and second-harmonic modes. The respective resonator fre-
quencies are

ωμζ = ω0ζ + μD1ζ + 1
2μ2D2ζ , ζ = a, b, (4)

where D1ζ are the linear repetition rates and D2ζ are disper-
sions. In what follows, we choose D1 = D1a. D1b − D1a as
the walk-off parameter, i.e., the repetition rate difference.

Coupled-mode equations governing the evolution of aμ(t ),
bμ(t ) are [23]

i∂t aμ = δμaaμ − iκa

2
(aμ − δ̂μ,0H)

− γa

∑
μ1μ2

δ̂μ,μ1−μ2 bμ1 a∗
μ2

,

i∂t bμ = δμbbμ − iκb

2
bμ − γb

∑
μ1μ2

δ̂μ,μ1+μ2 aμ1 aμ2 , (5)

where δ̂μ,μ′ = 1 for μ = μ′ and is zero otherwise. H is the
pump parameter under the critical coupling conditions, H2 =
FW/2π , where W is the laser power and F = D1a/κa is
finesse. δμζ are the modal detuning parameters in the rotat-
ing reference frame, δμa = (ωμa − 1

2ωp) − μD1a and δμb =
(ωμb − ωp) − μD1a. δμζ can be expressed via pump detuning
δ0a and the frequency-matching, i.e., phase-matching parame-

TABLE I. Resonator and laser parameters used in this work. The
values are representative for a whispering gallery LiNbO3 microres-
onator pumped at 1 μm.

Linewidth: κa/2π = 1 MHz, κb/2π = 4 MHz

Pump finesse: D1a/κa = 20 000
Repetition rate difference: (D1a − D1b)/2π = 1 GHz
Dispersion: D2a/2π = −100 kHz, D2b/2π = −200 kHz
Nonlinearity: γa/2π = γb/2π = 300 MHz/

√
W

Phase mismatch: ε/2π between −50 and +50 MHz
Scaling of intraresonator power: H2

∗ = κaκb/γaγb = 44 μW
Laser power: W between ∼1 μW and ∼1 mW

ter ε [12]

ε = 2ω0a − ω0b,

δμa = ω0a − ωp + 1
2μ2D2a

= δ0a + 1
2μ2D2a,

δμb = ω0b − 2ωp + μ(D1b − D1a) + 1
2μ2D2b

= 2δ0a − ε + μ(D1b − D1a) + 1
2μ2D2b. (6)

We assume that the microresonator is made to operate close
to phase-matching, ε = 0, while the repetition rate difference
D1b − D1a is the dominant frequency scale in Eq. (6), i.e.,

μ|D1a − D1b| � |ε|, μ2|D2ζ |, κζ . (7)

The parameter values used by us are typical for the LiNbO3

whispering gallery microresonators [8,16] and are listed in
Table I so that we can verify the validity of Eq. (7).

We now make the substitution

bμ(t ) = Bμ(t )e−iμ(D1b−D1a )t , μ �= 0, (8)

where Bμ(t ) are the slowly varying amplitudes relative to
the fast oscillating exponent, and apply the slowly varying
approximation by eliminating all the terms oscillating with
the high frequencies; see the mathematical details in Ref. [22].
This procedure yields the following system of equations:

i∂t a0 = κaΔ0aa0 − γab0a∗
0 + iκa

2
H, (9a)

i∂t aμ = κaΔμaaμ − γab0a∗
−μ, μ �= 0, (9b)

i∂t a−μ = κaΔμaa−μ − γab0a∗
μ, (9c)

i∂t b0 = κbΔ0bb0 − γba2
0 − 2γb

∑
μ>0

aμa−μ. (9d)

Figure 1 illustrates the dominant processes well described
by Eq. (9). The second-harmonic sidebands, bμ �=0, are not
featured in Eq. (9) and begin playing a role either in the
higher-order approximations or if the assumptions in Eq. (7)
are violated. The reduced model, Eq. (9), is applied below to
derive the analytical results, while all the numerical data were
generated using the master model Eq. (5).

