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Two ultracold highly magnetic atoms in a one-dimensional harmonic trap
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We theoretically investigate the properties of two interacting ultracold highly magnetic atoms trapped in a
one-dimensional harmonic potential. The atoms interact via an anisotropic long-range dipole-dipole interaction,
which in one dimension effectively can be modeled by the contact interaction. We investigate the interplay of the
external magnetic field, the spin-spin interaction, and the trapping potential and how they affect the magnetization
of the system. We show the role of indistinguishability and symmetries in the dynamics by studying the time
evolution of the observables that could be measured experimentally. The presented model may depict the on-site
interaction of the extended Hubbard models, therefore giving a better understanding of the fundamental building
block of the respective many-body quantum simulators.
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I. INTRODUCTION

Modern technology allows us not only to produce ultra-
cold synthetic quantum matter but also to control it on an
unprecedented level. Few-body tunable systems [1], atom-by-
atom assembled cold atomic arrays of various dimensionality
[2,3], single-atom imaging of bosons and fermions [4–8], and
forming ultracold molecules from atoms [9–13] are exam-
ples of many achievements that bring us closer and closer
to fully controllable quantum systems. Such systems with
tunable interactions and geometry are especially useful for
quantum simulations of solid-state models such as Hubbard
[14,15], Ising [16], Heisenberg [17], or even extended Hub-
bard [18–23] models. Quantum simulators [24–32] have been
used to investigate a broad range of physical phenomena such
as the many-body localization [33], mobile spin impurity [34],
magnons [35], Mott transition [36], Fermi-Hubbard antiferro-
magnets [37], or doping in the Hubbard model [38]. Recent
simulators have already exploited 256 atoms [39], which ex-
ceeds the possibilities of most numerical approaches.

Next to many-body ultracold simulators, few-body systems
are thoroughly investigated both experimentally and theoret-
ically [40]. Among them, one-dimensional (1D) setups [41]
have attracted significant attention due to the increased role
of interactions and interesting novel phenomena resulting
from quantum fluctuations [42]. In particular, the analytical
solutions for low-spin atoms interacting via contact [43] or
finite-range soft-core [44] potential have been developed. The
two-body physics has been investigated using many systems
[45–49], including ultracold molecules [50–53]. Recently,
few spin-1/2 fermions in a 1D trap [54,55] and one and
two spin-1/2 fermions interacting via the spin-exchange with
the impurity [56] have also been studied. Few-body SU(N)
systems [57] and larger systems of several particles confined
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in 1D geometries have been investigated as well [54,58–60].
In parallel, experimental efforts have allowed for the deter-
ministic preparation of a few ultracold fermions in a trap
[1] that has led to groundbreaking studies of fermionization
[61], formation of a Fermi sea [62], two fermions in a double
well [63], and more [64,65]. Moreover, developments of the
optical tweezers technology [66–68] have opened the possi-
bility to trap and manipulate single particles also in quasi-1D
harmoniclike potentials [69,70], which has allowed, among
other possibilities, for studying two bosons in a double well
[71,72].

Quantum simulators can be constructed using various par-
ticles including Rydberg atoms [73,74], ultracold ions [26],
and molecules [75,76]. A new species has joined the tool-
box with the realization of the Bose-Einstein condensate in
chromium, dysprosium, erbium, and europium gases [77–80].
Ultracold lanthanides have opened new possibilities com-
ing from their large magnetic moments and more complex
electronic structure [81,82]. The anisotropic and long-range
nature of magnetic dipolar interactions results in a range of
interesting properties such as the existence of quantum chaos
[83], the emergence of roton modes [84], the Rosenweig
instability [85,86], the abnormal stability of a Bose-Einstein
condensate [87], or quantum magnetism [88–92]. Moreover,
lanthanides like dysprosium and erbium have nonzero or-
bital angular momenta that opened studies on large orbital
anisotropy of their short-range interactions [93,94]. The na-
tive spin structure and long lifetimes compensate for weaker
dipolar interaction strength and make highly magnetic atoms a
promising platform for quantum simulations. They have been
already used to simulate the extended Bose-Hubbard model
[30]. While the many-body regime of such magnetic simula-
tors has been extensively studied theoretically [88–92,95,96],
the few-body picture is less known.

To address this limit, we study the building block of the
quantum simulator of the Hubbard models based on ultracold
highly magnetic atoms, that is, two particles interacting on
site. In this paper, we describe two indistinguishable and
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two distinguishable highly magnetic atoms in a 1D harmonic
trap interacting via the contact spin-spin interaction. We in-
vestigate the interplay between the spin-spin interaction, the
external magnetic field, and the trapping potential. Energy
spectra and eigenstates are calculated by means of the exact
diagonalization. We show that, for indistinguishable atoms,
the system has a high symmetry that can be reduced by an ap-
propriately applied external magnetic field. The ground state
can manifest antiferromagnetic or ferromagnetic configura-
tions. Moreover, quantum statistics has an important impact
on the dynamics of the system, where indistinguishable atoms
have much simpler dynamics than distinguishable ones.

