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Switching dynamics of femtosecond solitons in parity-time-symmetric coupled optical waveguides
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We report a detailed study on soliton steering dynamics in a parity-time-symmetric directional coupler in
the femtosecond domain, which requires incorporation of higher-order perturbative effects such as third-order
and fourth-order dispersions, self-steepening, and intrapulse Raman scattering. With a high gain/loss, the
combination of all these effects is found to stabilize the soliton pulse evolution in the coupler from the chaotic
behavior of unperturbed evolution. This work demonstrates that efficient soliton steering can be achieved at very
low critical power and a relatively higher gain/loss even in the femtosecond regime.
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I. INTRODUCTION

In the domains of high-speed signal processing and
ultrafast communication, all-optical switching devices are
considered to be the key elements that have drawn significant
attention over the past few decades [1]. In this context, a dual-
core nonlinear directional coupler featuring power-dependent
switching has been studied extensively [2–4]. In recent times,
the first experimental observation of the parity-time sym-
metric (PT - symmetric) effect [5] in a linear waveguide
directional coupler with balanced gain/loss has provided an
opportunity for further research [6–8]. In this connection,
several studies have shown that such couplers are benefi-
cial for all-optical switching when operating in the nonlinear
regime [9–11]. Furthermore, the stability of optical soli-
tons and their dynamical control by periodic management in
PT -symmetric fiber couplers have been investigated semi-
analytically and numerically [12–14].

Recently, it has been reported that the requirement of high
critical power for optical solitons can be reduced sharply
by introducing PT -symmetry in a nonlinear directional cou-
pler [15]. However, the study deals with the system with
unperturbed coupled nonlinear Schrodinger equation (NLSE),
whose domain of operation is practically limited to the pi-
cosecond (ps) timescale only with the moderate value of
gain/loss. In the domain of ultra-short bright solitons ranging
from few femtosecond (fs) to 1 ps, the practical application of
any real fiber coupler requires incorporation of higher-order
perturbative effects such as higher-order dispersions (HODs)
including third-order dispersion (TOD) and fourth-order dis-
persion (FOD), self-steepening (SS), and intrapulse Raman
scattering (IRS) [16,17] in the coupled NLSE. In another
work, we have investigated all-optical switching of bistable
solitons that emerge in non-Kerr type media with saturable
nonlinearity [18], where we characterize the switching dy-
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namics in the presence of PT -symmetric configurations in
the ps timescale. However, for ultrafast switching in the fs
time scale, one has to exploit Kerr solitons where various
higher-order effects may appear depending on the nonlinear
media.

In this work, it is of particular interest to explore the idea
of PT -symmetric fiber coupler for the fs pulse switching and
observe the switching dynamics under the effect of balanced
gain and loss. We first explore the effects of individual higher-
order perturbations (IRS, SS, HODs) on switching dynamics.
Following that, we identify the suitable parameter region for
the stable, efficient, and low power switching assisted by the
combined effects of all higher-order perturbations, which is
helpful for the practical realization of the all-optical fs switch-
ing devices. It is to be mentioned that in the usual single NLSE
case, the higher-order perturbations degrade the device per-
formances. Also, the conventional coupler (i.e., without PT
symmetry) could not be used in the context of fs switching, as
it shows poor performance in terms of efficiency with multiple
switching. In an earlier work [19], it has been reported that in
a conventional coupler IRS restabilizes the symmetric solitons
at sufficiently large energies. However, in the case of a PT -
symmetric coupler, we show that a partly radiating solitons
caused by high gain/loss values are stabilized in the presence
of higher-order perturbations.