The linear spectrum in Fig. 1 should be contrasted with
the dressed, i.e., nonlinearity modified, spectrum implicated in
the interplay of the Rabi oscillations and parametric processes
studied in Ref. [12] and illustrated in their Fig. 6. Simulta-
neous parametric conversion and second-harmonic generation
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FIG. 1. Illustration of one of the parametric processes captured
by the reduced model valid for μ|D1a − D1b| � |ε|, see Eq. (9). It
should be compared with the dressed state theory for μ|D1a − D1b| ∼
|ε| illustrated by Fig. 6 in Ref. [12]. Here ε is the phase-matching
parameter.

and other multistep χ (2) frequency conversion schemes have
a long history outside the comb context and continue to be
explored currently [24–27].

Equation (9) and the text below use the Δμζ parameters,
which are the auxiliary dimensionless detunings

Δμζ =
(

δ0ζ + 1

2
μ2D2ζ − i

1

2
κζ

)
1

κζ

. (10)

Equation (10) includes the losses and, hence, Δμζ are
complex-valued. We note that Δμζ are free from the walk-
off parameter D1b − D1a, absorbed by the fast oscillating
exponents in Eq. (8). The sum-frequency rate is determined
by γb|a0|, see Eq. (9d), and the rate of the parametric gain
is γa|b0|, see Eqs. (9a) to (9c), which are also assumed to
comply with

μ|D1a − D1b| � γa|b0|, γb|a0|. (11)

The difference between Eqs. (9a) to (9d) and the directly
pumped optical parametric oscillator (OPO) model considered
in Ref. [22] is in the moving the pumping term between the a0

and b0 equations. However, this change leads to a different and
more involved theory than in Ref. [22]. On the other hand, the
currently applied μ|D1a − D1b| � |ε| condition, see Eq. (7),
simplifies the matters relative to the second-harmonic theory
for μ|D1a − D1b| ∼ |ε| developed in Ref. [12].

III. THEORY OF PARAMETRIC STATES

A. Homogeneous state

From the diversity of the possible solutions of Eqs. (9a)
to (9d) the simplest one is the spatially homogeneous
state with

A = ã0, B = b̃0. (12)

We added the tildes here to introduce the notational difference
with the μ = 0 modes entering the OPO states introduced
below and marked with the hats.

Setting the side-band amplitudes to zero, aμ = 0, the solu-
tion of Eq. (9d) is

b̃0 = γb̃a2
0

κbΔ0b
. (13)

Then, Eq. (9a) can be rearranged as(
Δ0a − |̃a0|2

Δ0bH2∗

)
ã0

H∗
= −iH

2H∗
. (14)

Here

H2
∗ = κaκb

γaγb
= 44 μW (15)

is the characteristic power introduced for normalization pur-
poses. Taking the modulus squared of Eq. (14), we find the
real cubic equation for |̃a0|2,

|̃a0|6
H6∗

− 2Re(Δ0aΔ0b)
|̃a0|4
H4∗

+ |Δ0aΔ0b|2 |̃a0|2
H2∗

= H2|Δ0b|2
4H2∗

. (16)

Examples of the dependencies of γb|̃a0| (red lines) and
γa |̃b0| (green lines) versus the pump detuning δ0a are shown
in Figs. 2(a) to 2(c). One can see that the sum-frequency
(red) and parametric (green) rates are of the same order.
This should be compared with Fig. 1 in Ref. [12], where the
phase-matching parameter was tuned to |ε| ∼ μ|D1a − D1a|
to achieve the sum-frequency rates dominating the parametric
ones by two orders of magnitude.

B. Benjamin-Feir instabilities and emergence
of OPO (Turing pattern) states

OPO states correspond to the resonator-generating one, or
primarily one, side-band pairs in the pump field, i.e.,

A = â0 + aνeiνθ + a−νe−iνθ , B = b̂0. (17)

The OPO states are thus the simplest representatives of the
Turing patterns, which are expected to bifurcate from the
homogeneous state. Equations (9b) to (9d) are resolved as

aν = |aν |eiφν , a−ν = |aν |, b̂0 = Δνaκa

γa
eiφν , (18)

eiφν = â2
0/H2

∗
Δ0bΔνa − 2|aν |2/H2∗

. (19)

We note that the homogeneous state is the same for the master
Eq. (5) and reduced, Eq. (9), models, but the above OPO states
are exact for the reduced and approximate the master model.