The plan of the paper is as follows. Section II describes the
theoretical model and its experimental feasibility. Section III
presents and discusses the static properties of the ground state
and the dynamics of the system. Section IV summarizes the
paper and explains further perspectives of research in this
area. The computer code to recreate the presented results is
available on GitLab [97].

II. THEORETICAL MODEL AND METHODS

We start by considering two interacting indistinguishable
ultracold highly magnetic atoms with the same spin s and
mass m. We also study a more general case of two interacting
distinguishable atoms with different spins si and masses mi.
Their motion is restricted to 1D along the z axis due to strong
perpendicular trapping potential in the x and y directions.
Additionally, atoms are confined in a 1D harmonic trap in
the z direction with the trapping frequency ω. Their magnetic
dipole-dipole interaction can be effectively approximated by
the contact spin-spin interaction.

A. Hamiltonian

The Hamiltonian describing our system is

Ĥ = Ĥtrap + Ĥdd + ĤZeeman, (1)

where Ĥtrap describes the motion of atoms in the 1D harmonic
trap, Ĥdd is the magnetic dipole-dipole interaction between
atoms, and ĤZeeman describes the interaction of atoms with an
external magnetic field.

The Hamiltonian describing two structureless atoms in the
1D harmonic trap is

Ĥtrap =
2∑

i=1

(
p̂2

i

2mi
+ 1

2
miω

2z2
i

)
, (2)

where ω is the trapping frequency, zi is the position, p̂i is the
momentum operator, and mi is a mass of the ith atom.

The Hamiltonian describing the magnetic dipole-dipole
interaction in three dimensions (3D) is

Ĥ3D
dd = μ0

4π

(
d̂1 · d̂2

r3
− 3(d̂1 · r)(d̂2 · r)

r5

)
, (3)

where d̂i is the magnetic dipole moment operator of the ith
atom, r is a vector connecting two atoms, and μ0 is the
magnetic constant. In the 1D limit, the dipole-dipole inter-
action can be effectively described by the contact interaction

[98–100]. In our research, we consider the dipole-dipole in-
teraction of the form

Ĥ1D
dd = 2J

h̄2 δ(z)ŝ1 · ŝ2, (4)

where z = |z1 − z2| is the interatomic distance, ŝi is the spin
operator of the ith atom, and J is the spin-spin interaction
strength. The full form of the dipole-dipole interaction from
Eq. (3) reduced to 1D has the additional term

Ĥ1D
dd,δ = −6J

h̄2 δ(z)s1zs2z, (5)

which is diagonal in the spin basis. Therefore, it effectively
acts like the contact interaction of form gδ(z), where g is the
interaction strength. Unless it is stated otherwise, we omit this
term to focus on the Heisenberg-like interaction. We show
how J relates to the system constants and prove the contact
form of the interatomic interaction in Appendix A.

The Hamiltonian describing the interaction of the atoms
with an external magnetic field is

ĤZeeman = μB

2∑
i=1

gi ŝi · B, (6)

where B is an external magnetic field vector and gi is the mag-
netic g-factor. Further, the magnetic field will be described by
its magnitude B and the angle θ , which is an angle between the
z axis of the trap and the magnetic field vector visible at Fig. 1.
We neglect the potential nonzero value of nuclear spins.

We use the harmonic oscillator units. Energies are then
expressed in units of h̄ω, lengths in units of the harmonic
oscillator characteristic length aho = √

h̄/(μω) (where μ is
a reduced mass of the atoms), magnetic field magnitude B in
units of μB/(h̄ω), and interaction strength J in units of h̄ωaho.

B. Basis set and state symmetry

The form of the Hamiltonian in Eq. (1) allows us to sep-
arate the center-of-mass and relative motions of atoms. The
center-of-mass movement of two atoms in the harmonic trap
is described by a well-known symmetric solution of the har-
monic oscillator problem. We solve the remaining relative
motion problem by decomposing the relative motion wave
function |�k〉 for a kth state in the product basis constructed
as

|�k〉 =
∑

n,S,Mz

ak
n,S,Mz

|n〉|S, Mz, s1, s2〉, (7)

where |n〉 are eigenstates of the 1D harmonic oscillator and
|S, Mz, s1, s2〉 are eigenstates of the total spin angular momen-
tum operator, Ŝ = ŝ1 + ŝ2, where Mz is its projection onto the
z axis. Moreover,

|S, Mz, s1, s2〉 =
∑

ms1 ,ms2

C
s1,ms1 ,s2,ms2
S,Mz

|s1, ms1〉|s2, ms2〉, (8)