II. MODEL: PT -SYMMETRIC FIBER COUPLER

To discuss the fs pulse switching, we consider a realistic
single-mode fiber coupler configuration [Fig. 1(a)] with an
erbium-doped gain channel [20] and a silver-nanoparticle-
doped loss channel [21], the parameters of which can be
adjusted by changing the doping concentrations to achieve
a balanced gain/loss system (PT symmetry). Since the
volume fraction of doping is small in both cases, the group-
velocity dispersion (GVD) profiles show similar nature, as
shown in Fig. 1(b). We also numerically confirm that the
gain-dispersion does not have a significant role on the switch-
ing dynamics, as the switching power and efficiency are
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FIG. 1. (a) Schematic diagrams of a fiber coupler, with passive
and active ports are depicted in the inset. (b) The GVD profiles
of the three configurations are depicted with vertical dashed line
representing the launching wavelength (λ0 = 1.55 μm).

dependent on the total integral power. Based on these, we
consider the generalized NLSE with an integral form of
the nonlinearities [17]. The generalized coupled-mode equa-
tions of the slowly-varying envelops A1,2(z, t ) in the two
channels of the fiber couplers made up of nonidentical fibers
(shown in Fig. 1) with respective normalized GVD and HOD
parameters, δn 1,2, can be written in normalized units [15]:

i∂ξ u1,2 +
∞∑

n=2

δn 1,2(i∂τ )nu1,2 ∓ i�u1,2 + κu2,1

+ (1 + is∂τ )R(τ )⊗|u1,2|2u1,2 = 0, (1)

where u1,2(ξ, τ ) = A1,2/
√

P0, with P0 being the peak power
of the input pulse. The propagation distance (z) and time (t)
variables are, respectively, normalized with new parameters
as ξ = z/LD and τ = (t − zv−1

g )/t0, with LD = t2
0 /|β2(ω0)|, t0

is the input pulse width, vg is the group-velocity of the pulse,
and β2(ω0) being the GVD parameter at the carrier frequency
ω0. The intercore linear coupling (K) and balanced gain/loss
(G) parameters are scaled as κ = KLD and � = GLD.
Also, the terms δn [= βn/(n!|β2|t n−2

0 )], s [= 1/(ω0t0)], and
R(τ ) = (1 − fR)δ(τ ) + fRhR(τ ) respectively denote the nor-
malized parameters of HOD, SS or shock, and the nonlinear
response function including Kerr nonlinearity via δ(τ ) and
Raman response function hR(τ ) that connects through the
convolution integration ⊗ with the field envelops. Here,
hR(τ ) = (1 − fb)(τ−2

1 + τ−2
2 )τ1 exp(−τ/τ2) sin(τ/τ1) +

fb[(2τb − τ )/τ 2
b ] exp(−τ/τb) [22], with fR = 0.245 being

the fractional contribution of the delayed Raman response
to nonlinear polarization, τ1 = 12.2 fs/t0, τ2 = 32 fs/t0,
τb ≈ 96 fs/t0, and the relative contribution of the boson
peak is included through fb = 0.21. It is to be noted that, in
principle, Eq. (1) should include different vg for nonidentical
fiber channels. However, for the fiber structures shown in
Fig. 1(a), we calculate the group velocities at the carrier
frequency ω0(= 2πc/λ0): vg ≈ 1.99 × 108 m/s for the gain
channel and vg ≈ 2.01 × 108 m/s for the loss channel, which
are almost identical. In order to keep our analysis simpler
and to focus on the impact of higher-order perturbations
on switching dynamics, we consider the same vg for two
channels of the PT -symmetric coupler and use the same
comoving pulse evolution equation [Eq. (1)].

The system described by Eq. (1) is PT -symmetric due to
the presence of equal gain and loss (�) in the two waveg-
uides. According to the non-Hermitian photonics, there exist

