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Counterpropagating light in ring resonators: Switching fronts, plateaus, and oscillations
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We characterize the formation of robust stationary states formed by light plateaus separated by two local
switching fronts in only one of two counterpropagating fields in ring resonators with normal dispersion. Such
states are due to global cross coupling and allow for frequency combs to switch from one field to the other by
simply tuning the input laser frequency. Exact expressions for the distance between fronts and for plateau powers
are provided in excellent agreement with simulations. These demonstrate an unusual high degree of control over
pulse and plateau duration in one of the fields upon changes of one of the input laser frequencies. We identify a
wide parameter region in which light plateaus are self-starting and are the only stable solution. For certain values
of the detunings we find multistable states of plateaus with switching fronts, slowly oscillating homogeneous
states and nonoscillating homogeneous states of the counterpropagating fields. Robustness and multistability of
these unusual single-field front solutions are provided in parameter ranges that are experimentally achievable in
a wide variety of ring resonators.
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I. INTRODUCTION

The physics of microring resonators has gained significant
interest over the last decade for their many applications such
as octave spanning frequency combs [1] for use in telecommu-
nication [2,3] and spectroscopy [4,5], as well as fundamental
studies of dissipative pattern formation and temporal cavity
solitons (TCS) [6]. The microring resonator system is well
described by the longitudinal version of the Lugiato-Lefever
equation (LLE) [7] in the form of a damped, driven nonlinear
Schrödinger equation with cavity detuning. It originally de-
scribed the transverse, dissipative spatial structures in passive
optical systems with diffraction and was later adapted into
a longitudinal form to describe temporal pattern formation
along the cavity length [8,9].

In this paper we study the interaction of two counterprop-
agating input fields in normally dispersive ring and microring
resonators, which is described by two globally coupled equa-
tions of LLE form [10,11]. We use the term “global coupling”
following [12] to describe nonlinear cross terms that couple a
point of the resonator to all other points in the same resonator
via integrals that extend to its full length. The anomalous
dispersion case has been investigated in [13] where the soli-
ton blockade phenomenon was introduced. We characterize
the formation of a different class of robust stationary states
formed by light plateaus separated by two local switching
fronts in only one of two counterpropagating fields in ring
resonators. Such states are due to global coupling between
counterpropagating fields corresponding to the average power,
and allow for frequency combs to switch from one field to the
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other by simply tuning the input laser frequency. Light plateau
states are self-starting from noise for a wide range of detuning
due to a spatial instability of the homogeneous stationary
states resulting from the averaged terms. The global nature
of these states display an unusual high degree of control over
pulse and plateau duration in one of the fields upon changes
of one of the input laser frequencies.

In Sec. II homogeneous steady-state solutions of the
globally coupled cavity field equations of both fields are in-
vestigated and shown to undergo several bifurcations when the
detunings are scanned. In Sec. III we characterize steady-state
solutions where one field has a homogeneous power while the
other forms either a single dark TCS, a single bright TCS, or
power plateaus separated by sharp kinks. These solutions are
unusual because in coupled field equations fast time variations
of the power of one field are reflected in the other one. It
is the nature of the integro-partial-differential equations and
global coupling that variations in one field are not present in
the other one leaving it in a homogeneous state. In Sec. IV we
determine the parameter ranges of the existence and stability
of these hybrid solutions with sharp kinks, derive a semian-
alytical expression of the distance of stationary kinks as a
function of the cavity detunings and compare it successfully
with numerical simulations. In particular we demonstrate that
stationary solutions with two kinks in one of the counter-
propagating fields are strongly related to similar solutions
in a single normally dispersive LLE at the Maxwell point.
Such stationary states have been observed with single-input
laser setups where a counterpropagating field is induced by
backscattering [14,15], where a connection with the Maxwell
point (see Sec. III) is also made.

Steep kinks connecting two stable homogeneous solutions
in the presence of bistability have been studied extensively
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in diffusive systems where they are known as fronts [16],
in nonlinear optics of scalar fields where they are known as
switching waves [17–19], and in systems with exchange sym-
metry where they are known as domain walls [20–24]. The
system of interest here has exchange symmetry between the
two counterpropagating fields. The hybrid solutions described
in Sec. III display power plateaus separated by two kinks
and do not reflect this exchange symmetry since one field
is homogeneous and the other one is not. For this reason we
prefer to label the kinks as “switching fronts” (SFs) instead of
“domain walls” which was preferred in for example [15]. The
solitonic (localized) aspect of these solutions is located in the
SF and not of course in the power plateaus. For this reason
we also avoid the use of the term “platicons” as being an
unhelpful mixing of the localized aspect of solitons with the
extended character of the homogeneous solutions. In Sec. V
we derive a semianalytical description of zero dispersion SFs,
and show that the zero dispersion SF solutions well approx-
imate transient states with nonzero dispersion as they move
towards stable two-SF states. In Sec. VI we show the presence
of nonlinear oscillations of homogeneous states in a symme-
try broken and global regime similar to those predicted in
symmetric regimes [25,26]. We then identify a multistability
of slow nonlinear oscillations with SF states and continuous
wave outputs offering an unprecedented variety of states for
applications in high-control frequency comb generation, all
optical oscillators, optical computing, time reversal symmetry
breaking, and signal routing in telecommunication systems.
Conclusions, connection to experiments, and applications are
presented in Sec. VII.

II. COUNTERPROPAGATION IN RING RESONATORS

We consider the physical setting of a ring resonator
pumped with two counterpropagating continuous wave (CW)
lasers (see Fig. 1). The two fields of this system are described
by mean-field equations with the self- and cross-coupling
terms in the Kerr approximation, through which the fields in-
teract. The phase dynamics of the cross-coupling terms evolve
with the free spectral range by the nature of counterpropaga-
tion of the two fields. This results in a large walk-off occurring
between the two counterpropagating waves that see each other
through an average intensity (washout effect) [10,11]. The
model for this system can be written in the adimensional, nor-
malized form as a system of two integro-partial-differential
equations

∂t F = EF − (1 + iθF )F + i(|F |2 + ν〈|B|2〉)F − iβ∂2
ζ F,

(1)

∂t B = EB − (1 + iθB)B + i(|B|2 + ν〈|F |2〉)B − iβ∂2
ζ B, (2)

where we define “slow time” t = αt̃/tR, which governs evo-
lution over several round trips of the resonator with round
trip time tR, and “fast time” ζ = ζ̃

√
2α/L corresponding to

the cavity coordinate with cavity length L in a frame of ref-
erence moving with the group velocity. F = F̃

√
γ L/α and

B = B̃
√

γ L/α are the complex amplitudes of the forward and
backward counterpropagating fields in the ring resonator with
identical polarization, with input fields EF = ẼF

√
γ LT/α3

and EB = ẼB

√
γ LT/α3 for nonlinear coefficient γ , power

FIG. 1. A continuous wave (CW) forward (red) and a CW back-
ward (black) beams counterpropagate in a microring resonator. For
a detuning of the forward field smaller than the detuning of the
backward field it is possible to obtain a power output where the
forward field is still CW while the backward field displays two SFs in
the intracavity power (a). This results in a switching output (c) from
the backward field and CW output (b) from the forward field.

transmission coefficient T , and total losses α. θF = tR(ωr −
ωF )/α and θB = tR(ωr − ωB)/α are the laser detunings of an-
gular frequency ωF , ωB from the nearest cavity resonance ωr

with round trip time tR. ν is the cross-coupling coefficient that
is in general equal to 2 for isotropic media, and the last term
describes normal dispersion with a positive dispersion coeffi-
cient β. We define the power averages 〈|F |2〉 and 〈|B|2〉 as

〈|F |2〉 = 1

L

∫ L

0
|F |2 dζ , (3)

〈|B|2〉 = 1

L

∫ L

0
|B|2 dζ . (4)

The configuration and parameters used here differ from those
used in [14,15] in that we consider energy injection on both
fields. It is important to note that for EF = EB and θF = θB

the system is perfectly symmetric upon the exchange of the
forward and backward fields.