where C
s1,ms1 ,s2,ms2
S,Mz

are the Clebsch-Gordan coefficients. Co-
efficients ak

n,S,Mz
are calculated by means of the exact

diagonalization. In some cases, the symmetry of the Hamilto-
nian leads to conservation of S or Mz that is used to reduce the
size of the basis set and therefore of the diagonalized matrix.
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FIG. 1. Schematic representation of the investigated system and its features. (a) Two interacting ultracold highly magnetic atoms (e.g.,
chromium) in a 1D harmonic trap under the influence of the external magnetic field can be described by (b) an energy spectrum or (c) a
magnetization diagram depending on the interaction and field strengths. (d) Time evolution of the system’s observable and (e) its Fourier
transform can reveal information on the coupling between states of the system and effects of symmetries.

In some cases, when Mz is not conserved, Mx might be used
as a good quantum number instead.

To ensure a proper symmetry of the total wave function,
the relative motion wave function has to be symmetric (an-
tisymmetric) with respect to particle exchange for bosons
(fermions). The symmetry of |S, Mz, s1, s2〉 depends on the
total spin of the system S. If the parity of the total spin
quantum number S is the same as the parity of s1 + s2, then
|S, Mz, s1, s2〉 is symmetric; otherwise it is antisymmetric. The
harmonic part |n〉 is symmetric (antisymmetric) for even (odd)
n. Therefore, for both fermions and bosons, the odd S is paired
with odd n and the even S is paired with even n.

The matrix elements of the Hamiltonian of Eq. (1) in the
discussed basis are shown in Appendix B.

C. Dynamics

We consider a unitary time evolution of the system that is
prepared in the initial product state

|ψ0〉 = |n〉|s1, ms1〉|s2, ms2〉. (9)

The time evolution of the system is then

|ψ (t )〉 = exp(−Ĥt/h̄)|ψ0〉
=

∑
p

〈�p|ψ0〉 exp(−iEpt/h̄)|�p〉, (10)

where Ĥ is the Hamiltonian describing the system after the
quench and |�p〉 are its eigenstates with the corresponding
energies Ep. The time evolution of the observable Ô is then

〈ψ (t )|Ô|ψ (t )〉 =
∑
p,q

〈�p|ψ0〉〈�q|ψ0〉

× exp [−i(Ep − Eq)t/h̄]〈�p|Ô|�q〉. (11)

The dynamics is calculated until time t = 10 000 × 2π
ω

with
a time step of 0.01 × 2π

ω
. We perform the discrete Fourier

transforms of the observables’ evolution using the SCIPY

package [101].

D. Convergence with the basis set size

Calculations are done in the basis set composed of Nn = 30
harmonic oscillator eigenfunctions. However, for two indis-
tinguishable atoms due to fermionic or bosonic symmetry of
states, we take every second harmonic state, which means that
we take nmax = 60. For two distinguishable atoms, nmax = 30.
In the investigated system, Nn = 30 functions guarantee a
sufficiently good convergence for the lowest-energy states. We
note, however, that even not fully converged results may be
enough to describe and understand the physical properties of
the few-body systems [41,54,60,102]. For time evolution, the
finite basis set is causing problems that we have already seen
in calculations for molecules [52]. Namely, the frequencies of
the oscillations depend on the energy differences between all
states, including the highest-energy states that are divergent.
However, from the lower states we learn the asymptotic be-
havior of all the harmonic states, and this allows us to use
the condition that, if the energy of the state is higher than
h̄ω(nmax + 1

2 ), it is omitted in the time evolution calculations.

E. Experimental feasibility

In the ultracold experiment, to achieve an effective 1D
optical trap, we can use a 3D cigar-shaped harmonic trap,

Vtrap = μ

2
[ωz2 + ω⊥(x2 + y2)], (12)

where ω � ω⊥.
In our model, the spin-spin interaction strength is ex-

pressed as

J = μ0d2ω⊥μ

8π h̄S(S + 1)
, (13)

the derivation of which can be found in Appendix A. We
consider the regime where the spin-spin interaction strength is
a magnitude lower than the harmonic oscillator energy. This
condition is equivalent to J being comparable to 0.1 in the
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harmonic oscillator units

J

h̄ωaho
= μ0d2ω⊥μ3/2

8π h̄5/2S(S + 1)ω1/2
∝ 0.1. (14)

In this work, we investigate the spin-3 atoms, an equiva-
lent of bosonic chromium atoms with experimental values of
d = 6 μB and μ = 51.94 u [98]. Note that chromium has a
zero orbital electronic angular momentum, and its bosonic
isotopes do not have nuclear spins.

