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Meissner effect in Fock space
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By periodically driving a single bosonic Josephson junction (BJJ) with an impurity, a synthetic gauge field
is generated in the Fock space of the system. At a critical synthetic gauge flux the ground state undergoes a
quantum phase transition which is analogous to the Meissner-Abrikosov-vortex transition found in type-II super-
conductors with an applied magnetic field. A second quantum phase transition involving attractive interactions
between the bosons of the BJJ is shown to enhance the sensitivity of the system to the Meissner-Abrikosov-vortex
transition.
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I. INTRODUCTION

Ultracold atomic gases have become the primary tool in
simulating quantum phenomena [1] due to their precise tun-
ability and because they are among the simplest quantum
many-body systems. An exciting connection between ultra-
cold atoms and condensed matter arises with the prospect of
trapping the atoms in optical lattices because the spatial peri-
odicity of the trapping potentials can be adjusted to produce a
variety of crystal structures found in solids. This has led to the
simulation of the motion of charged particles in materials, a
prime example being the observation of the transition from
a superfluid to a Mott insulator [2]. Simulating the motion
of charged particles in magnetic fields has also been of in-
terest due to the prospect of creating magnetic-field strengths
unattainable in conventional condensed-matter experiments.
Synthetic gauge fields can be applied to the gas by period-
ically driving the external fields of the optical lattice and
atoms [3–9]. The net result is a situation in which a particle
can accumulate a nonzero phase in a closed path along the
lattice mimicking the effect of a transverse magnetic flux. This
allows for the control of the topology of single-particle energy
bands leading to quantum Hall physics and the realization of
chiral edge states [10]. Celebrated topological models have
been simulated in this fashion such as the Haldane [11,12]
and Harper-Hofstadter [13–15] models.

The Meissner effect is another hallmark phenomenon of
the interaction between magnetic fields and materials [16].
In type-II superconductors, screening currents expel an ex-
ternal magnetic field by creating an opposing one. When
the magnetic field is larger than a critical value H > Hc1,
a quantum phase transition (QPT) occurs and the Meissner
phase breaks down, resulting in only partial screening of
the field. Vortices form at locations where the field pene-
trates the superconductor and is called the Abrikosov-vortex
phase. Theoretical interest in simulating this QPT has been
primarily directed toward ladder systems as they are some
of the simplest lattices which still allow for orbital magnetic
field effects [a one-dimensional (1D) chain lattice is in-

sufficient]. Early investigations involved Josephson-junction
arrays to form the ladder [17–20] and more recently ul-
tracold atoms in optical ladders have been proposed [21].
Experimental verification came shortly after by loading a
Bose-Einstein condensate (BEC) into an optical ladder and
inducing a synthetic magnetic field through laser-assisted
tunneling [22]. In the experiment, it was shown that chiral
probability currents along each leg of the ladder play the
role of the screening currents in the Meissner phase of a
superconductor. Past a critical flux of the synthetic field,
the leg currents decrease while the rung currents increase,
which was shown to be analogous to the Abrikosov-vortex
phase.

In this work we show that the Meissner-Abrikosov-vortex
QPT can be realized with a BEC trapped in a double-well po-
tential, also known as a bosonic Josephson junction (BJJ). The
BEC is coupled to an impurity, which can also tunnel between
the two wells. The array of Josephson junctions used in previ-
ous proposals can be reduced to a single BJJ by constructing
the ladder lattice not in real space, but in Fock space called
a Fock-state lattice (FSL) [23–27]. The legs of the ladder are
constructed from many-body states defined by the number of
bosons of the BEC in each well and the rungs are constructed
from the two similarly defined states of the impurity. The syn-
thetic magnetic field is generated by periodically driving the
interaction strength between the BEC and the impurity as well
as the tunneling between each well which effectively “stirs”
the FSL. In experiments, both the boson-boson interactions of
the BEC and the BEC-impurity interactions can be controlled
via Feshbach resonance [28], where the latter requires an
ac magnetic field to achieve periodic time dependence [29].
The double-well potential is created by superimposing a 1D
optical lattice onto a harmonic dipole trap, so the tunneling
can be controlled by tuning the width and height of the optical
barrier [30]. Although we frame our analysis in terms of a
BJJ, the two accessible states of the bosons and the impurity
can be internal states as in the case of spinor condensates
[31,32]. Furthermore, BEC-impurity interactions similar to
the ones we use can be found in quantum-dot systems such
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as a dipole-induced ion trapped between the two wells of a
BJJ [33] and in solid-state Josephson junctions [34].