Homogeneous steady states

The homogeneous steady-state solutions (HSSs) of coun-
terpropagating fields are identical to the two polarization
copropagating regimes seen in [25,27] due to the cross terms
containing 〈|F |2〉 = |F |2, 〈|B|2〉 = |B|2. Equations (1) and (2)
can be expressed by the coupled cubic equations

PF = H3
F − 2(θF − νHB)H2

F + ((θF − νHB)2 + 1)HF , (5)

PB = H3
B − 2(θB − νHF )H2

B + ((θB − νHF )2 + 1)HB, (6)
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FIG. 2. Powers HF (red) and HB (black) of HSS (5,6) when
changing the detuning θF of the forward field for parameter values
EF = EB = 1.47, ν = 2, and the detuning of the backwards field kept
constant at θB = 3.2. The solid (dashed) lines correspond to stable
(unstable) HSS, the lines marked with the symbol X correspond to
HSS unstable to fast time perturbations, the vertical blue dashed lines
correspond to Hopf bifurcations of the HSS.

where HF = |F |2, HB = |B|2 (the letter H referring to the
power of the HSS) while PF = |EF |2 and PB = |EB|2 cor-
respond to the input powers. Counterpropagating fields in
ring resonators display spontaneous symmetry breaking of the
HSS for equal detunings. This allows for optical switching be-
tween high- and low-power counterpropagating fields, which
has been observed experimentally [28,29]. For our purposes,
we consider different detunings.

These algebraic equations can be solved numerically for
given values of the parameters, an example of which is shown
in Fig. 2 for ν = 2, equal pump powers (PF = PB = 2.1609)
with one of the field detuning kept constant (θB = 3.2) while
the other (θF ) is changed. In the vicinity of equal detunings
(dot dashed line) where the equations are symmetric upon
exchange of the forward and backward fields, a bistability
regime with a “Figure 8” shape exists. Here we expect the
“middle” HSS to be unstable (see dashed lines in Fig. 2).
When increasing the forward detuning θF after the symmetric
value 3.2, the Figure 8 ends in this case at the point where two
new HSS are born in a degenerate saddle-node bifurcation,
the lowermost being stable and the intermediate unstable. For
values of θB < 3.2 the saddle-node bifurcation takes place
after the end of the Figure 8, while for values of θB > 3.2
the saddle-node bifurcation takes place before the end of the
Figure 8 leading to a simultaneous presence of five different
stationary states. After the saddle-node bifurcation and the
end of the Figure 8, multistability of homogeneous solutions
is present at large values of the detuning θF until a reverse
saddle-node bifurcation restores a single HSS at very large
values of the scanned detuning.

In the asymmetric region for θF > θB we detect Hopf bi-
furcations of the HSS leading to oscillations as described
in Sec. VI. The two Hopf bifurcations occur on the upper

FIG. 3. Temporal evolution of the backward power towards a
stable SF state for |EF |2 = |EB|2 = 2.1609, θF = 2.0, θB = 3.2 from
two different initial conditions with dispersion β = 1. (a) Initial
condition with two kinks at narrow separation. (b) Initial condition
with two kinks at wide separation.

branches of the HSS (see the vertical dashed lines in Fig. 2)
and have opposite directions when increasing the detuning θF ,
with the amplitude of the oscillation growing from around
θF = 4 and decreasing to zero around θF = 6.3. These for-
ward and backward Hopf bifurcations are analogous in nature
and stability eigenvalues to those described in [25,27] where,
however, the two detunings where kept equal to each other
during the scan to focus on symmetric HSS.

There are however further instabilities of the HSS due
to the nature of the global coupling of Eqs. (1) and (2).
In Appendix A, a linear stability analysis of the HSS to
inhomogeneous perturbations at zero dispersion on the fast
time scale is presented. A new set of stability eigenvalues is
found:

λ = −1 ± √−A1B1, (7)

λ = −1 ± √−A2B2, (8)

where A1 = HF + νHB − θF , A2 = HB + νHF − θB, B1 =
3HF + νHB − θF , B2 = 3HB + νHF − θB, with HF and HB

being obtained from Eqs. (5) and (6). These new eigenval-
ues are entirely due to the averaged terms of this system
which means that local perturbations result in changes to the
unperturbed regions. The lines marked with the letter X in
Fig. 2 correspond to the HSS instability to inhomogeneous
perturbations where the real part of at least one of the four
eigenvalues (8) is positive.

III. TWO SWITCHING FRONTS AND DARK SOLITON
STEADY STATES

In the counterpropagating system with global coupling de-
scribed by Eqs. (1) and (2), we observe the formation of steady
states made of power plateaus separated by SFs in one of the
two counterpropagating fields while the second field remains
homogeneous, for wide ranges of the detuning values. In
Fig. 3 we show the formation of stable SF states when starting
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FIG. 4. Various SF states for EF = EB = 1.47, ν = 2, β = 1,
θB = 3.2. (a) Backward (forward) field power of steady-state so-
lutions, solid lines (dashed lines), for five values with decreasing
distance between SFs θF = 1.2 (blue), θF = 1.6 (magenta), θF = 2.0
(red), θF = 2.4 (green), θF = 2.8 (black). (b) Forward (backward)
field power of steady-state solutions, solid lines (dashed lines) for
five values with increasing distance between SFs θF = 3.4 (blue),
θF = 3.6 (magenta), θF = 4.0 (red), θF = 4.4 (green), θF = 4.8
(black).

from a narrow [Fig. 3(a)] or broad [Fig. 3(b)] perturbation of
the HSS for EF = EB = 1.47, ν = 2, θB = 3.2, and θF = 2.0.
We note that the choice of input power was arbitrary, and
similar solutions of stable SFs will exist for input field with
similar values, such as EF = EB = 1.5 or EF = EB = √

2. In
Sec. II A we showed that in this parameter region, HSS are
unstable to inhomogeneous perturbations. In both cases of
broad and narrow initial perturbations, the system evolves to
the same final state formed by a SF state with a well-defined
separation of the two SFs. It is important to note that the SF
solutions do not connect HSS of Eqs. (1) and (2) and affect
only one of the counterpropagating fields, the other being ho-
mogeneous. They do not correspond to symmetry exchanges
of the F and B fields.

A number of stable asymptotic states are presented in Fig. 4
for the same values of the parameters as Fig. 3 but with
θF varying from 1.2 to 4.8. In the interval 1.2 < θF < 2.8
the backward (forward) intracavity power is nonhomogeneous
(homogeneous) [Fig. 4(a)], while in the interval 3.4 < θF <

4.8 the forward (backward) intracavity power is nonhomoge-
neous (homogeneous) [Fig. 4(b)]. The solid lines correspond
to the power profiles of the field where a dark structure is
found while the dashed lines correspond to fully homoge-
neous solutions. When the two detunings are close to each
other (for example, θF equal to 2.8 or 3.4 in Fig. 4) the
inhomogeneous field has the shape of a localized dark soliton.
In the interval of 2.8 < θF < 3.4, there are no inhomogeneous
stable solutions and the system relaxes to the HSS seen in
Fig. 2. This instability of the dark soliton solution is affected
by the dispersion of the field, and dark solitons can persist in
larger detuning ranges for β < 1. For the present choice of
parameter values there is no bistability between the two-SF
states close to detuning symmetry. We will see in Sec. IV that
for PF = PB = 3, for example, an overlap region where both
SF states are stable, exists. In this overlap region, bistability of
SF states is observed where SFs are present in either the for-
ward or the backward field with the other field homogeneous
for the same parameter values.