The modulus squared of Eq. (19) yields the quadratic equa-
tion for the sideband amplitudes expressing |aν |2 as a function
of |â0|2,

|aν |2
H2∗

= Re(ΔνaΔ0b)

2
+ (−1) j

2

√
|â0|4/H4∗ − Im2(ΔνaΔ0b),

j = 0, 1, (20)

where the value of |â0|2 remains unknown and will be deter-
mined in Sec. III C.
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FIG. 2. (a)–(c) Amplitudes of the homogeneous (single-mode) states vs detuning for the negative, zero, and positive values of the phase-
mismatch parameter ε. The red (dark gray) lines mark γb|̃a0|, which is the rate of the sum-frequency process. The green (light gray) lines
mark γa |̃b0|, which is the rate of the parametric process. Laser power is W = 0.7 μW, which corresponds to H2/H2

∗ = 50. (d)–(f) Instability
boundaries of the homogeneous state. The black lines |a0|2 = |â(μ)

0,th|2 and gray areas show the μ �= 0 Benjamin-Feir instabilities. The dashed
black lines and yellow (light gray) shading show the μ = 0 instabilities. Homogeneous state becomes unstable, when the red (gray) line
|a0|2 = |̃a0|2 crosses any of the thresholds.

Setting side-band powers to zero, |aν |2 = 0 in Eq. (20),
we find

∣∣â(ν)
0,th

∣∣2

H2∗
= |Δ0bΔνa|, (21)

which gives a sequence of |â(ν)
0,th|2 versus δ0a lines for all pos-

sible ν �= 0 corresponding to the thresholds where the OPO
states (Turing patterns) bifurcate from the no-OPO (homoge-
neous) state. Thus, condition

|̃a0|2 = ∣∣â(ν)
0,th

∣∣2
(22)

gives the mode-number-specific Benjamin-Feir bifurcation
thresholds of the homogeneous state. Figures 2(d) to 2(f)
show how the |a0|2 = |̃a0|2 versus δ0a line intersects with a
sequence of the |a0|2 = |â(ν)

0,th|2 lines. Each intersection point
of the red and gray lines corresponds to the threshold detuning
for generating the corresponding side-band pair.

We recall that the theory of this section is applicable for
μ �= 0. To find the μ = 0 instability boundary and verify the
theory’s results for μ �= 0, we linearized the master model
Eq. (5) around the homogeneous state. To achieve this we
assumed [12]

A = ã0 + xμaeλμt+iμθ + y∗
μaeλμt−iμθ ,

B = b̃0 + xμbeλμt+iμθ + y∗
μbeλμt−iμθ . (23)

Here �xμ = (xμa, xμb, yμa, yμb)T is the perturbation vector and
Reλμ is the instability growth rate. The resulting eigenvalue

problem for �xμ is

iλμ�xμ

=

⎡
⎢⎢⎢⎣

δμa − iκa
2 −γãa∗

0 −γab̃0 0

−2γb̃a0 δμb − iκb
2 0 0

γab̃∗
0 0 −δ−μa − iκa

2 γãa0

0 0 2γb̃a∗
0 −δ−μb − iκb

2

⎤
⎥⎥⎥⎦�xμ.

(24)

The above matrix makes it obvious that b̃0 couples the
a side-bands and drives the parametric conversion, see Eq. (1),
and ã0 provides the a to b coupling and drives the sum-
frequency process, see Eq. (2). The Reλ0 = 0 instability
boundary is shown in Figs. 2(d) to 2(f) with the dashed-black
lines and yellow shading. The Reλμ �=0 = 0 Benjamin-Feir
instability boundaries found from Eq. (24) and derived from
Eq. (22) cannot be distinguished; see the full-black lines and
gray shading in Figs. 2(d) to 2(f).

We recall that the δμζ detunings in Eq. (24) include the
walk-off parameter, see Eq. (6). δμζ should be compared with
the walk-free Δμζ , see Eq. (10), used to get our analytical
results. Thus, we are dealing with a case where the large
walk-off does not play a role in destabilizing the homoge-
neous state, cf. Ref. [19]. The independence of the instabilities
from walk-off agrees with the fact that the second-harmonic
field remains quasi-monochromatic, see Fig. 3(b), and hence
should not be subjected to the group-velocity-related effects.