three possible states for a PT -symmetric system: unbroken
(κ > �), broken (κ < �), and an exceptional point (κ = �)
that indicates the phase-transition regime of PT symme-
try [6]. Earlier study in the context of PT - symmetric soliton
switching has confirmed that a 2π coupler with the configu-
ration shown in Fig. 1(a) exhibits richer steering dynamics,
achieving low critical steering power (Pcr) while maintain-
ing excellent transmission efficiency [15]. In view of this,
we confine our analysis to the 2π PT coupler. Also, we
restrict our system to work in the unbroken regime alone
by fixing a condition of κ > �. This is due to the fact
that power controlled steering is limited within the unbro-
ken PT - symmetric regime as the soliton pulse exhibits
severe instability in the broken PT -symmetric regime. Note
that, Eq. (1) contains all the higher-order terms that act as
perturbations in the context of ultrashort (fs) pulse dynam-
ics [17]. When the pulse duration is large enough (ps or
larger), IRS and SS can be ignored. Also, if the input pulse
is launched far away from the zero-dispersion frequency,
HODs can be neglected. In such a case, Eq. (1) resembles
the usual coupled-mode equation for PT -symmetric systems,
without higher-order perturbations [12,13,15]. To investigate
the soliton switching dynamics, we solve the Eq. (1) taking
into account all of the perturbations present in the system by
launching the exact Kerr soliton solution of the unperturbed
NLSE, u1(0, τ ) =

√
P̃ sech(τ ) and u2(0, τ ) = 0, where P̃ =

t2
0 γ P0/|β2| is the dimensionless input peak power, with γ ≈

2.156 × 10−3 W−1m−1 being the nonlinear coefficient of the
fiber at λ0 = 1.55 μm (which is approximately equal for both
channels for low doping concentration of fibers). It is worth
noting that the nonreciprocity behavior of PT -symmetric
systems is exploited here, which possess better transmission
efficiency when a pulse is launched into the gain channel.
The reverse (launching into the loss channel) is not efficient
in this PT case, in contrast to the conventional coupler that
follows reciprocity behavior. When both the channels are si-
multaneously excited, the pulse evolution becomes unstable
and chaotic. This particular scheme can be utilized as a phase-
sensitive switching, provided the power in the loss channel is
very small compared to the gain channel [18]. The numerical
simulations are carried out using the split-step fast-Fourier
transformation for coupled-mode equations [17] incorporated
with the fourth-order Runge-Kutta algorithm. The numerical
investigations show that HODs and higher-order nonlinear
phenomena have a significant impact on PT - symmetric cou-
plers. The study further reveals that for an ultrashort pulse
propagation, the critical switching power Pcr depends on δn>2

(HOD parameters), IRS, and s (SS or shock effect), i.e., Pcr ∼
f (δn, IRS, s). The strength of these perturbations can be tuned
by varying the input pulse duration t0. We extensively study
the pulse dynamics for a wide range of t0 (from 5 fs to 1 ps).
In order to get into the detail switching dynamics, we first sys-
tematically analyze the individual perturbation effects. Then,
the combined effects of all the higher-order perturbations are
discussed in some details.

III. IMPACT OF HIGHER-ORDER NONLINEAR EFFECTS

Higher-order perturbations on ultrashort pulses have been
studied in various optical waveguides, and the effects on the
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FIG. 2. (a), (b) The evolution of a 10 fs sech pulse in the two
channels of a 2π PT -symmetric fiber coupler with P̃ = 1, κ = 1,
and � = 0.5 under the effect of IRS only (in dB scale). The corre-
sponding switching dynamics are depicted in (c) and (d) by solid
curves. The dashed curves in (c) represent the unperturbed case
[Eq. (1) without HOD, IRS, and SS]. (e) Bistable nature of switching
dynamics for � < 0.45 and (f) multiple switching of a conventional
coupler (� = 0) are shown with IRS perturbation. (g) Critical switch-
ing power Pcr vs � as a function of t0, and (h) relative comparison
between the integral NLSE model and the derivative model for IRS
perturbation with t0 = 10 fs. The effect of SS on Pcr vs � is also
shown in (h).

pulse dynamics are significant. Ultrashort optical soliton in
fibers with intense peak power can excite higher-order nonlin-
ear effects like SS and IRS. Under the influence of IRS, the
central frequency of the soliton experiences a redshift [23].
IRS also influences the temporal dynamics of the soliton by
imposing a temporal deceleration. In a single soliton case, the
effect of IRS leads to Raman amplification and lasing. SS,
on the other hand, creates an optical shock on the leading
edge of the pulse, resulting in asymmetric spectral broaden-
ing [17]. In order to investigate the effect of IRS and SS on
the soliton steering dynamics in a 2π PT -symmetric fiber
coupler, we first numerically solve Eq. (1) for a 10 fs input
sech pulse in the presence of IRS only. The temporal evolu-
tions are plotted in Figs. 2(a) and 2(b) for the two channels.