For detunings θF < θB below symmetry, there is a wide re-
gion of parameter space where SFs separated by light plateaus

are the only stable solutions of the system. Here light plateaus
within two SFs are self-starting states and there is no need of
any perturbation to the system to drive the dynamics towards
them.

For θF < θB there are small regions of bistability between
HSS and light plateaus within two SFs. For θF > θB there is a
wide region of bistability between low-intensity HSS and light
plateaus within two SFs and even tristability with the addition
of oscillating HSS. In all the regions of multistability we have
found that input pulses made of a square wave of around twice
the background input power, of duration ζ̃ and applied for
a transient time t̃ to the field where the light plateaus will
appear results in the formation of stationary light plateaus
within two SFs if the input pump pulse duration ζ̃ /L is of the
order of (1 − �) where � is the final separation of the SFs
(see Sec. IV).

When the two detunings are very different from each other,
the inhomogeneous field can take the shape of a localized
bright soliton while the other field remains homogeneous.
Bright solitons are in general not stable in the normally dis-
persive unidirectional system (LLE) and annihilate each other
as the fronts collide. Bright solitons formed by two SFs are
instead stable in counterpropagation due to the robustness
introduced by global coupling but the SFs will still annihilate
if brought too close to each other. Such states have been
observed in single laser setups [14]. In the limit of zero dis-
persion, bright structures can be made arbitrarily narrow when
changing the detuning. The dispersion affects the steepness of
SFs and for a given θF , it will determine whether we have a
bright structure of two non interacting SFs or a bright soliton
or an annihilation of the two SFs. For given values of the
detunings, bright structures with a minimum full width at
half maximum (FWHM) can be found and their dependence
from the dispersion coefficient β can be established in nu-
merical simulations as shown in Fig. 5. Stable SF states and
stable dark solitons are present due to the global coupling
of the two counterpropagating fields. The phase-independent
interaction of counterpropagating fields introduced a shift in
the detuning of the fields. To this end we define effective
detunings

θ̃F = θF − ν〈|B|2〉, (9)

θ̃B = θB − ν〈|F |2〉 (10)

that reduce the counterpropagating Eqs. (1) and (2) to a pair
of LLEs coupled via their effective detunings:

∂t F = EF − (1 + iθ̃F )F + i|F |2F − iβ∂2
ζ F, (11)

∂t B = EB − (1 + iθ̃B)B + i|B|2B − iβ∂2
ζ B. (12)

Taken separately when ignoring the coupling through the
effective detunings, each of these LLEs displays a Maxwell
point for normal dispersion corresponding to a set of pa-
rameter values where solutions made of power plateaus well
separated by SFs are stable. For any other parameter value
close to the Maxwell point, SFs are observed to move close
or away from each other. At the Maxwell point and at
the Maxwell point only, the LLE displays a multistabil-
ity of power plateaus solutions with two stationary SFs at
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FIG. 5. Minimum possible FWHM size of bright solitons for dif-
ferent values of the dispersion coefficient β at parameter values PF =
PB = 2.1609, θB = 3.2 where θF is chosen to provide the narrowest
soliton for each value of β. Circles represent the FWHM values from
simulations while the dashed line is a linear fit of the data. Inset:
Power distribution of three bright solitons of minimum FWHM in
the backward field while the forward power remains constant (dashed
line) for dispersion values β = 0.1 (black line), β = 1 (red line), and
β = 10 (blue line) with increasing FWHM.

arbitrary separations. In gradient systems the Maxwell point
corresponds to the parameter value where both bistable ho-
mogeneous states have equal energy. In nongradient system,
such as the LLE, Maxwell points and hysteresis can still be
possible even though an expression of the energy cannot be
obtained.

There are very important differences between our SF states
and dark solitons due to global coupling and structures of
similar shape in the single LLE with normal dispersion (at
the Maxwell point or close to the Maxwell point) studied
theoretically in [18,30] and experimentally in [19,31,32]. For
example, the power of the homogeneous field and the power
values of the plateaus before and after the two SFs in the
inhomogeneous field are not the values of the HSS studied in
Sec. II A. When the values of the two field detunings are well
separated, stable SF states are not due to locking mechanisms
of the tails of the SFs as for example observed in optical
parametric oscillators [21,22]. However, when the detunings
of the two fields are quite close to each other, dark solitons
owe their stability to the local oscillations in the lower part of
the SF as shown in Fig. 4 for θB = 3.2 and θF = 2.8, 3.4 and
3.6.

When increasing the detuning θF while keeping the de-
tuning θB fixed, one observes first a decreasing separation
between the two stable SFs in the backward field [Fig. 4(a)]
and then, after the symmetric state θF = θB, an increasing
distance between the two stable SFs in the forward field as
seen in Fig. 4(b). In the latter case, the power of the homo-
geneous backward field changes substantially upon variations
of θF > θB while the power of the homogeneous forward field
changes only a little upon variations of θF < θB [see Fig. 4(a)].
This effect is a direct result of the effective detunings that
contain the integrals (4).

FIG. 6. (a–d). Light plateau stationary solutions obtained from
different perturbations of the HSS, displaying either two SFs (a) or
four SFs (b–c), or dark solitons and SFs (d) for PF = PB = 4, θB = 4
and θF = 1.9 (� ≈ 0.3). A single wide perturbation gives a two-SF
stationary state (a); two perturbations of equal (b) or unequal width
(c) give four SF stationary states. (d) A stationary state resulting from
the spontaneous formation of SFs and dark structures due to small
amplitude initial noise. In each case (a–d) the average power of the
field and the plateau powers are identical. (e) Evolution to a station-
ary state with SFs and dark solitons in the backward field (lower)
with flat forward field (upper) due to noise. The final stationary state
is shown in (d).

One very interesting feature when scanning one of the
detunings (say, θF ) while keeping the other one fixed by
changing the input frequency of one of the two pumps, is
that upon crossing the symmetric state θF = θB, stable SFs
and dark solitons switch from one propagation direction (the
backward for θF < θB) to the other (the forward for θF > θB).
This provides the operator of this device to select at will the
direction, in which the solitary structures and, consequently,
an optical frequency comb occurs.

In general 2N SFs may coexist within a long cavity. Two
examples of stationary states with four SFs are shown in
Figs. 6(b) and 6(c). At stationary state, the upper and lower
power plateaus connected by the four SFs have identical
power to the plateaus of the two-SF stationary state shown
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in Fig. 6(a). The average power of a 2N SF stationary state
is also identical to the two-SF stationary state. This is due
to the Maxwell point condition on the effective detuning. As
such the total proportion of the upper and lower plateaus for
all 2N SF stationary states are identical. This means that the
distance between SFs of each pair �1, . . . , �N of 2N SFs
sums up to the SF distance � of the two-SF stationary state,
� = ∑N

n=1 �n. In regions of the spatial instability of the HSS,
different SF structures may form. Figures 6(d) and 6(e) shows
the spontaneous formation of many SFs from an unstable HSS
under the action of noise. The location and separations of
SFs of the stationary state [Fig. 6(d)] are random, showing
plateaus and dark soliton structures coexisting in the cavity,
and yet satisfying the constraint on the sum of �n being �.

IV. DISTANCE OF TWO STATIONARY
SWITCHING FRONTS

From numerical simulations we obtain stationary solutions
with two stable SFs separated by a distance �. We aim here
to obtain an analytical expression of the the distance � when
using θF as a control parameter.