The FSL is an example of the use of synthetic dimensions
[35–37], which in general are degrees of freedom of a sys-
tem which can imitate real space. In experiments, synthetic
dimensions have been utilized with spin [38–40], momentum
[41–43], harmonic-oscillator [44], and rotational [45] states of
atoms and molecules. When combined with synthetic gauge
fields, synthetic dimensions have successfully simulated chi-
ral edge states [38,39,46] and the measurement of Chern
numbers of topological bands [47]. Usually a synthetic dimen-
sion is paired with at least one in real space, however, both
dimensions in the FSL are synthetic, which is a significant
departure from the majority of experiments and proposals to
date involving simulations with ultracold atoms.

II. MODEL

The system we will be investigating consists of a BEC
coupled to an impurity in a double-well potential. Both of
the BEC-impurity interactions and the tunneling between the
two wells are periodically driven and are described by the
Hamiltonian

Ĥ (t ) = UŜ2
z + W α(t )Ŝzσ̂z − Jβ(t )Ŝx − NKγ (t )σ̂x

2
, (1)

where T is the period of the driving such that Ĥ (t ) = Ĥ (t +
T ). The BEC and the impurity can occupy the ground states
of each well, so every particle has access to two states,
which are labeled L and R for the left and right wells, re-
spectively. In the Hamiltonian the creation and annihilation
operators of the BEC are written in the Schwinger representa-
tion and are Ŝz = 1

2 (â†
RâR − â†

LâL ), Ŝx = 1
2 (â†

RâL + â†
LâR), and

Ŝy = i
2 (â†

LâR − â†
RâL ) where the usual commutation relations

are obeyed [âi, â†
j ] = δi j , where i, j = L, R. The impurity op-

erators are written as Pauli spin matrices. The parameters are
defined in the following way: U is the boson-boson interaction
energy of the BEC, W is the BEC-impurity interaction energy,
J is the BEC tunneling energy, and K is the impurity tunneling
energy. The factor of N in front of the impurity tunneling term
is the number of bosons in the BEC and is there to ensure
this term does not become insignificant in the thermodynamic
limit N → ∞. The greek letters represent the periodic driving
and take the form

α(t ) = − sin(ωt ),

β(t ) =
∑
p=0

δ
(
t − (

p + 1
2

)
T

)
,

γ (t ) =
∑
p=0

δ(t − pT ), (2)

which results in the BEC-impurity interactions being sinu-
soidally driven with frequency ω = 2π/T and the hopping
terms being alternately pulsed in increments of T/2. One
cycle of the driving is achieved in four steps: (1) the impurity
hopping is pulsed, (2) attractive BEC-impurity interactions
are sinusoidally ramped up from and then back down to zero
over an interval T/2, (3) the BEC tunneling is pulsed, (4)
repulsive BEC-impurity interactions are sinusoidally ramped

up from and then back down to zero over an interval T/2. The
evolution after one cycle is given by the Floquet operator

ÛF (t = T ) = e−i(πUŜ2
z +2W Ŝz σ̂z )/ωeiJŜxτ

× e−i(πUŜ2
z −2W Ŝz σ̂z )/ωeiNK σ̂xτ/2, (3)

where τ � 1 is the pulse interval. When T � 1 the Floquet
operator can be written in terms of an effective Hamiltonian
ÛF = e−iĤeff τ (Appendix A), where

Ĥeff

J
= 2

μ

N
Ŝ2

z − 1

2
[Ŝ+e−iφσ̂z + Ŝ−eiφσ̂z + Nξ σ̂x]. (4)

The new parameters are defined as μ = πUN
Jωτ

and ξ = K/J .
The parameter φ = 2W/ω appears as a Peierls phase seen
in tight-binding models and so plays the role of the mag-
netic flux through the system. The set of eigenvalues of ÛF ,
{λi = eiεiτ }, is defined in terms of the set of quasienergies {εi}.
The quasienergies are only unique in the range from −π/τ

to π/τ because they are calculated from a unitary operator.
Therefore, the parameters in the model will be kept small
enough to keep the quasienergies within this range.