Here, the power of a fs soliton launched into the first channel
steers back and forth between the two channels and even-
tually exit from the second. The IRS-induced characteristic
temporal decelerations are also evident, which differ from the
unperturbed case represented by vertical dashed lines at the
middle. From our study on the spatial evolution of powers
P1,2 = ∫ ∞

−∞ |u1,2(Lc, τ )|2dτ with Lc being the coupling length
and transmission coefficients T1,2 = P1,2/(P1 + P2) of the two
channels in the coupler (not shown here), we find that the IRS
induces the soliton to acquire an additional relative phase dif-
ference than unperturbed case [15]. For a short optical pulse,
in the absence of any perturbation, inclusion of PT -symmetry
revealed a critical switching power to be Pcr = 1.34 with
a sharp transmission efficiency [dotted curve in Fig. 2(c)].
However, for a pulse with t0 = 10 fs, the IRS perturbation
present in the system increases the critical switching power
to Pcr = 1.75 while maintaining the transmission efficiency
at nearly 99% as acheived in the unperturbed case [15]. As
a result, above the critical switching power, almost all of
the output energy will be captured by the first channel, with
a negligible amount by the second channel, as shown in
Fig. 2(d). The transmission characteristics for the 2π cou-
pler with � = 0.25 and � = 0 (conventional coupler) with
IRS perturbation are also depicted in Figs. 2(e) and 2(f),
respectively. Here the PT coupler (� = 0.25) strictly shows
double switching dynamics leading to a two distinct threshold
power bellow a critical � (<0.45), a characteristic feature of
2π PT -symmetric couplers after which the two switching
cycles mingle with a single threshold power and so the total
power remains in the first channel [shown in Fig. 2(d)]. In con-
trast, the conventional coupler manifests in less efficient and
unwanted multiple steering curves. Additionally, we explore
the role of the input pulse duration t0 in order to demonstrate
the relationship between critical switching power and the
gain/loss parameter in a 2π PT coupler. Figure 2(g) demon-
strates that with the decrease in the strength of IRS parameter
(as t0 increases), the value of the critical switching power (Pcr)
also reduces accordingly, and vice versa. This suggests that
the loss/gain parameter �, beyond 0.6 is more appropriate
for effective fs switching as it gives rise to a very low critical
power, which is not possible in the ps regime. Following that,
for the completeness of the study, we perform a numerical
analysis with the derivative form of the IRS perturbation
[ fR hR⊗|u|2 ≈ fR|u|2 − TR t−1

0 ∂τ |u|2] with TR ≈ 3 fs [16,17]
[shown in Fig. 2(h)], revealing that at lower �, the Pcr values
deviate significantly from those of the integral model Eq. (1)
(which is the appropriate model in the fs domain). However,
both of these models appear to be equivalent once � > 0.3.
Next, we numerically verify that the sole role of SS parameter
has a minimal effect on the switching dynamics, as shown in
Fig. 2(h). However, for completeness and rigor, we include
this perturbation in the coupled NLSE while investigating the
combined effects of all perturbations.