We start from the case of two SFs in the backward field for
a given value of θB when changing θF < θB [see Fig. 4(a)].
In this case the forward field power |F |2 is homogeneous and
appears to be independent of the detuning θF . Note that this
homogeneous value of the forward power is not the HSS value
HF discussed in Sec. III. For the stationary solutions we can
write

EF = (1 + iθ̃F )F − i|F |2F, (13)

EB = (1 + iθ̃B)B − i|B|2B + iβ∂2
ζ B, (14)

where we have used Eqs. (9) and (10). Each solution of the
backward field equation (14) when changing θF has a one-
to-one correspondence with one of the multistable stationary
solutions of a single Lugiato-Lefever equation (LLE) at the
Maxwell point given by

EB = (1 + i�MP)B − i|B|2B + iβ∂2
ζ B, (15)

where �MP is the cavity detuning at Maxwell point which
depends on the input power PB. The functional dependence of
�MP from PB can be obtained by asymptotic methods close
to the critical detuning value

√
3 for PB ≈ 8

√
3/9 and by

variational methods for PB > 10 [15]. Neither of these ap-
proximations is satisfactory in the range 2 < PB < 7 of values
used here (see Fig. 7). By computing the Maxwell points
numerically (see blue line in Fig. 7) we find that a simple
linear dependence of �MP from PB

�MP ≈ η(1 + PB) (16)

with η = 0.7 approximates the numerical values much better
in the interval of interest (see black line in Fig. 7). Additional
terms can be included in the approximation to extend the
range of validity to PB = 10:

�MP ≈ η
( − 0.001997P3

B + 0.006503P2
B + PB + 1

)
. (17)

By using the equivalence between (14) and (15) as well
as the definition of θ̃B in (10) we obtain the value of the

FIG. 7. The detuning �MP of a single LLE (15) at the Maxwell
point as a function of PB = E 2

B . The circles are numerically evaluated
points from which we obtain the linear [Eq. (16) in black] and cubic
[Eq. (17) in blue] fitted curves for the Maxwell point distribution. The
dashed green and dashed red curves correspond to the asymptotic and
variational methods of [15], respectively.

power of the homogeneous forward field for the SF state in
the backward field:

〈|F |2〉 = |F |2 = 1

ν
[θB − �MP] ≈ 1

ν
[θB − η(1 + PB)]. (18)

As shown in the numerical simulations of the two SFs for
θF < θB = 3.2 in Fig. 4(a), |F |2 is independent of the control
parameter θF and its value is just below 0.5 for the case of
PB = 2.1609, in agreement with (18). The power YB = |B|2 of
the homogeneous states of (15) satisfies

Y 3
B − 2�MPY 2

B + (
1 + �2

MP

)
YB − PB = 0 (19)

from which it is possible to obtain the values of the plateau
powers Y +

B and Y −
B where the SFs start and end. Note that

since �MP does not depend on θF , Y +
B and Y −

B also do not de-
pend on θF as shown in Fig. 4 for the SF states. Comparison of
Y +

B and Y −
B obtained from (19) with the numerical evaluation

of �MP and with the approximate expression (17) are shown
in Fig. 8 in the interval of interest for PB between 2 and 10.

It is now possible to obtain an expression for the stationary
distance � of the two SFs. In the zero dispersion case β = 0,
the SFs are vertical lines between Y +

B and Y −
B so that

〈|B|2〉 = �Y −
B + (1 − �)Y +

B

� = Y +
B − 〈|B|2〉
Y +

B − Y −
B

. (20)

However, from (13) one obtains

〈|B|2〉 = 1

ν

(
θF − |F |2 ±

√
PF

|F |2 − 1

)
, (21)

where PF is the forward input power E2
F and |F |2 is given by

Eq. (18). Hence the combinations of Eq. (19) and Eq. (21)
provide an expression of the distance � between the two SFs
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FIG. 8. Power YB of the homogeneous solutions before and after
a SF for a single LLE at Maxwell point (19). SFs are possible after
the onset of bistability at critical pump power PB ≈ 8

√
3/9 where

the higher Y +
B (red) and the lower Y −

B (blue) branches are stable but
the dashed middle solution is unstable. The Maxwell point detunings
�MP are approximated by (17) for P > 2.1 and by an asymptotic
approach for P < 2.1. The blue circles are homogeneous solutions
before and after a SF from the simulation of (1)–(2).

at zero dispersion via Eq. (20) in terms of parameters θF , θB,
PF , PB (see the black line in Fig. 9 for PF = PB = 2.1609,
θF = 1.4, θB = 3.2). For dispersion different from zero, the
distance � remains unchanged as shown in Fig. 9 for β = 5
(blue line), β = 1 (red line), β = 0.1 (green line). This means
the second-order dispersion β affects the steepness of SFs but

FIG. 9. Power distribution of an inhomogeneous B field exhibit-
ing two noninteracting SFs with separation � for parameter values
PF = PB = 2.1609, θF = 1.4, θB = 3.2 and dispersion coefficient
β = 5 (blue dashed line), β = 1 (red dashed dotted line), β = 0.1
(green line), and β = 0 (black dotted line). Here the fast time (x axis)
is normalized to the round trip time.

FIG. 10. (a, b) SF separation � when changing the detuning θF

for fixed pump powers PF = PB and detuning θB. Solid black (solid
red) lines correspond to simulation results from (1)–(2) with β = 1
and for PF = PB = 2.1609, θB = 3.2 (PF = PB = 3, θB = 5). Panel
(a) is a forward scan and (b) is a backwards scan. The blue dashed
lines are the analytical results of Eqs. (20) and (26). (c, d) Range of
detuning values where SF solutions exist and are stable for the B field
(blue region) and for the F field (red region) or both fields (orange
region), (c) PF = PB = 2 and (d) PF = PB = 3.

does not change the pulse duration (SF distance) of the output
for noninteracting SFs.

When using θF as a control parameter, expression (20)
works very well when compared with the distance of two
stationary SFs obtained from the simulations of (1) and (2)
done with β = 1; see the left-hand side of Figs. 10(a) and
10(b). In particular we note that � is a function of θF only
through 〈|B|2〉 as expressed in Eq. (21). This means that the
distance � decreases linearly with θF with a slope given
by [ν(Y +

B − Y −
B )]2. Once the detuning θF < θB and the input

powers PB and PF are chosen, it is possible to obtain accurately
the distance of the two SFs from Eq. (20) even in the regime
of small distances and locked SFs (dark solitons) as shown in
Fig. 10.

The conditions of validity of Eqs. (18) and (21) predict that
two stable SFs can be found in the interval η(1 + PB) < θB <

νPF + η(1 + PB), given that 0 < � < 1. This allows us to
determine regions in parameter space where vertical SF form
as shown in Figs. 10(c) and 10(d). It is interesting to see that
for values of PB > 2.145 where stable SFs in the backward
field are observed even for θF > θB, the predictions of Eq. (20)
remain in good agreement with the numerical results [see red
lines on the left of Figs. 10 (a) and 10(b) for PB = PF = 3].

Equations (18) and (20) suggest that precise control over
the pulse duration (SF distance) of the output field is possible
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by simply changing the laser detuning. This allows for con-
trol over the frequency comb generation efficiency by laser
parameters in contrast with conventional microresonator dark
solitons, where the pulse duration is determined by the disper-
sion.