We assume BEC particle conservation, so the Hilbert space
of the entire system has size 2 × (N + 1). A useful basis is the
Fock basis made up of states with different particle-number
differences between the two wells. With constant N these
states are labeled with a single number for both the BEC
and the impurity |n, m〉, where n = (NR − NL )/2 is half of
the BEC particle-number difference between the two wells
and m = MR − ML is similarly the impurity-number differ-
ence between the two wells. We can extend the connections
between this system and tight-binding models by considering
the labels n and m as coordinates of a 2D FSL. In this case, one
dimension will be of size N + 1 and the other will be of size
2 forming a ladder lattice where each leg and each rung are
formed by the BEC and impurity Fock states, respectively. As
an example, the Fock state |0,+1〉, which corresponds to an
equal number of BEC particles in each well and the impurity
in the right well, will be the coordinate of the center of the
right leg of the ladder.

III. RESULTS

For now, we will assume the BEC is noninteracting and
set μ = 0. We will also assume that we are in a regime with
high coherence and low number difference fluctuations of the
BEC, so that a mean-field approximation can be applied. This
amounts to replacing the BEC annihilation (creation) oper-
ators with complex numbers âR (L) = √

NR (L)e−iθR (L) , where
θR (L) is the phase of the right (left) wells. The resulting mean-
field Hamiltonian is

HMF

J
= −

√
N2/4 − n2 cos θ cos φ

−
√

N2/4 − n2 sin θ sin φσ̂z − ξN σ̂x

2
, (5)

where θ = θR − θL is the phase difference between the right
and left wells (relative phase) and is the conjugate variable of
n. The square-root factors are the result of bosonic stimulation
of the BEC tunneling between the two wells. They destroy the
translational invariance of the FSL by increasing the energy
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FIG. 1. Energy bands, ground-state probability densities, and phases in the FSL. The red dashed curves are the energy bands from Eq. (7)
for the magnetic fluxes (a) φc/2, (b) φc, and (c) 3φc/2. The background black and white density plots show the probability for a state with a
given phase difference θ to have a given energy and are calculated using Eq. (12). As the synthetic magnetic flux passes through the critical
value, the lower band splits into a double well signifying a QPT where the ground state develops a nonzero doubly degenerate relative phase
of the BEC. (d)–(f) Ground-state probability distribution (top strips) |〈n|ε0〉|2 and phase (bottom strips) arg(〈n|ε0〉) of the lower band in the
energy plots. In the Meissner phase the ground state is a Gaussian with a slowly varying phase along each leg of the ladder, whereas in the vor-
tex phase the wave function (WF) has holes in which vortices form, which can be seen as a quickly varying phase in these regions. The other
parameter values are N = 100, ξ = 0.5, and μ = 0.

required to tunnel between adjacent sites the farther away the
sites are from the lattice center at n = 0. For now, we will
apply translational invariance to the system by making the
final approximation of

√
N2/4 − n2 ≈ N/2. This approxima-

tion assumes the eigenstates of the system are delocalized,
which essentially removes any finite-size effects from the
system. We will discuss finite-size effects later on when we
perform numerical analysis using the eigenstates of Eq. (3).
Equation (5) becomes

HMF

J
≈ −N

2
(cos θ cos φ + sin θ sin φσ̂z + ξ σ̂x ), (6)

which resembles the Bloch Hamiltonian of a translationally
invariant system with two sites per unit cell where θ plays the
role of the quasimomentum. The lattice spacing of the FSL
is a = 1, so the range of the first Brillouin zone is (−π, π )
in increments of 2π

N+1 . Such a system can be solved exactly,
giving the energies of the lower and upper bands

E±(θ )/J = −N

2
(cos θ cos φ ∓

√
ξ 2 + sin2 θ sin2 φ) (7)

and eigenstates

|+, θ〉 = cos(αθ/2)|R, θ〉 − sin(αθ/2)|L, θ〉,
|−, θ〉 = sin(αθ/2)|R, θ〉 + cos(αθ/2)|L, θ〉, (8)

where

αθ = 2 arctan
1

ξ
(sin θ sin φ +

√
ξ 2 + sin2 θ sin2 φ). (9)

The system undergoes a QPT in the ground band, which
can be seen by finding the phases θ0 that satisfy the condition