Therefore, to have J of the order of 0.1h̄ωaho, for the
perpendicular trap frequency ω⊥ = 1 MHz, the trapping fre-
quency ω should be around 13 kHz, and for ω⊥ = 10 MHz,
the frequency should be around ω = 1.3 MHz. Those traps
would have anisotropy parameters 1/λ equal to 8.8 and 2.8,

respectively, where λ =
√

ω
ω⊥

. Typical trapping frequencies

vary from kHz to MHz in range [103] and the highest
anisotropy of the trap achieved in experiment, that we know
of, is 1/λ ≈ 50 [104]. Analogously, the magnitude of the
magnetic field strength B would vary from 1.5 to 150 mG.
Using lower trap frequencies would allow one to obtain higher
anisotropy of the trap. However, simultaneously, it would
make the system highly sensitive to a magnetic field.

III. RESULTS

We start by analyzing the symmetries present in the system
and the energy spectra to investigate the effect of the spin-spin
interaction and the external magnetic field on the system.
Then, we investigate how the interplay of the interatomic
interactions and the external field affects the magnetization
of the ground state. Finally, we probe the dynamics of the
system, show the importance of the symmetries of the sys-
tem, and study the observables that may be accessible in the
experiment.

A. Symmetries

The symmetries of the system lead to the conservation
of certain quantities and related quantum numbers. As intro-
duced in Sec. II, we examine the total spin S and its projection
onto the quantization axis Mz. We see that, for a magnetic
field parallel to the trap axis [θ = 0 in Fig. 1(a)], Mz is always
conserved, independently of the distinguishability of atoms.
On the other hand, S is conserved as long as both atoms have
the same magnetic susceptibility, which in our model is given
by the g-factor. In general, the spin-spin interaction conserves
both S and Mz, but it mixes different harmonic states. If the
magnetic field is not parallel to the trap axis (θ 	= 0), the
states with different Mz begin to mix. The symmetries and
the resulting conservation of the quantum numbers turn out
to determine the properties of the system, especially when it
comes to its dynamics.

B. Energy spectrum

For the static properties of the system, we consider two in-
distinguishable bosonic spin-3 atoms, equivalent to chromium
atoms with a g-factor of g = 2. In Fig. 2, we show the

FIG. 2. Energy spectrum of two indistinguishable bosonic spin-3
atoms in a 1D harmonic trap as a function of the spin-spin interaction
J for μBB = 0.1 h̄ω and θ = 0 (field parallel to the trap axis). Colors
(gray scale) denote the total spin projection Mz of the corresponding
states. Solid lines show the positive value of Mz and dashed lines
show the negative value.

spectrum with all possible states as a function of the spin-spin
interaction strength J in the magnetic field μBB = 0.1 h̄ω

and θ = 0. The spectrum is rich; however, we do not observe
any anticrossings between states with different spin quantum
numbers as the considered interaction does not couple them.
The spectrum can be further analyzed after the separation into
subspaces with specific quantum numbers. The examples of
the separated spectra are shown in Figs. 3 and 4. In all panels,
we plot the energy spectra as a function of J for three values
of the magnetic field μBB = 0, 0.1, and 0.5 h̄ω. In Fig. 3, we
present states with selected total spin projections to compare
how states with different total spins S behave due to the
spin-spin interaction. Without a magnetic field (left column in
each panel), we see that the energy levels are being repelled
by the energy levels of adjacent harmonic states. Moreover,
we observe that the states with odd S are insensitive to the
spin-spin interaction. This is due to the bosonic symmetry
imposed on the system. States with odd S have antisymmetric
harmonic components and therefore the contact interaction
does not affect those states. In Fig. 4, we present the spectra
of states with specific total spins S. Without a magnetic field,
the states are strongly degenerate because the energy does not
depend on the projection Mz. Therefore, we observe only one
energy level for each harmonic state. After switching on the
magnetic field, the degeneration is lifted and we observe the
energy level splitting due to the Zeeman effect.

The energy spectrum in the perpendicular magnetic field
(θ = π ) behaves almost identically, with the difference that
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FIG. 3. Energy spectra of subspaces (a) Mz = 1 and Mz = −1 and (b) Mz = 3 and Mz = −3 of two indistinguishable bosonic spin-3 atoms
in a 1D harmonic trap as a function of the spin-spin interaction J for θ = 0 and three values of the magnetic field μBB = 0, 0.1, and 0.5 h̄ω.
Solid lines show the positive values of Mz and dashed lines show the negative values.

FIG. 4. Energy spectra of subspaces (a) S = 4 and (b) S = 6 of two indistinguishable bosonic spin-3 atoms in a 1D harmonic trap as a
function of the spin-spin interaction J for θ = 0 and three values of the magnetic field μBB = 0, 0.1, and 0.5 h̄ω. Solid lines show the positive
values of Mz and dashed lines show the negative values.
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FIG. 5. Ground-state magnetization of two indistinguishable
bosonic spin-3 atoms in a 1D harmonic trap as a function of the
spin-spin interaction J and the external magnetic field B parallel to
the trap axis (θ = 0).