We now move to the case θF > θB. In this case it is the
backward field B that is homogeneous and the two stable
SFs are found in the forward field F . In this case the role of
Eqs. (13) and (14) is exchanged:

EF = (1 + iθ̃F )F − i|F |2F + iβ∂2
ζ F, (22)

EB = (1 + iθ̃B)B − i|B|2B, (23)

and one obtains �′
MP ≈ η(1 + PF ) as well as

〈|B|2〉 = |B|2 = 1

ν
(θF − �′

MP) ≈ 1

ν
[θF − η(1 + PF )]. (24)

In the case of θF > θB, the homogeneous power of the back-
ward field grows linearly with θF , which agrees with the
simulation in Fig. 4(b). The form of the equation for the
power YF = |F |2, however, remains basically unchanged from
Eq. (19),

Y 3
F − 2�′

MPY 2
F + (1 + (�′

MP)2)YF − PF = 0, (25)

so that the homogeneous powers Y +
F and Y −

F before and after
the SFs are still independent from θF and, in the case of PF =
PB, they have the same values of Y +

B and Y −
B found for θF < θB

since �′
MP = �MP. Finally,

〈|F |2〉 = �Y −
F + (1 − �)Y +

F

� = Y +
F − 〈|F |2〉
Y +

F − Y −
F

(26)

and

〈|F |2〉 = 1

ν

(
θB − |B|2 ±

√
PB

|B|2 − 1

)
. (27)

The distance � depends on θF through 〈|F |2〉 and then
through |B|2 given in Eqs. (24) and (27). At difference from
the case θF < θB this dependence is nonlinear, the slope of
the curve is reversed and the distance � now grows with the
detuning θF . The agreement of Eq. (26) with the numerical
simulations as shown in the right hand part of Fig. 10 is
again excellent. Similar to the B field case, the conditions of
existence of vertical SFs for the F field is η(1 + PF ) < θF <

νPF + η(1 + PF ) given that 0 < � < 1 [see Figs. 10(c) and
10(d)].

The linear stability of SF solutions can be determined at
zero dispersion using the expressions for the average field
powers derived earlier in this section. Considering a SF so-
lution in the backward field with a homogeneous forward
field, their average powers are given by Eqs. (21) and (25),
respectively. As calculated in Appendix B the stability of the
homogeneous states before and after the SFs to spatial (fast
time) perturbation are given by the eigenvalues

λ+
B = −1 ±

√
(�MP − Y +

B )(3Y +
B − �MP), (28)

λ−
B = −1 ±

√
(�MP − Y −

B )(3Y −
B − �MP). (29)

These eigenvalues depend on the pump power only. When
changing the detuning θF , the corresponding SF solution maps
into one of the multistable two-SF solutions of an LLE at
Maxwell point. The homogeneous forward field eigenvalues
are

λF = −1 ±
√

(θ̃F − YF )(3YF − θ̃F ). (30)

where θ̃F = θF − ν〈|Bs|2〉 is the effective detuning, and de-
pend on θB implicitly through the integrated power 〈|B|2〉.

By using the stability eigenvalues λ±
B and λF it is possible

to determine instabilities of the SF solutions when the real part
of one of these eigenvalues goes from negative to positive. For
example, plateau solutions separated by SF are susceptible to
Hopf bifurcations and oscillations of the homogeneous states
that are connected to the SFs. This instability is introduced by
perturbations to the SF states that change the average power
of the field as seen in Appendix B. For the parameter values
used in this work PF = PB = 2.1609, θB = 3.2, these oscil-
lations grow in the region 5.35 < θF < 6.25 resulting in the
collapse of local structures to the HSS. Numerical simulations
of Eqs. (1) and (2) confirming this instability are presented in
Sec. VI.

V. EVOLUTION TOWARDS THE TWO
SWITCHING-FRONT SOLUTIONS

Despite the one to one correspondence of the SF so-
lutions of the counterpropagating system and those of the
LLE at Maxwell point, the dynamics of front solutions in
the counterpropagating system are different from those seen
in the LLE. Here we describe the transient evolutions of
a two-SF solution in the counterpropagating system as the
SFs move towards the unique stationary separation of the
fronts.

In Fig. 3 in Sec. III, we have seen that when the HSS of
the counterpropagating system are unstable to inhomogeneous
perturbations, the system relaxes to a SF solution. We consider
here initial conditions made of two SFs between two homoge-
neous states in one field while the other field is homogeneous
across the resonator. The values of the homogeneous states at
the beginning and at the end of each front in the counterpropa-
gating system depend on the average power of the fields. This
means that when the SFs are not at the stationary separation,
the homogeneous states are different from those of the two-SF
stationary state. The values of the homogeneous power before
and after a front for arbitrary separations can be calculated by
considering states of the zero dispersion case of Eqs. (1) and
(2), where the second-order derivative with respect to the fast
time and the first-order derivative with respect to the slow time
are neglected. For a two-SF solution in the B field, the upper
and lower homogeneous solutions separating the SFs can be
determined by solving the coupled equations

PB = Y 3
B − (θB − νYF )Y 2

B + [(θF − νYF )2 + 1]YB, (31)

PF = Y 3
F − {θF − ν[�Y −

B + (1 − �)Y +
B ]}Y 2

F

+ ({θF − ν[�Y −
B + (1 − �)Y +

B ]}2 + 1)YF , (32)

where Y +
B ,Y −

B are the upper and lower homogeneous solu-
tions of the zero dispersion SF solution present in the B
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FIG. 11. (a) Power of the homogeneous states Y ±
B connected by the SFs (solid black line), homogeneous field power HF (solid red line),

and average power of the field displaying SFs (dotted black line) versus the front separation is changed. The HSS in the absence of SFs is
given by the dashed blue lines. (b, c) Comparison between the zero dispersion two front solutions using Eqs. (31) and (32) (dashed blue lines)
and evolving two front solutions from the numerical integration of Eqs. (13) and (14) with β = 0.1 (solid lines) for shrinking front distance
(b) and expanding front distance (c). The dotted black lines are the initial conditions. Parameter values are PF = PB = 2.1609, θF = 2.0, and
θB = 3.2. The final and stationary front separation (thick red line) is � = 0.31 in both (b) and (c).

field [solutions of Eq. (32) in a bistable state] with average
power 〈|B|2〉 = �Y −

B (�) + (1 − �)Y +
B (�) and � is the front

separation. Note that the expressions for the average powers of
front solutions are independent of dispersion. These solutions
are plotted in Fig. 11(a).

Figures 11(b) and 11(c) show that two-SF profiles that use
the solutions of Eqs. (31) and (32) with a given separation �

provide excellent approximations to the numerical solutions
of Eqs. (13) and (14) with β = 0.1 during the transition to the
the final SF solution for both cases of shrinking and expanding
front separation. The SFs are moving with opposite velocities
and with a well-defined distance �(t ). For each value of
the slow time t and distance �(t ), the dynamical solution is
well approximated by two SFs between homogeneous states
provided by Eqs. (32) given a separation distance �. Since
for each value of θF there is only one stationary value of �,
generic separations of the two SFs separated by homogeneous
power from Eqs. (32) evolve in time but maintain their shape
with a changing separation leading to different homogeneous
powers. As such the front separation determines the power of
homogeneous solutions, which in turn determines the velocity
of the SFs, which in turn changes the front separation. This
leads to a front velocity that depends on the front separation.

Although the shape of the transient solutions are well ap-
proximated by two vertical SFs at every moment in time, the

FIG. 12. Front separation (a) and front velocity (b) vs slow time
while approaching a SF solution. From the data from Fig. 3, we track
the front separation relative to the separation of the final SF solution
in (a) and use the dimensionless slope of (a) to determine the front
speed in (b). Solid blue line represents the wide initial condition, red
dashed line the narrow initial condition.

front separation and the front velocity are nontrivial functions
of time as shown in Fig. 12.