Figures 3(a) and 3(b) show the data from the numerical
simulation of the master model, Eq. (5), for the fixed in-
put power and varying detuning. Comparing the pump and
second-harmonic spectra confirms our analytical result that
the second harmonic sidebands are tiny and the ones in the
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FIG. 3. (a,b) Results of dynamical simulations of Eq. (5). Panel
(a) shows the mode number spectrum for the pump and panel
(b) for the second harmonic field H2/H2

∗ = 50 (W ≈ 0.7 μW), ε =
0. (c) Side-band amplitudes of the pump field found using Eq. (20)
[red (gray) lines] and from the data in the panel (a) (black circles).
(d,e) Eckhaus instability growth rates λν,μ for the ν = 5 and ν = 6
OPO states. The OPO states exist in the shaded area and are stable
between the dashed lines.

pump are much stronger. This illustrates the essence of what
we term the second-harmonic-driven parametric conversion.
The transition to a sequence of the OPO states for δ0a > 0
is evident from the data in Fig. 3(a). One could plausibly
assume that, as in a directly pumped OPO [22], the switching
between the different OPO states is governed by the Eckhaus
instabilities of the OPO states and not by the Benjamin-Feir
bifurcations of the homogeneous state, see Sec. IV for details.

C. Super and subcritical bifurcations

The OPO (Turing pattern) states can emerge either super or
subcritically at their bifurcation points from the homogeneous

FIG. 4. Subcritical bifurcation of the OPO state, when the pump
power is used as a control parameter:ν = 10, δ0a/κa = 7, ε = 0.
(a) The black line shows the zero-mode power |â0|2 for the OPO
state, see Eq. (26). The red (gray) line shows the power of the ho-
mogeneous state |̃a0|2. (b) The OPO sideband power |â10|2 vs pump.
The full and dotted parts of the black lines in (a) and (b) correspond
to j = 0 and j = 1 in Eq. (20).

state. Substituting b̂0 and eiφν from Eqs. (18) and (19) in
Eq. (9a) and rearranging, we find(

Δ0a − Δνa|â0|2/H2
∗

ΔνaΔ0b − 2|aν |2/H2∗

)
â0

H∗
= −iH

2H∗
. (25)

Comparing the above and Eq. (14), we immediately see that
they predictably coincide for |aν |2 = 0, i.e., â0 = ã0 at the
bifurcation points. Taking the modulus squared of Eq. (25)
and using Eq. (20) for |aν |2 gives an explicit dependence of
H2/H2

∗ versus |â0|2 for the Turing pattern states, see Fig. 4(a)
for the ν = 10 case. Substituting the |â0|2 versus H2/H2

∗ data
set in Eq. (20) makes up the corresponding side-band powers,
see Fig. 4(b). The transition between the full and dotted red
lines in Fig. 4 shows how the j = 0 and j = 1 realizations of
Eq. (20) play a role in constructing the complete branch of the
Turing pattern.

The fact that the Turing pattern branch folds at H2 =
H2

ν,fold, see Fig. 4(b), points that the patterns can bifurcate
from the homogeneous state either super (no fold) or subcriti-
cally. In the second case, a range exists in the parameter space
where a given side band ν can have two different powers, with
the lower one never being stable. Quite remarkably, the fold
condition and the Turing-pattern solutions can be expressed
explicitly via the resonator parameters.

Computer algebra helps to demonstrate that Eqs. (25)
and (20) reduce to a quadratic equation for |â0|2,

Q2
|â0|4
H4∗

+ Q1
|â0|2
H2∗

+ Q0 = 0, (26)
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FIG. 5. (a) The range of existence of the ν = 10 OPO state in
the pump power-detuning parameter space. The red or blue (gray
or dark gray) lines correspond to the supercritical or subcritical
bifurcation. The dashed line is the fold condition, see Eq. (28) and
Fig. 4(b), where the two OPO states merge. (b) Powers of the OPO
sidebands vs detuning for three selected pump powers: H2/H2

∗ =
50 (W ≈ 0.7 μW), H2/H2

∗ = 300 (W ≈ 4 μW), H2/H2
∗ = 700

(W ≈ 9 μW).

where

Q2 = (|Δ0a|2 + |Δνa|2)2 − 4Re2(Δ0aΔνa
∗),

Q1 = (|Δ0a|2 + |Δνa|2)

× (4Im(Δ0bΔνa)Im(Δ0aΔ
∗
νa) − H2

2H2∗
),

Q0 = Im(Δ0bΔνa)