∂E−(θ )/∂θ = 0, giving

sin θ0 =
{

0 if φ � φc

±
√

sin2 φ − ξ 2 cot2 φ if φ > φc,
(10)

where the critical magnetic flux is

cos φc = −ξ +
√

ξ 2 + 4

2
. (11)

This QPT is from a zero phase difference below φc to a doubly
degenerate phase difference above φc. The degeneracy comes
from the spin-orbit coupling term in Eq. (6). Its energy is mini-
mized when the phase difference is negative (positive) and the
impurity is in the left (right) well, or using the FSL analogy,
the left (right) legs of the ladder. Putting it more succinctly,
the degeneracy comes from HMF being invariant under the
flipping of both the relative phase of the BEC and the “spin”
of the impurity. To get a visual sense of the transition and to
check the validity of the approximations that have been made,
in Figs. 1(a)–1(c) we plot the energies of each band derived
in Eq. (7) (red dashed curves) as well as a density plot of
the probability for a state with a given phase to occupy an
eigenstate of the Floquet operator,

Pm(θ, εi ) =
∣∣∣∣∣

N/2∑
n=−N/2

eiθn〈m, n|εi〉
∣∣∣∣∣
2

, (12)

for different values of φ. The agreement between the derived
energy bands and the probability is excellent and shows that θ

is a fairly good quantum number. One can see that the effect
of keeping the square-root factors in the calculation of the
probability is to cause it to fray away from the analytic result
in certain areas. The QPT can also be seen as the lower band
goes from having a single minimum at θ = 0 to having doubly
degenerate nonzero minima.
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FIG. 2. Chiral current as a function of magnetic flux for different system sizes and boson-boson interaction energies. In both panels the
red curves show the thermodynamic limit result from Eq. (14). (a) Chiral current plotted for N = 20 (blue triangles), N = 50 (green circles),
and N = 100 (black squares); the other parameters values are ξ = 0.5 and μ = 0. As the system size increases the numerical results approach
the analytic result because the larger the system size, the more sensitive the system is to the presence of vortices. (b) Chiral current plotted for
μ = 5 (blue triangles), μ = 0.5 (green circles), and μ = 0 (black squares); the other parameter values are ξ = 0.5 and N = 100. As μ increases
the peak moves away from the analytic result because the ground-state wave function becomes more localized around n = 0, requiring larger
fluxes to create a vortex with significant overlap of the wave function.

Figures 1(d)–1(f) show the probability distribution (top)
and phase (bottom) of the ground state of ÛF , |εi〉, in Fock
space. Note that the phase plotted is the argument of the
wave function, which is different from the phase difference
between the two wells, θ . The first thing to notice is that the
probability distribution is localized and takes the form of a
Gaussian which comes from the square-root terms since their
leading-order n dependence takes the form of a harmonic trap
−

√
N2/4 − n2 ≈ −N/2 + n2/N . For φ < φc in Fig. 1(d) the

phase of the ground state is slowly varying since θ0 ≈ 0; how-
ever, for φ > φc in Fig. 1(f) θ0 	= 0, resulting in a sinusoidally
varying phase in opposite directions along each leg of the
ladder. Vortices are located at the positions where the phases
on each leg of the ladder differ the most (red and green strips)
and create regions where the probability distribution almost
vanishes. The distribution does not completely vanish because
positions of the FSL cannot be resolved beyond the lattice
spacing, so vortex locations cannot be pinpointed exactly.

This QPT has the same qualitative features as the transition
from the Meissner phase to the Abrikosov-vortex phase in
type-II superconductors. For this reason, we take a look at
the probability current along the legs of the ladder. The total
current of the system is zero; however, the current difference
between the two legs is nonzero and is called the chiral current
[48]

JC = JR − JL = ∂φE−(θ )|θ=θ0 . (13)

On either side of the QPT the chiral current is expressed as

2JC

NJ
=

{
sin(φ) if φ � φc

ξ 2 cos(φ)

sin2(φ)
√

ξ 2+sin2(φ)
if φ > φc.

(14)

Equation (14) is plotted as the red curves in Fig. 2(a) alongside
the numerical result using the ground state of ÛF for different
system sizes. The finite-size scaling comes from competition
between two length scales: the size of the probability distribu-
tion and the distance between vortices. In Fig. 1(e) for φ = φc

vortices can be seen in the phase of the wave function, but they
do not overlap much with the probability distribution, so they

have little effect on the chiral current. The width of the prob-
ability distribution scales as

√
N , so for larger N the easier it

is for a vortex to penetrate it. In the thermodynamic limit, any
presence of a vortex will be felt by the wave function and the
numerical results will converge with the analytic result.