VI. OSCILLATORY DYNAMICS AND BISTABILITY WITH
FRONT STATIONARY STATES

Dynamical regimes in ring resonators have been previously
studied for homogeneous counterpropagating fields with sym-
metrical input fields and detunings [25,26]. It was seen that
under the correct conditions, a pair of oppositely directed
Hopf bifurcations can occur when changing the detuning
θF = θB, allowing for sustained homogeneous oscillations
that could exhibit period doubling bifurcations, chaos, and
crisis events. In Sec. III we saw oppositely directed Hopf
bifurcation for the HSS occurring when changing θF in an
asymmetric regime of different detunings between the two
counterpropagating waves since θB is kept fixed (see the
vertical black dashed lines in Fig. 2 evidencing the interval
4.02 < θF < 6.33). These Hopf bifurcations affect the highest
power HSS resulting in oscillations which are bistable with
the lowest power HSS. An example of large homogeneous
oscillations in the power of the two fields is displayed in
Fig. 13(a) from simulations of Eqs. (1) and (2).

FIG. 13. Bistability of slow and fast oscillations for param-
eter values β = 1, PF = PB = 2.1609, θF = 4.5, and θB = 3.2.
(a) Periodic oscillations of the homogeneous powers of both coun-
terpropagating fields over the slow time. (b) Output power of a SF
solution in the forward field (red line) and homogeneous steady state
for the backward field (black line) over three cavity round trip times.
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FIG. 14. Possible asymptotic states for β = 1, PF = PB =
2.1609, θF = 4.5, and θB = 3.2 in the phase (Argand) plane. Stable
limit cycle trajectories of the homogeneous forward (red solid line)
and backward (black solid line) fields; stable SF solution of the
forward field (blue dashed line) and its homogeneous backward field
(blue circle); stable HSS of low powers (green Xs for forward and
backward fields).

In the parameter region of Fig. 13, the HSS of large pow-
ers are unstable not only to homogeneous oscillations but
also to local perturbations on the fast timescale (see the line
marked with X in the interval 3.35 < θF < 6.47 in Fig. 2). We
find that depending on the initial condition, the system can

FIG. 15. Homogeneous field powers (black line backward field,
red line forward field) when scanning the detuning θF for fixed de-
tuning θB = 3.2 and fixed equal pump powers P = PF = PB. Dashed
lines correspond to the power extrema during oscillation. (a) Forward
scan for P = 1.95. Limit cycle oscillations are present in the detun-
ing range 4.2 < θF < 5.9. (b) Forward scan for P = 2.1609. Limit
cycle oscillations are present in the detuning range 4.1 < θF < 5.1.
(c) Backward scan for P = 2.1609 starting at θF = 6.4. Limit cy-
cle oscillations are present in the detuning range 5.5 < θF < 6.2.
(d) Backward scan for P = 2.1609 starting at θF = 7.0. No oscil-
lations observed.

FIG. 16. Dynamical evolution from an initial condition of a two-
SF solution in the forward field and a homogeneous solution in the
backward field for PF = PB = 2.1609, θF = 5.3, θB = 3.2. Oscilla-
tions grow until both fields reach the stable HSS of low powers.
(a) Intracavity power of the forward (upper) and backward (lower)
fields over slow time. (b) Average interactivity power of the forward
(red) and backward (black) over slow time.

evolve to either the homogeneous oscillations of Fig. 13(a)
or to a SF solution in the forward field with a homogeneous
backward field [see Fig. 13(b)] or to a HSS corresponding to
low powers. To display the richness of possible asymptotic
states of Eqs. (1) and (2), we show in Fig. 14 the asymptotic
trajectories of oscillating homogeneous fields, the asymptotic
trajectories of the SF state and the asymptotic points of the
HSS of low powers in the phase (Argand) plane for the same
parameters of Fig. 13. Depending on the initial condition,
the microring device can evolve to any of these three final
states generating either large-amplitude slow oscillations in
both fields, or large-amplitude fast oscillations in just one field
(the forward one) or no output oscillations at all. This provides
the operator with a remarkable number of output waveforms
with possible selection of each one by suitable perturbation
of the input fields (in their amplitude or phase). It is possible
to generate light plateau states using a transient pulsing input
field containing sudden step to provide perturbations to the
HSS.

043507-10



COUNTERPROPAGATING LIGHT IN RING RESONATORS: … PHYSICAL REVIEW A 106, 043507 (2022)

When scanning the forward detuning for the parameter
values studied here, we do not observe period doubling bi-
furcations or deterministic chaos at difference with typical
simulations at parameter symmetry [25–27]. We observe,
however, sudden crises when the stable trajectory of the limit
cycle can intersect the unstable HSS in the regions of multiple
stationary states. This results in sudden instabilities of the
oscillations, which collapse to the lower stable HSS. In Fig. 15
we show simulations of counterpropagating fields when scan-
ning the detuning θF forwards and backwards. Forward and
backward Hopf bifurcations can be clearly seen in the forward
scan at PF = PB = 1.95 in Fig. 15(a) where the dotted lines
represent the maxima and minima of the oscillating powers
of the homogeneous fields over slow time variations. When
increasing the input power, attractor crises are observed both
in the forward (at θF ≈ 5.05) and in the backward (at θF ≈
5.62) scans [see Figs. 15(b) and 15(c)] leading to a transfer
to the low-power HSS. Note, however, that depending on the
initial condition of the backward scan, there is the possibility
of observing no oscillations and no crises as displayed in
Fig. 15(d).

Figure 15 focuses on homogeneous oscillations and HSS
of low powers. The situation is further complicated by the
presence of SF states in the forward field with a homogeneous
backward field. When changing θF there is a further temporal
instability of the SF solutions which causes the homogeneous
states connecting the SFs to start to oscillate resulting in the
entire inhomogeneous structure to oscillate, along with ho-
mogeneous oscillations of the backward field. For θF < 5.35
these oscillations are damped allowing for stable SF states,
but for 5.35 < θF < 6.25 such oscillations grow, destroying
fast time structures and the system moves to the HSS corre-
sponding to low powers as shown in Fig. 16.

VII. CONCLUSIONS

We have investigated the effects of global average coupling
induced by the interaction of two input beams counter-
propagating in a ring resonator with normal dispersion. In
particular, we find stationary states of light plateaus that are
separated by two switching fronts. By controlling the input
laser frequency detuning, the propagation direction of the light
plateau states can be switched between clockwise and coun-
terclockwise. We have derived semianalytical expressions of
the distance between stable switching fronts and the powers of
the plateaus as a function of the detunings. These expressions
rely on the knowledge of the Maxwell point location in the
parameter space of the LLE. By using a numerical fit from
LLE simulations, we found excellent agreement between the
obtained formulas and the numerical simulations. Maxwell
point locations can also be determined by asymptotic or vari-
ational approaches [15] but at the detriment of the agreement
with numerical simulations. Apart from being present in only
one of the two conterpropagating fields, light plateaus in our
global system are unusual in that they have power values
different from the homogeneous steady states of the system.
Global average coupling introduces a balancing of areas asso-
ciated with the two plateau powers resulting in a controllable
distance of two stationary SFs by the detunings, which in turn
can be tuned by changing the frequency of the input fields.

Robust SF solutions are present for large ranges of detun-
ing allowing great control over the distance of the two SFs
through the laser parameters. This allows the user to precisely
control the pulse duration of the output field, and hence the
frequency comb generation efficiency by changing the input
fields detuning. The second-order dispersion determines the
steepness of SFs with no effect on the pulse duration when
well separated. This is different from conventional microres-
onator dark and bright solitons, whose width is determined by
second-order dispersion. In addition we find that changing the
laser detuning across the symmetric state results in the SF so-
lutions to disappear from one field and then to reappear in the
other field. This results in the SFs switching direction in the
microresonator while scanning a single detuning parameter
thus allowing for a corresponding switch of the beam where a
frequency comb is generated.