(
4|Δ0aΔνa|2Im(Δ0bΔνa)

−Im(Δ0aΔ
∗
νa)

H2

2H2∗

)
+ H4

16H4∗
. (27)

A pair of solutions of Eq. (26) degenerate when the discrimi-
nant becomes zero, i.e., Q2

1 = 4Q0Q2, which opens up as

H4
ν,fold

H4∗
− 16Im(Δ0bΔνa)Im(Δ0aΔ

∗
νa)

H2
ν,fold

H2∗
− 16(|Δ0a|2 − |Δνa|2)2Im2(Δ0bΔνa) = 0. (28)

Equation (28) corresponds to the fold line in the parameter
space.

The diagrams in Figs. 2(d) and 2(e) are plotted for
the intraresonator mode power varying with detuning while
the laser power is kept fixed. Expressing thresholds in terms
of the laser power is also possible. Substituting Eq. (22) in
Eq. (16) and using Eq. (21), provides the threshold values of

FIG. 6. (a,b) Results of dynamical simulations of Eq. (5). Panel
(a) shows the mode number spectrum for the pump and panel
(b) for the second harmonic field H2/H2

∗ = 700 (W ≈ 9 μW), ε =
0. (c) Side-band amplitudes of the pump field found using Eq. (20)
[red (gray) and blue (dark gray) lines] and from the data in the panel
(a) (black circles).

the laser power

H2
ν,th

H2∗
= 4|Δ0bΔνa|(|Δ0a|2 + |Δνa|2)

− 8Re(Δ0bΔ0a)|Δνa|2. (29)

The fold line H2 = H2
ν,fold splits from the threshold condition

H2 = H2
ν,th at the points where the bifurcation changes from

super to subcritical, see Fig. 5(a).
The detuning dependencies of the side-band amplitudes in

Fig. 5(b) show in an obvious way how the supercritical bifur-
cations change to subcritical as the pump power is increased.
Figure 3(c) compares the analytical side-band amplitudes
(red lines) with the ones found from the numerical modeling
of the master equation. Figure 6 extends this comparison
to the higher powers, where the OPO bifurcations become
subcritical.

IV. ECKHAUS INSTABILITIES

Figures 3 and 6 show that as detuning approaches zero
and crosses to the positive values, the resonator enters a
regime of the operation characterized by the ladder-like tran-
sitions between the sequential OPO states, see Eq. (17).
Points where one state switches to the next correspond to
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FIG. 7. (a,b) Detuning scan data and (c)–(f) the soliton modelocking data for ε/κa = 50, H2/H2
∗ = 310 000 (W = 4 mW), see Eq. (5).

Panel (a) shows the bistability of the homogeneous state. Black points indicate solutions used as initial conditions for data in (b). (c,e) transition
to mode locking for the detuning marked by the dashed white line in panel (b). The color bars show the mode numbers, μ = 0, 1, . . . , 16.
Panels (d,f) show the space-time evolution of the soliton in the reference frame rotating with the rate D1a. The color bars show the intraresonator
power for (d) the pump and (f) second harmonic.

the Eckhaus instabilities, i.e., to the instabilities of the â0,ν +
aνeiνθ + a−νe−iνθ pattern relative to â0,ν+1 + aν+1ei(ν+1)θ

+ a−(ν+1)e−i(ν+1)θ [22]. Here, we added the subscript ν,
â0 → â0,ν , b̂0 → b̂0,ν , to indicate explicitly that the ampli-
tude of the zero mode in an OPO state depends on the
order ν of the side bands involved; see Eqs. (26) and (27)
for â0 and Eq. (18) for b̂0. The authors of Refs. [28,29]
provided discussions and comprehensive overviews of the
Eckhaus instabilities in optical systems using an assump-
tion of the unbounded geometry, while the authors of
Ref. [22] and those of the present manuscript use the coupled-
mode theory capturing the finite-size effects important in
microresonators.