Repulsive boson-boson interactions have a similar effect on
the probability distribution as the square-root factors in that
they act as a confining potential along the legs of the FSL.
This comes from the fact that there is an added energy cost for
the BEC to occupy one well over the other and so there is an
added energy cost for states n 	= 0 in the FSL. The interaction
energy μ plays the role of the confining potential strength, so
for stronger interactions larger fluxes are needed to produce
a vortex that penetrates the wave function. This leads to the
peaks of the chiral currents appearing at larger flux values
which can be seen in Fig. 2(b), where the chiral current is
plotted for different values of μ.

Conversely, attractive boson-boson interactions (μ < 0)
can enhance the Meissner-vortex QPT because they make it
energetically favorable for the BEC to build up in the wells
rather than stay evenly dispersed as in the repulsive case. This
means the ground-state wave function will be more spread out
from the region around n = 0 and will be more susceptible
to the presence of vortices. In fact, in a normal BJJ with-
out an impurity (W = K = 0), there is a critical interaction
energy where the interactions overpower the confinement of
the square-root factors and another QPT occurs involving the
breaking of a Z2 symmetry when the BEC spontaneously
clumps into one well over the other [49]. At the critical point
of this QPT, the correlation length in Fock space diverges
and the width of the ground-state wave function becomes
comparable to N . For a general magnetic flux, the interac-
tions become dominant when μ < − 1

2 cos φ. Therefore, the
Meissner-Abrikosov-vortex transition will be critically en-
hanced when the two QPTs coincide at an interaction energy
of

μc = −1

2
cos φc = ξ −

√
ξ 2 + 4

4
. (15)
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FIG. 3. Maximum chiral current as a function of μ. Each point
of data represents the maximum chiral current of a JC versus φ curve
for a given value of μ like the ones seen in Fig. 2(b). The value of
μ where the peak occurs in this image is denoted by μmax. The inset
shows |μmax − μc| as a function of 1/N for different system sizes.
The black line is a linear fit and when extrapolated shows that the
difference goes to zero in the thermodynamic limit 1/N → 0.

To test this prediction, we calculate the maxima of JC versus φ

curves for different values of the interaction energy μ similar
to the ones in Fig. 2(b). The results for N = 100 are plotted
in Fig. 3, which shows there is a clear value of μ, denoted by
μmax, where the chiral current is a maximum. The maximum
occurs near μc, but due to finite-size effects does not occur
precisely at the critical point. To show μmax converges to μc in
the thermodynamic limit, we plot their difference as a function
of 1/N for different system sizes in the inset. A linear fit is
performed on the data and the resulting line is extrapolated
to 1/N = 0, giving a difference of |μmax − μc| ≈ 2.2 × 10−4

at that point. This provides numerical support to the result in
Eq. (15) and one can conclude that the maximum possible chi-
ral current occurs when the Meissner-Abrikosov-vortex QPT
and the BEC clumping QPT coincide.

IV. CONCLUSION

We have shown that FSLs offer an alternative direction
to explore in the ever-growing field of quantum simulations
of condensed-matter systems. By using a FSL, the usual
techniques of simulating the Meissner effect with optical
ladders and arrays of Josephson junctions is reduced to a
single periodically driven BJJ coupled to an impurity. The
system exhibits the Meissner-Abrikosov-vortex QPT, which
we show can be enhanced by a second QPT involving the BEC
spontaneously clumping into one well when the boson-boson
interactions reach a critical attraction strength. The Meissner-
Abrikosov-vortex QPT is characterized by the chiral current,
but a qualitative detection of the QPT can be achieved by
measuring the relative phase of the BEC between the two
wells since it transitions from zero in the Meissner phase to
nonzero in the Abrikosov-vortex phase. The relative phase can
be measured from interference patterns in standard time-of-
flight images after the trapping potential has been turned off
[50,51].