Mx becomes a good quantum number and can be used instead
of Mz to segregate the states.

C. Ground-state magnetization

Figure 5 shows the ground-state magnetization, understood
as the value of the projection of the total spin Mz, which we
use as a probe into the magnetic properties of the two-body
system. Additionally, we mark the total spin S of the ground
state. We look at the interplay of the spin-spin interaction
and the effect of the magnetic field parallel to the trap axis
(θ = 0). For positive and strong J , the lowest-energy state is
Mz = 0 and S = 0, which might be considered the equivalent
of the antiferromagnetic configuration. For negative J at any
magnetic field as well as for low, positive J and strong mag-
netic field, the ground state is equivalent to the ferromagnetic
configuration with the highest possible spin S = 6 and an
absolute value of its projection Mz = −6. Between those two
configurations, there are transition areas. We observe only the
even values of S due to the bosonic symmetry, the states with
odd S are not affected by the spin-spin interaction, which
makes them unlikely to be the ground state. However, we
cannot be sure about the existence of the Mz = −4 area in
the complete basis limit. The size of this area shows a strong
dependence on the basis set size and it gets smaller when
increasing the basis set size.

For the perpendicular magnetic field (θ = π ), the states
with the same |Mz| but an opposite sign have the same con-
tribution to the ground state, effectively resulting in Mz being
always equal to 0. In this case, Mx becomes the good quantum
number and the plot of Mx is identical to the plot of Mz in the
parallel magnetic field.

Thus, we can control the system magnetization using an
external magnetic field as well as the frequency of the trapping
potential that can be used to effectively change the strength of
the spin-spin interaction.

D. Time evolution

In this section, we analyze the time evolution of the system
initialized as a product state |s1, ms1〉|s2, ms2〉 in the constant
magnetic field with the fixed strength of the spin-spin in-
teraction. This initial state corresponds to the initialization
of the system, which is much faster than typical dynamics
timescales. We choose to examine the expectation values of
projection of the total spin 〈Mz〉 and the individual atom spins
〈ms1〉 and 〈ms2〉.

In the parallel magnetic field (θ = 0), both S and Mz are
conserved and the mixing of harmonic states is not enough to
induce any nontrivial dynamics of the magnetization. How-
ever, in the perpendicular magnetic field, Mz states are mixed
and we can observe some dynamics.

The dynamics of two chromium atoms appears to be sur-
prisingly simple, and both investigated observables oscillate
with a single frequency. The signal and its Fourier transform
are shown in Figs. 6(a) and 6(b), respectively. The localization
of the single peak in the Fourier transform points out that the
frequency of oscillation has exactly the value of gμBB, which
is related to the energy difference between two neighboring
states in the energy level ladder induced by the Zeeman effect.
This frequency is marked by the black dotted line in the plots.
Those states and their energy differences are best visible in
the central subpanels in both Figs. 4(a) and 4(b). The coupling
with further neighboring states is canceled due to the different
parity of states.

The values of 〈ms1〉 and 〈ms2〉 are identical at all times due
to the indistinguishability of atoms. Moreover, the expectation
value of the projection of an individual spin 〈msi〉 is always
equal to half of the value of the expectation value of the
projection of the total spin which is required to preserve the in-
distinguishability. We additionally prove this in Appendix C.

Moreover, we notice the dependence of the amplitude of
the oscillations on the orientation of the magnetic field vector,
given by the angle θ , and we plot it in Fig. 7. In extreme
cases of the parallel and perpendicular magnetic fields, we
observe zero amplitude, i.e., no oscillation at all, and maximal
amplitude corresponding to a complete flip of the total spin
from 〈Mz〉 to −〈Mz〉, respectively. In the intermediate cases,
we observe that with an increasing angle θ the amplitude of
the oscillation raises to the maximal value. The dependence
can be well described by the hyperbolic tangent function in the
form a tanh(bθ + c) + d with the fitted parameters a = 3.43,
b = 1.83, c = −1.44, and d = 3.00.

Furthermore, it appears that the omitted so far effective
contact interaction gδ(z) [Ĥ1D

dd,δ from Eq. (5)] can result in a
more complex dynamics of the system. Although the term is
not breaking any spin symmetry, it causes stronger mixing of
the harmonic states and as a result more couplings between
the states are present in the system. In Fig. 6, we show the
signal in panel (c) and its Fourier transform in panel (d) for
the time evolution with this additional term.