We now consider the ±μ side-band pair as a small pertur-
bation disturbing the OPO state of order ν. ν �= 0 corresponds
to an OPO state with b0 = b̂0,ν and ν = 0 to the homogeneous
state b0 = b̃0. An equation for the instability growth rate is
then easily derived from Eqs. (9b) and (9c) applying the
substitution aμ(t ) = xμaetλν,μ and a∗

−μ(t ) = x−μaetλν,μ ,

λν,μ = − 1
2κa +

√
γ 2

a |b0|2 − κ2
a |Δμa|2, μ �= 0. (30)

For ν = 0 (Benjamin-Feir instability), we shall apply |b0|2 =
|̃b0|2 = γ 2

b |̃a0|4/κ2
b |Δ0b|2. Here, |̃a0|2 is a function of the

laser power H2, see Eq. (14). For ν �= 0 (Eckhaus instabil-
ity), |b0|2 = |b̂0,ν |2 = κ2

a |Δνa|2/γ 2
a , which does not explicitly

involve H2. We should, however, stress that the range of

existence of |aν |2 > 0 and, hence, of b̂0,ν (via its phase) is
power dependent, see Eq. (19) and Fig. 5(b).

The growth rate of the Eckhaus instabilities, i.e., ν �= 0, of
the OPO states simplifies to

λν,μ = − 1
2κa + κa

√
|Δνa|2 − |Δμa|2

= − 1
2κa +

√(
δ0a + 1

2 D2aν2
)2 − (

δ0a + 1
2 D2aμ2

)2
.

(31)

The Eckhaus instability rates for the ν = 5 and ν = 6 OPO
states versus detuning are shown in Figs. 3(d) and 3(e), respec-
tively. The intervals of stability match the results of dynamical
simulations; see the vertical dashed lines in Figs. 3 and 6,
which are derived from the conditions Reλν,ν±1 = 0.

Thus, we demonstrated that the OPO tuning from one
mode pair to the other is underpinned by a sequence
of Eckhaus instabilities developing for positive detunings.
Changing dispersion at the pump frequency to anoma-
lous D2a > 0 moves the Eckhaus range to the negative
detunings.

V. TWO-HUMP SOLITONS

The spectra in Fig. 6(a) correspond to the chaotic
dynamics if −7 � δ0a/κa � −3, while for −3 � δ0a/κa

� 0, the resonator enters mode locking. Further system-
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FIG. 8. Details of the spectra and spatial profiles of the pump [red (gray)] and second harmonic [green (light gray)] (a)–(c) outside and
(d)–(f) inside the soliton modelocking interval. Panels (g,h) show how the spatial soliton profile varies with detuning. The system parameters
are as in Fig. 7.

atic numerical exploration of the mode locking revealed
that the higher powers bring more modes to the phase-
locked state, which corresponds to a train of the soliton
pulses.

Figures 7–9 show the data sets we generated solving
the master model, Eq. (5), for the laser power W = 4 mW
and three different values of the phase-mismatch parame-
ter ε/κa = +50 (Figs. 7 and 8), ε/κa = −50 [Fig. 9(b)],
and ε/κa = 0 [Fig. 9(d)]. For all three cases, we found the
range of the negative detunings located between the two
tilted resonances of the homogeneous state, where the chaotic
multimode dynamics cease to exist and is replaced by mode
locking and soliton formation. The numerical simulations
were initialized by the noise on top of the homogeneous states;
see the black crosses along the red lines in Figs. 7(a), 9(a),
and 9(c). For positive detuning, all homogeneous states are
unstable, and independently from the initial condition, the
system converges to the sequence of the Eckhaus instabilities.
For negative detuning, the low-power homogeneous state is
mostly stable, and therefore, the resonator transits to chaos
after the bistability range ends.

Dynamically, the transition from chaos to mode locking
happens after sufficiently long simulation times that have
typically been extended to one or a few hundreds of photon
lifetimes, 2π/κa. The emergence of mode locking for the
modes μ = 0, 1, 2, . . . , 16 is shown in Figs. 7(c) and 7(e).
The space-time shapes of the mode-locked soliton pulses are
shown in Figs. 7(d) and 7(f) and Figs. 8(e) to 8(h). The soliton
in the pump field has two humps, while the single pulse in
the second harmonic is centered between them. The soli-
tons can be compared with the chaotic waveforms shown in
Figs. 8(a) to 8(c).