Although the system we have investigated is topologically
trivial, additional BEC-impurity interactions can change that.
For instance, the inclusion of an impurity-assisted tunnel-
ing term such as Ŝxσ̂x can result in a FSL version of the
Su-Schrieffer-Heeger model. Pairing this with the fact that
a single impurity is enough to introduce a new synthetic
dimension to the system opens up interesting possibilities
for simulations of topological models in spaces higher than
two dimensions. Furthermore, since two particles are enough
to form a 2D lattice and periodically driving their interac-
tions generates the synthetic gauge field, this work creates an
opportunity for the simulation of many-body physics in the
miniature. The question then arises as to what is the smallest
possible system one can use to simulate condensed-matter
phenomena of interest.

APPENDIX A: DERIVATION OF Ĥeff

To derive Eq. (4) we start with the unitary Floquet operator
in Eq. (3) with the scaled parameters defined in the main text

ÛF (t = T ) = e−i[(μ/N )τJŜ2
z +φŜz σ̂z]eiJŜxτ

× e−i[(μ/N )τJŜ2
z −φŜz σ̂z]eiNξJσ̂xτ/2. (A1)

Using the fact that e−iφŜz f (Ŝx )eiφŜz = f (Ŝx cos(φ) +
Ŝy sin(φ)), where f (x) is a general function of x, gives

ÛF (t = T ) = e−i(μ/N )τJŜ2
z eiJ[Ŝx cos(φσ̂z )+Ŝy sin(φσ̂z )]τ

× e−i(μ/N )τJŜ2
z eiNξJσ̂xτ/2. (A2)

We use the Baker-Campbell-Hausdorff formula

eiτ Âeiτ B̂ = eiτ (Â+B̂)+[(iτ )2/2][Â,B̂]+··· (A3)

and use the fact that the pulse time is very short, τ � 1, so
only terms up to leading order in τ are kept, giving

ÛF (t = T ) = e−iJ[2(μ/N )Ŝ2
z −Ŝx cos(φσ̂z )−Ŝy sin(φσ̂z )−Nξ σ̂x/2]τ . (A4)

Writing the Floquet operator as ÛF = e−iĤeff τ , we identify the
effective Hamiltonian as

Ĥeff

J
= 2

μ

N
Ŝ2

z − Ŝx cos(φσ̂z ) − Ŝy sin(φσ̂z ) − Nξ σ̂x

2
. (A5)

In terms of the spin-S raising and lowering operators, the
effective Hamiltonian becomes Eq. (4) in the main text.

APPENDIX B: NUMERICAL CALCULATION OF JC

To calculate the chiral current numerically, we start with
Eq. (13) and use the Hellmann-Feynman theorem to write

JC = 〈ε0|∂φĤeff |ε0〉, (B1)

where |ε0〉 is the ground state of ÛF . The result of the deriva-
tive with respect to φ is

JC = 〈ε0|Ŝx|ε0〉 sin φ − 〈ε0|Ŝyσ̂z|ε0〉 cos φ, (B2)

which is what is used in our calculations.

APPENDIX C: ENTANGLEMENT ENTROPY (μ = 0)

In the Meissner phase the screening current is entirely
along the legs of the ladder (BEC degrees of freedom).
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FIG. 4. Entanglement entropy between the BEC and the impu-
rity. The red curve is the analytic expression from Eq. (C2) and the
black squares are from a numerical calculation. The parameters are
ξ = 0.5, μ = 0, and N = 100.

However, in the Abrikosov-vortex phase the current develops
along the rungs of the ladder (impurity degrees of freedom)
creating the vortices, so it is natural to ask whether or not the
entanglement between the BEC and the impurity is sensitive
to the QPT. To check, we calculate the entanglement entropy

of the ground state in Eq. (8) in both phases from the impurity
reduced density matrix

ρI = |−, θ0〉〈θ0,−|, (C1)

where θ0 is from Eq. (10). The analytic expression for the
entanglement entropy is

S(ρI ) = −Tr(ρIlnρI )

= − f+(ξ, φ)ln f+(ξ, φ) − f−(ξ, φ)ln f−(ξ, φ), (C2)

where f±(ξ, φ) = 1
2 (1 ± ξ/sin φ

√
ξ 2 + sin2 φ). The numeri-

cal calculation is carried out with the ground state of ÛF giving
the density matrix and impurity reduced density matrix

ρ = |ε0〉〈ε0|, ρI = TrB(ρ), (C3)

where TrB is the trace over the BEC degrees of freedom.
The entanglement entropy is once again S(ρI ) = −Tr(ρIlnρI ),
which we compare to the analytic expression in Fig. 4 and
find excellent agreement between the two. We see that, indeed,
the entanglement entropy is sensitive to the QPT and follows
the prediction of it increasing in the Abrikosov-vortex phase
(φ > φc). The disagreement between the analytic and numer-
ical results around the critical point comes from finite-size
effects and is expected to vanish in the thermodynamic limit.
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Spielman, and G. Juzeliūnas, Semisynthetic zigzag optical lat-
tice for ultracold bosons, Phys. Rev. A 94, 063632 (2016).