The analytic description of SF and plateaus extends to
transient states, allowing us to describe the changes of plateau
power and SFs separation as they move towards the final
stationary state corresponding to a given SF separation.

We have also investigated oscillations in symmetry bro-
ken (θF �= θB) counterpropagation. We have identified stable
limit cycle oscillations in detuning symmetry-broken regimes,
and observed sudden crisis in which the oscillations become
unstable due to a collision with an unstable HSS. Stable os-
cillatory dynamics coexist with SF solutions for large ranges
of parameter values. We have even identified a multistability
of oscillations with SF solutions and the lowest power homo-
geneous stationary state. Depending on the initial condition,
the microring device can evolve to any of these three final
states generating either large-amplitude slow oscillations in
both fields, or large-amplitude fast oscillations in just one
field or no output oscillations at all. This provides the operator
with a remarkable number of output waveforms with possible
selection of each one by suitable perturbation of the input
fields (in their amplitude or phase).

Microresonator systems have undergone much study in
recent years. All our predictions have been obtained for re-
alistic parameters with possible experimental verification in a
variety of ring resonator setups, from microring to fiber loops.
Frequency comb generation has also been demonstrated using
two lasers for bichromatic pumping of a microring resonator
for the generation of dark bright solitons [33]. A modifica-
tion to this setup to incorporate bidirectional pumping should
allow for the generation of counterpropagating SF states.
Single-input laser setups in the presence of backscattering
have indeed predicted and observed Maxwell point front so-
lutions in microring resonators [14,15]. Backscattering of the
pump laser results in a counterpropagating field, allowing for
a single-laser setup to produce plateaus that can be the result
of extending our model to these configurations.

Configurations of alternating SF and light plateaus in only
one field are not just interesting for their fundamental features
being related to global coupling of two waves and integro-
partial-differential equations. The robust, highly configurable,
and controllable SFs solutions of counterpropagating light
can be useful in many real world applications such as all
optical oscillators, optical computing, time reversal symmetry
breaking, and signal routing in telecommunication systems.
Future considerations for this system include a pulse driving
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configuration in one or both of the input fields. The results of
this paper can be further enhanced by polarization consider-
ations of the counterpropagating fields. This would introduce
additional spontaneous symmetry breaking between polariza-
tion modes similar to those observed in [34–36].

ACKNOWLEDGMENTS

This research was supported by funding from the EPSRC
DTA Grant No. EP/T517938/1. P.D. acknowledges support
by the H2020 European Research Council (ERC) (756966,
Counterlight), the Marie Sklodowska-Curie Innovative Train-
ing Network (MSCA) (812818, Microcombs), and the Max
Planck Society.

APPENDIX A: LINEAR STABILITY OF HOMOGENEOUS
STATIONARY STATES TO INHOMOGENEOUS
PERTURBATION IN COUNTERPROPAGATION

Here we investigate the stability of stationary homoge-
neous states Fs, Bs to spatial perturbations at zero dispersion
(β = 0). The nonlocality of the counterpropagating system
means that local perturbations will result in changes to the
unperturbed regions and therefore have an implicit depen-
dence on the entirety of the field. It is necessary to track the
evolution of the entire field to determine the susceptibility of
the homogeneous stationary states to spatial bifurcation. We
do so by considering the field partwise in fast time

F = F1T (ζ )T (xF − ζ ) + F2T (ζ − xF )T (L − ζ ), (A1)

B = B1T (ζ )T (xB − ζ ) + B2T (ζ − xB)T (L − ζ ), (A2)

such that

|F |2 = |F1|2T (ζ )T (xF − ζ ) + |F2|2T (ζ − xF )T (L − ζ ),

(A3)

|B|2 = |B1|2T (ζ )T (xB − ζ ) + |B2|2T (ζ − xB)T (L − ζ ),

(A4)

where T (ζ ) represents the Heaviside step function which has
the value 1 for ζ � 0 and 0 for ζ < 0, and xF , xB are the
lengths of fast time occupied by F1, B1. The partwise fields
F1 and F2 (B1 and B2) represent two separate domains of fast
time with different spatially homogeneous perturbations of the
same HSS, such that the combined perturbation is spatially
inhomogeneous. We consider the linear perturbation to the
counterpropagating system of the form

F1 = Fs + f1, F2 = Fs + f2, (A5)

B1 = Bs + b1, B2 = Bs + b2. (A6)

The average field powers under this formulation are

〈|F |2〉 = �F |F1|2 + (1 − �F )|F2|2, (A7)

〈|B|2〉 = �B|B1|2 + (1 − �B)|B2|2, (A8)

where �F = xF /L, �B = xB/L, are the normalized lengths
occupied by F1, B1. The evolution of the F1 and F2 compo-
nents are not explicitly dependent on each other due to zero
dispersion. As such we describe the evolution of the F field as
separate ODEs for F1, F2 (likewise for the B field), hence this
system is described by the four ODEs

∂τ F1 = SF − (1 + iθF )F1 + i{|F1|2 + ν[�B|B1|2 + (1 − �B)|B2|2]}F1, (A9)

∂τ F2 = SF − (1 + iθF )F2 + i{|F2|2 + ν[�B|B1|2 + (1 − �B)|B2|2]}F2, (A10)

∂τ B1 = SB − (1 + iθB)B1 + i{|B1|2 + ν[�F |F1|2 + (1 − �F )|F2|2]}B1, (A11)

∂τ B2 = SB − (1 + iθB)B2 + i{|B2|2 + ν[�F |F1|2 + (1 − �F )|F2|2]}B2. (A12)

Without loss of generality, we adjust the phase of F, B such that Fs, Bs are real. We have that the real and imaginary components
of the perturbation evolve as

d

dτ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,r

f1,i

f2,r

f2,i

b1,r

b1,i

b2,r

b2,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 A1 0 0 0 0 0 0
−B1 −1 0 0 −�BC 0 −(1 − �B)C 0

0 0 −1 A1 0 0 0 0
0 0 −B1 −1 −�BC 0 −(1 − �B)C 0
0 0 0 0 −1 A2 0 0

−�FC 0 −(1 − �F )C 0 −B2 −1 0 0
0 0 0 0 0 0 −1 A2

−�FC 0 −(1 − �F )C 0 0 0 −B2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,r

f1,i

f2,r

f2,i

b1,r

b1,i

b2,r

b2,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A13)
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FIG. 17. Real component of eigenvalues for changing θF with
parameter values PF = PB = 2.1609, θB = 3.2. The corresponding
HSS are plotted in Fig. 2. For θF > θB (dashed lines) we consider
the highest power branch of HSS. For θF < θB (dotted lines) we
consider the sole HSS. The real components of the “+” solutions
of Eqs. (A16) and (A17) indicate instability. Plotted above are the
“+” solutions of λF (red) and λB (blue).

where A1 = F 2
s + νB2

s − θF , A2 = B2
s + νF 2

s − θB, B1 =
3F 2

s + νB2
s − θF , B2 = 3B2

s + νF 2
s − θB, and C = 2νFsBs.