As mentioned previously, as long as both atoms have the
same g-factor, the total spin S is conserved. In the more com-
plicated case, where we consider two different distinguishable
atoms with different g-factors, the time evolution gets more
complex as can be seen in Fig. 8. We consider the equiva-
lent of chromium and erbium atoms with spins s1 = 3 and
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FIG. 6. The time evolution of the expectation value of the projection of the total 〈Mz〉 and individual 〈msi 〉 spins of the product state
|s1, ms1 〉|s2, ms2 〉 = |3, 1〉|3, 2〉 of two indistinguishable bosonic spin-3 atoms in a 1D harmonic trap for the spin-spin interaction strength
J = 1 h̄ωaho, the magnetic field angle θ = π , and μBB = 0.5 h̄ω (a) without and (c) with effective contact interaction gδ(z). The black dotted
line shows the frequency gμBB. Panels (b) and (d) show the Fourier transform of the signals without and with effective contact interaction,
respectively.

s2 = 6, respectively. The erbium atom has the total angular
momentum j = 6; however, we omit the orbital short-range

units of

FIG. 7. The dependence of the amplitude of the oscillation of the
total spin projection 〈Mz〉 of two spin-3 atoms in a 1D harmonic trap
on the angle θ of the magnetic field vector with constant magnitude.
The dashed black line in the lower panel shows the fitted hyper-
bolic tangent function a tanh(bθ + c) + d . The fitted parameters are
a = 3.43, b = 1.83, c = −1.44, and d = 3.00.

anisotropy to study long-range magnetic interactions, effec-
tively treating it as the spin-6 atom. The known formula for
the Landé g-factor [105] gives the value g2 = 1.167 (where
for chromium g1 = 2). In the Fourier transform of the signal
(see the lower panels in Fig. 8), we observe a lot of frequencies
with a relatively small amplitude, which were not present in
the case of two indistinguishable spin-3 atoms. However, there
are two peaks with large amplitudes, which are located at fre-
quencies f1 = g1μBB = 1 ω and f2 = g2μBB = 0.583 ω, that
correspond to values giμBB. Moreover, looking at the Fourier
spectra in the central panel in Fig. 8, we see that the first peak
comes from the oscillation of 〈ms1〉 and the second one from
〈ms2〉. It shows that the values of theses frequencies have the
same origin as in the two spin-3 atoms and the coupling of
the nearest Zeeman states is dominating the time evolution.
Again, those frequencies corresponding to Zeeman shifts are
marked by the black dotted lines.

However, the peaks with lower amplitude show that addi-
tional weaker couplings exist in this system but still we do not
observe the ladderlike Fourier spectrum typical for coupling
between harmonic states. It can be explained by the strong
mixing between states causing the energy differences to be
inconsistent with the harmonic trap energy spacing.

Although we find out that the energy spectra, in this case,
are relatively complex, we see no sign of the chaotic behavior
in the unfolded spectrum [106].

IV. SUMMARY AND CONCLUSIONS

Within this work, we have studied the properties of two
interacting ultracold highly magnetic atoms in a 1D harmonic
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FIG. 8. The time evolution of the expectation value of the pro-
jections of the total 〈Mz〉 and individual 〈msi 〉 spins of the system
initialized as a product state |s1, ms1 〉|s2, ms2 〉 = |3, 1〉|6, 2〉 of spin-3
and spin-6 distinguishable bosonic atoms in a 1D harmonic trap
for the spin-spin interaction strength J = 1 h̄ωaho and the magnetic
field μBB = 0.5 h̄ω and θ = π . The black dotted line shows the
frequencies giμBB. The central and lower panels show the Fourier
transform of the signal.

trap. We have investigated the interplay of the contact spin-
spin interaction and the external magnetic field. We have
shown how different symmetries affect the system and how
to use the magnetic field to break them. We have shown that
an external magnetic field and a trapping potential frequency
can be used to control the magnetization of the system. We
have shown the time evolution of the observables that could
be measured in the experiment.

Our findings can be summarized as follows.
(i) For two spin-3 indistinguishable atoms, the energy

spectrum shows the repulsion between energy levels of dif-
ferent harmonic states. We observe states that are insensitive
to the spin-spin interaction due to the bosonic symmetry of
the system.

(ii) The magnetization of the system can be controlled
by the interplay of the magnetic field and the harmonic trap
frequency. The magnetization mimics the many-body ferro-
magnetic and antiferromagnetic configurations.

(iii) The time evolution of the expectation value of the
total spin projection for two indistinguishable spin-3 atoms
is unexpectedly simple. The value of the observable oscillates
with a single frequency connected with the coupling of the
nearest Zeeman states. However, the extra contact interaction
causes additional mixing in the system. The amplitude of the
oscillation depends strongly on the orientation of the magnetic
field vector.

(iv) The distinguishability plays vital role in the time evo-
lution of the system. For distinguishable atoms, more states
are coupled than for the indistinguishable ones. However,
the dominating frequencies of the oscillations have the same
origin as for the indistinguishable atoms. We do not observe
a typical ladderlike Fourier spectrum for coupling between
harmonic states due to strong mixing between states.