[41] F. A. An, E. J. Meier, and B. Gadway, Diffusive and arrested
transport of atoms under tailored disorder, Nat. Commun. 8, 325
(2017); F. A. An, E. J. Meier, J. Ang’ong’a, and B. Gadway,
Correlated Dynamics in a Synthetic Lattice of Momentum
States, Phys. Rev. Lett. 120, 040407 (2018).

[42] E. J. Meier, F. A. An, and B. Gadway, Observation of the topo-
logical soliton state in the Su-Schrieffer-Heeger model, Nat.
Commun. 7, 13986 (2016).

[43] D. Xie, W. Gou, T. Xiao, B. Gadway, and B. Yan, Topological
characterizations of an extended Su-Schrieffer-Heeger model,
npj Quantum Inf. 5, 55 (2019).

[44] H. M. Price, T. Ozawa, and N. Goldman, Synthetic dimensions
for cold atoms from shaking a harmonic trap, Phys. Rev. A 95,
023607 (2017).

[45] J. Floß, A. Kamalov, I. Sh. Averbukh, and P. H. Bucksbaum,
Observation of Bloch Oscillations in Molecular Rotation, Phys.
Rev. Lett. 115, 203002 (2015).

[46] S. K. Kanungo, J. D. Whalen, Y. Lu, M. Yuan, S. Dasgupta, F. B.
Dunning, K. R. A. Hazzard, and T. C. Killian, Realizing topo-
logical edge states with Rydberg-atom synthetic dimensions,
Nat. Commun. 13, 972 (2022).

[47] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R.
Lopes, and S. Nascimbène, Probing chiral edge dynamics and
bulk topology of a synthetic Hall system, Nat. Phys. 16, 1017
(2020).

[48] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P. McCulloch,
U. Schollwöck, and T Vekua, Symmetry-broken states in a
system of interacting bosons on a two-leg ladder with a uniform
Abelian gauge field, Phys. Rev. A 94, 063628 (2016).

[49] P. Buonsante, R. Burioni, E. Vescovi, and A. Vezzani, Quantum
criticality in a bosonic Josephson junction, Phys. Rev. A 85,
043625 (2012).

[50] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Observation of interference be-
tween two Bose condensates, Science 275, 637 (1997).

[51] R. Gati, J. Esteve, B. Hammerling, T. B. Ottenstein, J.
Appmeier, A. Weller, and M. K. Oberthaler, A primary noise
thermometer for ultracold Bose gases, New J. Phys. 8, 189
(2006).

043325-7

https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevLett.75.3930
https://doi.org/10.1103/PhysRevA.89.023619
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/PhysRevLett.116.220502
https://doi.org/10.1093/nsr/nwaa196
http://arxiv.org/abs/arXiv:2203.13813
https://doi.org/10.1103/PhysRevA.106.033317
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.115.193002
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1038/ncomms2179
https://doi.org/10.1103/PhysRevLett.109.080402
https://doi.org/10.1038/s41598-018-23517-w
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1038/s42254-019-0045-3
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1103/PhysRevA.94.063632
https://doi.org/10.1038/s41467-017-00387-w
https://doi.org/10.1103/PhysRevLett.120.040407
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1038/s41534-019-0159-6
https://doi.org/10.1103/PhysRevA.95.023607
https://doi.org/10.1103/PhysRevLett.115.203002
https://doi.org/10.1038/s41467-022-28550-y
https://doi.org/10.1038/s41567-020-0942-5
https://doi.org/10.1103/PhysRevA.94.063628
https://doi.org/10.1103/PhysRevA.85.043625
https://doi.org/10.1126/science.275.5300.637
https://doi.org/10.1088/1367-2630/8/9/189