IV. IMPACT OF HIGHER-ORDER DISPERSIONS

In soliton propagation, HODs are of particular importance
and for a given waveguide geometry, the dispersion profile
may vary rapidly with the frequency, making HODs more
pronounced. While the interplay between Kerr nonlinearity
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FIG. 3. (a), (b) Soliton evolution in the two channels of 2π PT -
symmetric coupler under the effect of TOD (δ3 ≈ 0.153 of the gain
port) for t0 = 5 fs with P̃ = 1, κ = 1, and � = 0.5. (c) Switching
dynamics in the presence of TOD only, FOD only (δ4 ≈ −0.03),
and combined effects for t0 = 5 fs. (d) Pcr as a function of TOD
parameter δ3 of the gain port with κ = 1. (e) Pcr as a function of
� under the combined influence of IRS, SS, and HOD effects, and
(f) corresponding switching dynamics

and GVD produces the stable solitonic structure in time and
frequency domains, HODs lead to a significant temporal and
spectral distortion. More specifically, the soliton sheds energy
in the form of dispersive waves (DWs) that produce several
discrete spectral peaks [17,24]. In this process, the tempo-
ral distribution of the soliton is affected by the generation
of asymmetric (for TOD) and symmetric (for FOD) side-
lobes. Here, we consider a 2π PT -symmetric single-mode
fiber coupler, the cross-sectional geometry for different chan-
nels and corresponding GVD profiles of which are shown
in Figs. 1(a) and 1(b). For a realistic scenario, we launch
the optical pulse at the gain port considering the individ-
ual GVD profiles (second-order GVD, TOD, FOD terms) of
the gain and loss fibers, which, at the launching wavelength
λ0 = 1.55 μm are calculated as β2 ≈ −39.051 ps2/km, β3 ≈
0.17959 ps3/km, β4 ≈ −4.8046 × 10−4 ps4/km, and β2 ≈
−18.643 ps2/km, β3 ≈ 0.16604 ps3/km, β4 ≈ −4.393 ×
10−4 ps4/km, respectively. The back and forth temporal evo-
lution of a fundamental soliton between two channels are
illustrated in Figs. 3(a) and 3(b) in the presence of TOD by
solving Eq. (1) for a 5 fs input sech pulse. In both the figures,
the presence of side wings at τ > 0 indicates the presence
of DWs. Here, the zero-dispersion wavelengths are located at
λ ≈ 1.3 μm for the gain fiber and λ ≈ 1.45 μm for the loss
fiber [can be obtained from the GVD profiles of Fig. 1(b)],

which are near to the launching wavelength λ0 = 1.55 μm.
As a result, relatively stronger dimensionless TOD parame-
ters (which determine the strength and locations of radiation
energy), δ3 ≈ 0.153 of the gain fiber and δ3 ≈ 0.297 of the
loss fiber, lead to stronger DW-generation, which significantly
impact the switching dynamics. Like the impact of IRS, the
critical switching power is modified in the presence of HOD
terms, as shown in Fig. 3(c). In this scenario, the HOD, in
particular the TOD, lowers the Pcr to a level much below that
of the unperturbed counterpart; however, a decrease in the
sharpness of switching is observed. It is worth noting that
the consideration of the separate GVD profile in gain and
loss channels is critical (which is indeed the practical case),
because it results in a lower Pcr, as opposed to the case with
the equal GVD profiles in the two channels that increase the
Pcr. For further investigation of the dependence of Pcr on the
strength of δ3, we plot Pcr as a function of δ3 in Fig. 3(d) for
� = 0.5 and κ = 1. These figures suggest that by decreas-
ing t0 (increasing the strength of δ3), we can achieve a very
low critical power of switching. However, this perturbation
destabilizes the soliton propagation, and to overcome that, IRS
plays a crucial role which we discuss in the following.