This results in the known eigenvalues of homogeneous
perturbation of the homogeneous stationary states [25]

λ = −1 ±
√−A1B1 − A2B2 ± S√

2
, (A14)

S =
√

(A1B1 − A2B2)2 + 4A1A2C2 (A15)

with additional eigenvalues indicative of instability of either
the F field (λF ) or the B field (λB) due to spatially inhomoge-
neous perturbations

λF = −1 ± √−A1B1, (A16)

λB = −1 ± √−A2B2. (A17)

These four eigenvalues are a consequence of the global
coupling and are not present in local coupling regime of co-
propagating fields. Figure 17 shows the real component of the
of ‘+’ eigenvalues [Eqs. (A16) and (A17)] of the HSS shown
in Fig. 2. The HSS is unstable when the real component is
positive and are marked with the symbol X in Fig. 2. They
are identical to those seen in two single LLEs with parameter
values PF , θ̃F & PB, θ̃B. We note that F1, F2 do not need to
be continuous regions of fast time. They represent the total
proportion of the field perturbed below or above the stationary
solution and as such the above eigenvalues are appropriate
for a random spatial perturbation (which would have width
�F ≈ 0.5), and likewise for the B field.

In the regime of local coupling, the two copropagating
fields are coupled by Kerr cross-phase modulation. As such
a local spatial perturbation of one of the fields will only
effect the corresponding spatial region of the other field. If

we introduce a step function perturbation to the homoge-
neous stationary states Fs, Bs with size � of the form F =
Fs + f T (ζ )T (� − ζ/L), B = Bs + bT (ζ )T (� − ζ/L), the
perturbations f , b will evolve identically to a homogeneous
perturbation of the entire field. This results in the eigenval-
ues given by Eq. (A14) of homogeneous perturbation of the
homogeneous stationary states [25]. Nonlocality in the coun-
terpropagating system introduces an implicit dependence on
the power of the entire field. This allows the system to access
inhomogeneous states of the single LLE and introduces four
additional eigenvalues indicative of spatial instability.

APPENDIX B: LINEAR STABILITY OF
INHOMOGENEOUS FRONT STATIONARY STATES IN

COUNTERPROPAGATING FIELDS

In numerical simulations, we observe that stationary SFs
form in only one field at any a given time, with the other
field remaining homogeneous. Using a similar framework as
in Appendix A, we can simply do the analysis by considering
a homogeneous F field with an inhomogeneous B field. We
describe the B field as the partwise function in terms of the
higher and lower power homogeneous state B+, B− connected
by the SFs, and the F field as a single homogeneous function.
At zero dispersion we have

B = B−T (ζ )T (�B − ζ/L) + B+T (ζ/L − �B)T (1 − ζ/L),

(B1)

where � is the normalized front separation. Therefore

|F |2 = |F |2, (B2)

|B|2 = |B−|2T (ζ )T (�B − ζ/L)

+ |B+|2T (ζ/L − �B)T (1 − ζ/L), (B3)

and the average field power is

〈|F |2〉 = |F |2, (B4)

〈|B|2〉 = �B|B−|2 + (1 − �B)|B+|2. (B5)

As the B field is partwise and the F field is homogeneous, the
evolution of the F, B fields is described by the three ODEs

∂τ F = SF − (1 + iθF )F

+ i{|F |2 + ν[�B|B−|2 + (1 − �B)|B+|2]}F, (B6)

∂τ B+ = SB − (1 + iθB)B+ + i(|B+|2 + ν|F |2)B+, (B7)

∂τ B− = SB − (1 + iθB)B− + i(|B−|2 + ν|F |2)B−. (B8)

We introduce a linear perturbation to the system that is spa-
tially inhomogeneous in the B field and homogeneous in the
F field,

F = Fs + f , (B9)

B+ = B+
s + b+, B− = B−

s + b−, (B10)

where Fs is the stationary homogeneous solution of the F
field and B+

s , B−
s are the two homogeneous stationary states
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connected by the SFs. Here we consider the real part of the fields Fs, Bs such that the real and imaginary components of the
perturbations evolve as

d

dτ

⎛
⎜⎜⎜⎜⎜⎝

fr

fi

b+
r

b+
i

b−
r

b−
i

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 A 0 0 0 0
−B −1 −(1 − �B)C1 0 −�BC2 0
0 0 −1 A1 0 0

−C1 0 −B1 −1 0 0
0 0 0 0 −1 A2

−C2 0 0 0 −B2 −1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

fr

fi

b+
r

b+
i

b−
r

b−
i

⎞
⎟⎟⎟⎟⎟⎠, (B11)

where A = F 2
s + ν〈|Bs|2〉 − θF , B = 3F 2

s + ν〈|Bs|2〉 − θF , A1 = (B+
s )2 + νF 2

s − θB, B1 = 3(B+
s )2 + νF 2

s − θB, A2 =
(B−

s )2 + νF 2
s − θB, B2 = 3(B−

s )2 + νF 2
s − θB, C1 = 2νFsB+

s , C2 = 2νFsB−
s . This results in the characteristic polynomial

0 = [(λ + 1)2 + A2B2]
{
[(λ + 1)2 + AB][(λ + 1)2 + A1B1] − 2�BAA1C

2
1

}
+ [(λ + 1)2 + A1B1]

{
[(λ + 1)2 + AB][(λ + 1)2 + A2B2] − 2(1 − �B)AA2C

2
2

}
, (B12)

which is composed of the product of terms indicative of spatial instability

�±
n = λ + 1 ± √−AnBn (B13)

and eigenvalues indicative of temporal instability (in the curly brackets)

L(±,±)
n = λ + 1 ±

√−AB − AnBn ± Sn√
2

, Sn =
√

(AB − AnBn)2 + (−1)n(1 − n − �B)8AAnC2
n . (B14)

This expression has similar form the characteristic polynomial
of HSS seen in Appendix A and will become identical when
�B = 0, 1. In simulation, we observe that the SF solutions are
susceptible to damped oscillations under perturbation. Fig-
ure 18 shows the real component of the eigenvalues of SF
solutions for parameters PF = PB = 2.1609, θB = 3.2. In the
range 5.35 < θF < 6.25 the real components become positive
such that oscillations of the upper and lower power plateaus
grow until both fields reach a stable HSS.

If we instead consider a spatially inhomogeneous perturba-
tion to the homogeneous plateau of the SF solution present in

FIG. 18. Real component of eigenvalues of the zero dispersion
SF solutions for changing θF with parameter values PF = PB =
2.1609, θB = 3.2. The six eigenvalues are calculated numerically [six
roots of Eq. (B12)], where each branch of the blue dot dashed line
represents the real part of a complex conjugate pair of solutions; the
red dashed lines are real solutions.

the backward field, that does not change the average power of
the field 〈|Bs + b(ζ )|2〉 = 〈|Bs|2〉, then the resulting eigenval-
ues are

λ = −1 ± √−AB, forward field, (B15)

λn = −1 ± √−AnBn, backward field. (B16)

These eigenvalues are indicative of the spatial stability of the
two HS connected to the SFs. This suggests that temporal
instability of the stationary states of counterpropagating fields
is observed when the integrated powers of the fields are per-
turbed. Otherwise the fields exhibit the stability of an LLE
with effective detuning as defined in Sec. IV. In particular,
the eigenvalues of the SF solution at stationary separation as
calculated in Sec. IV are those of a single LLE at Maxwell
point

λ+ = −1 ±
√

(�MP − Y +
B )(3Y +

B − �MP), (B17)

λ− = −1 ±
√

(�MP − Y −
B )(3Y −

B − �MP). (B18)

This is expected due to the one to one correspondence of the
counterpropagating SF solution to the stationary states of the
LLE. We note that these eigenvalues are independent of the
detuning values. As such the solutions map to the identical
Maxwell point LLE when changing θF which exhibits a mul-
tistability of SF states. The eigenvalues of the forward field
are

λ = −1 ±
√

(θ̃F − YF )(3YF − θ̃F ), (B19)

where θ̃F = θF − ν〈|Bs|2〉 is the effective detuning which is
dependent on the detuning values (or more specifically the
front separation �).
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