The spectral shape of the pump component of the soliton is
a typical soliton spectrum, which gradually decays as μ moves
away from the center; see Figs. 7(c) and 8(d). The spectrum

of the second harmonic is, however, different. Its only signif-
icant modes are μ = 0, 1, 2, and, perhaps, 3; see Figs. 7(e)
and 8(d). It prompts a hypothesis that the soliton could be
qualitatively considered as a broadband pump pulse sup-
ported by the effective potential created by the few dominant
modes in the second harmonic field. These modes are near-
phase-matched, and therefore, are subjected to the optical
Pockels effect [12,30]. On the contrary, the solitons’ spec-
tral tails are phase-mismatched via growing μ|D1a − Dab|,
and therefore, experience the effective (cascaded) Kerr non-
linearity [12,22]. The pronounced spectral reshaping around
μ = 0, see Fig. 8(d), signals the transition between the
Pockels and Kerr nonlinearities. The spectral tails are gen-
erated via the frequency-sum and frequency-difference terms
entering the sums in the master model, see Eq. (5), and ne-
glected in the approximate theory describing the OPO regime,
see Eq. (9).

The solitons reported here have further features differ-
ent from what is commonly known for solitons in optical
resonators. First, these solitons are shifted well outside the
bistability of the homogeneous state and are located between
the two bistability intervals. Increasing ε, and depending on
its sign, begins destroying the bistability for either negative
or positive detunings, see Fig. 3, and shrinks the range where
solitons are observed. For |ε| becoming large, |ε| ∼ μ|D1a −
D1b|, the other type of solitons emerges as demonstrated in
Ref. [12]. The solitons in Ref. [12] are more conventional
in the sense that they coexist with the bistability and are
supported by the familiar interplay between dispersion and
the effective Kerr effect, albeit derived via the dressed-state
theory.

Another interesting property of the soliton profiles in Fig. 8
is that the finite-size effects responsible for the spectral dis-
creteness, and therefore, making a difference between the
frequency-comb solitons and the solitons with continuous

043510-8



PARAMETRIC CONVERSION VIA SECOND HARMONIC … PHYSICAL REVIEW A 106, 043510 (2022)

FIG. 9. Detuning scan data for (a,b) ε/κa = −50 and (c,d) ε/κa = 0: H2/H2
∗ = 310000 (W = 4mW), see Eq. (5). Panels (a,c) show the

bistability of the homogeneous state. Black points indicate solutions used as initial conditions for data in (b,d).

spectra play a role here. In particular, one can see the soliton
background is slightly curved. We checked that changing the
dispersion sign to anomalous moves solitons to the positive
detunings and keeps them outside the bistability range. We
leave for future analysis the question of if the two-hump
solitons found here connect or not to the solitons reported in
Ref. [12] and an understanding of the full range of the soliton
existence.

VI. SUMMARY

We presented a theory of parametric conversion via the
second-harmonic generation in the phase-matched whisper-
ing gallery LiNbO3 microresonators with large walk-off.
The pump wavelength was assumed at one micron, so
the dispersion was considered normal. The large walk-off
condition, which means that the repetition rate differ-
ence is much larger than the phase-matching parameter
μ|D1a − D1b| � ε applied in this work complements our
recent study of the resonators with μ|D1a − D1b| ∼ ε, see
Ref. [12]. Here μ is the relative mode number counted from
the pump.

We demonstrated that tuning of the parametric signal and
generation of side-band pairs around the pump is associated
with the sequence of the Eckhaus instabilities happening for
positive detunings. We derived a transparent approximate ex-
pression for the growth rates of the Eckhaus instabilities, see
Eq. (31) and Fig. 3. A feature of these instabilities is their

quasi-independence from the walk-off due to the second har-
monic staying quasi-monochromatic and most of the spectrum
generated in the pump field. We also found the side-band
powers and identified conditions for the super and subcritical
transitions to the OPO, i.e., Turing pattern, states. All these
results are obtained under the conditions of the ring geometry,
i.e., when the mode numbers are quantized.

The resonator operation regimes on the negative de-
tuning side are more complex and often chaotic. How-
ever, we found an interval of negative detunings where
the multimode chaos is replaced by mode locking. The
mode locking leads to the soliton formation in the form
of a double-hump pulse in the pump field and the
single-hump pulse in the second harmonic. A distinct feature
of these solitons is their size comparable to the resonator cir-
cumference. They exist on the nonflat background and outside
the bistability range of the single-mode state. A spectrum
of the pump component of the soliton has a typical near-
triangular shape, while only a few first modes dominate the
second-harmonic component.

Data presented in this study are openly available from the
University of Bath Research Data Archive [31].
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