V. COMBINED EFFECT OF HGHER-ORDER
PERTURBATIONS

So far, we have discussed the individual perturbative ef-
fects of both higher-order nonlinearities (IRS and SS) and
HODs on the switching dynamics of a fs pulse in detail.
Where the modified parameters of evolving solitons in a single
NLSE case [17] caused by individual perturbation (which we
summarize in previous sections) modify the switching dynam-
ics collectively as modes from two channels interact with each
other. Now, we analyze the combined effects of the above-
stated higher-order perturbations on the switching dynamics.
For this, we plot the variation of critical switching power as
a function of gain/loss parameter as shown in Fig. 3(e). This
figure depicts a complete picture of the switching dynamics
taking into account all perturbations, demonstrating the pa-
rameter range for which the lower critical power exists. Here,
although the combined effects of all the perturbations (which
is the practical case for the fs soliton in the couplers) increase
the critical switching power for lower gain/loss values than
that of the unperturbed case (which is limited only in the ps
domain), the difference between both the critical switching
powers is minimal for higher gain/loss values (� > 0.6).
After identifying the sweet-spot region for the low power
switching in the fs domain, we next figure out how the ef-
ficient switching takes place in the high � region. For that,
we plot the transmission energy for a range of input pump
power at � = 0.7 in Fig. 3(f). Although the critical power
remains the same as in the unperturbed case (Pcr ≈ 0.42),
the switching steepness improves relative to the perturbed
cases. Also, the nonlinear switching (P̃ > Pcr) can be achieved
with fundamental soliton (P̃ = 1) or lower (Pcr < P̃ < 1) as
input, resulting in more robust spatiotemporal evolution under
perturbations. More importantly, the stability of solitons and
switching efficiency improve substantially in the fs regime
when compared to the unperturbed case (which is practically
limited in ps time scale). Therefore, we can achieve a very

043502-4



SWITCHING DYNAMICS OF FEMTOSECOND SOLITONS IN … PHYSICAL REVIEW A 106, 043502 (2022)

FIG. 4. Soliton evolution in the two channels of 2π PT -
symmetric coupler in the nonlinear switching domain without
perturbations (a), (b), and with all perturbations (c), (d) for κ = P̃ =
1, � = 0.65, and t0 = 10 fs.

low critical power of switching for fs solitons with a complete
energy transfer at a relatively higher gain/loss value.

To validate the fact, we plot the temporal evolution of
a fundamental soliton between the two channels, as shown
in Figs. 4(a) and 4(b) (without perturbations) and Figs. 4(c)
and 4(d) (combination of all the perturbations). These plots
demonstrate that with a high gain/loss value, the combined
effects of perturbations stabilize the pulse evolution when
compared to the chaotic behavior of unperturbed evolutions
shown in the top panels of Fig. 4. This could be attributed
to the fact that IRS and HOD have opposite impacts on the
spectral power (IRS tries to redshift the spectrum while HOD,
on the other hand, tries to blueshift the spectrum in the form
of DWs) manifesting in the self-organizing power flow so as
to produce a more stable pulse evolution. We also numeri-
cally confirm that, when P0 = 2.25 (shown in Fig. 5) which
indicates the nonlinear switching domain, the overall effect
of perturbations preserves the solitonic nature and assists in
focusing the pulse energy from spreading away in contrast
to the case of an unstable and chaotic dynamics), which is
even not possible when the perturbative effects function alone.
It may be useful to note that, while this work convincingly
demonstrates the role of HODs and IRS on the stabilization
of unstable solitons, more insights may be obtained by semi-
analytical studies such as Lagrange’s variational analysis. We
have attempted such a rigorous variational study recently [25].

FIG. 5. Higher-order soliton evolution in the two channels of
2π PT -symmetric coupler in the nonlinear switching domain with-
out perturbations (a), (b), and with all perturbations (c), (d) for κ = 1,
� = 0.5, P̃ = 2.25, and t0 = 10 fs.

Overall, our analyses show that the practical scenario of the fs
domain yields the best results in terms of ultrafast, efficient,
and low power switching at relatively high � values, which
is usually considered to be the chaotic one as this condition
may lead to spectral singularity [26] whenever the value of �

reaches near the value of κ .

VI. CONCLUSIONS

To conclude, we have demonstrated theoretically that while
in the conventional fiber coupler fs soliton steering is hard to
realize as it takes the higher value of critical pump power
to steer the pulse due to the various pertubative effects, in
a PT -symmetric fiber coupler, these perturbations rather as-
sist in the efficient soliton steering, in the presence of high
gain/loss. This work may open up a plethora of applications
and studies related to the soliton steering and switching us-
ing PT -symmetric fiber couplers in a high loss/gain regime,
paving the way for efficient femtosecond all-optical switching
devices.
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