(v) For the indistinguishable and distinguishable atoms
described by the considered model, we did not observe any
signature of quantum chaos.

The presented results concerning the interplay of the spin-
spin interaction and the external magnetic field and resulting
properties of the trapped two-body atomic system give insight
into the controlled magnetization of the system as well as may
guide the potential experimental measurements. Additionally,
our results stress the importance of the symmetries of the
system.

The results show the behavior of the building block of the
extended Bose-Hubbard model simulator built from highly
magnetic atoms. Its analysis had been a missing element of the
theoretical description of such a simulator. These results may
be extended by studying two fermionic atoms, which initially
have shown similar results to bosons. However, further inves-
tigation could show more details and potential differences in
their properties. Another extension that might be considered
is a system of several traps to analyze the long-range char-
acter of the dipolar interaction which we now omit. Another
direction would be to study the full form of the dipole-dipole
interaction, in both 1D or 3D harmonic traps, including a more
detailed analysis of the contact interactions. We do not expect
a significant change in the properties of the two-atom sys-
tem extended to quasi-1D or including the long-range dipolar
interaction. However, in 3D, the anisotropic nature of the
dipole-dipole interaction and its coupling to the relative orbital
angular momentum should play a more critical role. Similarly,
we suspect that the long-range nature of the interatomic inter-
action would be more important in systems of many trapped
atoms in both 1D and 3D. Finally, we could include the
orbital short-range interatomic interaction anisotropy present
between lanthanides such as erbium and dysprosium.
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APPENDIX A: DIPOLE-DIPOLE INTERACTION
IN ONE DIMENSION

The dipole-dipole interaction in the 1D limit can be ef-
fectively modeled by the Dirac δ potential [99,100]. For
completeness, we present here the argument.

The dipole-dipole interaction potential between two point-
like dipoles is given as

Vdd(r) = Cdd

(
d̂1 · d̂2

r3
− 3(d̂1 · r)(d̂2 · r)

r5

)
, (A1)

where d̂i is a dipole moment operator and Cdd is a constant
depending on the type of the dipoles. Dipoles are trapped in
the 3D cigar-shaped harmonic trap

Vtrap = μ

2
[ωz2 + ω⊥(x2 + y2)], (A2)

resulting in a quasi-1D trap for ω � ω⊥ = ωx = ωy. Then,
the wave function can be separated into an independent axial
(dependent on z) and transverse (dependent on x and y) part.
In that case, the excitation energy in the transverse direction
is too large and might be omitted. After integration over the
transverse directions we get

Vdd(z) = Udd

[
−2u +

√
2π

(
1 + u2

)
exp

(
u2

2

)
erfc

(
u√
2

)]
= UddṼdd(u), (A3)

where u = |z|
l⊥

and l⊥ =
√

h̄
μω⊥

, and

Udd = Cdd

4l3
⊥

(
d̂1 · d̂2 − 3(d̂1 · r)(d̂2 · r)

r2

)
. (A4)

Now, we consider the long-range and short-range behavior of
the interaction. For l⊥ → 0 and long-range interactions z �
l⊥, we can use an asymptotic expansion of the complementary
error function for large argument,

erfc(t ) = exp(−t2)

t
√

π

∞∑
n=0

(−1)n (2n − 1)!!

(2t2)n
, (A5)

to approximate

Ṽdd(u) ≈ −2u +
√

2π (1 + u2) exp

(
u2

2

)√
2 exp

(− u2

2

)
u
√

π

×
(

1 − 1

u2
+ 3

u4

)
= 4

u3
+ 6

u5
−−−→
u→∞

4

u3
. (A6)

Next, we want to consider a short-ranged interaction (small
z), again for l⊥ → 0. We can observe the behavior of Ṽdd(u)
in Fig. 9. We can see that the peak at z = 0 is finite and for
smaller l⊥ the peak becomes narrower. It can be shown that∫ ∞

∞
dz

1

4l⊥
Ṽdd

( |z|
l⊥

)
= 1, (A7)

FIG. 9. Dimensionless interaction potential Ṽdd(u).

and then in the small l⊥ limit, the integrand behaves as the
Dirac δ distribution

1

4l⊥
Ṽdd

( |z|
l⊥

)
−−−→
l⊥→0

δ(z). (A8)

Thus for short distances we get

Vdd(z) = 4δ(z)l⊥Udd, (A9)

and for a long distance we get

Vdd(z) = 4

|z|3 l3
⊥Udd. (A10)

Now we can introduce the parameter

λ = l⊥
l

=
√

ω

ω⊥
, (A11)

which describes the trap anisotropy. With the 1D limit (λ →
0) short-range interaction in the Dirac δ form dominates over
long-range interactions. As the result, the interaction has the
form

Vdd(z) = 4λUddlδ(z). (A12)

For the spin magnetic moments, d̂ = − gμB

h̄ ŝ, where g is the
g-factor and Cdd = μ0

4π
. The length of the magnetic dipole mo-

ment is |d| = d = μBg
√

s(s + 1), where s is the spin quantum
number. Then the magnetic dipole moment can be expressed
using d and s:

d̂ = − d

h̄
√

s(s + 1)
ŝ. (A13)

Substituting d̂ in Eq. (A4) with the conditions that
d1 = d2 = d and s1 = s2 = s, we get

Udd = μ0d2

16π h̄2s(s + 1)l3
⊥

(
ŝ1 · ŝ2 − 3(ŝ1 · r)(ŝ2 · r)

r2

)
, (A14)

and in the one-dimensional situation

(ŝ1 · r)(ŝ2 · r)

r2
= (s1zz)(s2zz)

z2
= s1zs2z. (A15)
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Finally

Vdd(z) = λ
μ0μ

2l

4π h̄2s(s + 1)l3
⊥

δ(z)(ŝ1 · ŝ2 − 3s1zs2z ), (A16)

and after substitution for λ, l , and l⊥,

Vdd(z) = μ0d2ω⊥μ

4π h̄3s(s + 1)
δ(z)(ŝ1 · ŝ2 − 3s1zs2z ). (A17)

Term 3s1zs2z is diagonal in the spin basis and effectively
acts like the contact interaction mixing of the harmonic trap

states. In this work, we focus on Heisenberg-like interaction
in the form

Ĥ1D
dd = μ0d2ω⊥μ

4π h̄3s(s + 1)
δ(z)ŝ1 · ŝ2

= 2J

h̄2 δ(z1 − z2)ŝ1 · ŝ2; (A18)

therefore, the dipole-dipole interaction strength has the form

J = μ0d2ω⊥μ

8π h̄s(s + 1)
. (A19)

APPENDIX B: MATRIX ELEMENTS

Here, we provide the matrix elements of the terms of the relative motion part of the Hamiltonian given by Eq. (1) defined in
Eqs. (2), (4), and (6) in the computation basis of |n, S, Mz, s1, s2〉 ≡ |i〉:

〈i|Ĥrel|i′〉 = 〈i|Ĥrel
trap|i′〉 + 〈i|Ĥ1D

dd |i′〉 + 〈i|ĤZeeman|i′〉, (B1)

where

〈
i
∣∣Ĥrel

trap

∣∣i′〉 = h̄ω

(
n + 1

2

)
δn,n′δs1,s′

1
δs2,s′

2
δS,S′δMz,M ′

z
, (B2)

〈
i
∣∣Ĥ1D

dd

∣∣i′〉 = 2√
2

J

h̄2 ϕn(0)ϕn′ (0)
∑

ms1 ,ms2
m′

s1
,m′

s2

{
C

s1ms1 s2ms2
SMz

C
s′

1m′
s1

s′
2m′

s2
S′M ′

z

[
m′

s1
m′

s2
δs1,s′

1
δs2,s′

2
δms1 ,m′

s1
δms2 ,m′

s2

+ 1

2

√
s′

2(s′
2 + 1) − ms2 ′(m′

s2
+ 1)

√
s′

1(s′
1 + 1) − m′

s1
(m′

s1
− 1)δs1,s′

1
δs2,s′

2
δms1 ,m′

s1
−1δms2 ,m′

s2
+1

+ 1

2

√
s′

2(s′
2 + 1) − m′

s2
(m′

s2
− 1)

√
s′

1(s′
1 + 1) − m′

s1
(m′

s1
+ 1)δs1,s′

1
δs2,s′

2
δms1 ,m′

s1
+1δms2 ,m′

s2
−1

]}
, (B3)

and assuming that B = (Bx, 0, Bz ),

〈i|ĤZeeman|i′〉 = μBδn,n′
∑

ms1 ,ms2
m′

s1
,m′

s2

{
C

s1ms1 s2ms2
SMz

C
s′

1m′
s1

s′
2m′

s2
S′M ′

z

1

2
Bx[g1

√
s1(s1 + 1) − m′

s1
(m′

s1
+ 1)δms1 ,m′

s1
+1δms2 ,m′

s2
+

+ g1

√
s1(s1 + 1) − m′

s1
(m′

s1
− 1)δms1 ,m′

s1
−1δms2 ,m′

s2
+ g2

√
s2(s2 + 1) − m′

s2
(m′

s2
+ 1)δms1 ,m′

s1
δms2 ,m′

s2
+1+

+ g2

√
s2(s2 + 1) − m′

s2
(m′

s2
− 1)δms1 ,m′

s1
+1δms2 ,m′

s2
−1] + Bz(g1m′

s1
+ g2m′

s2
)δs1,s′

1
δs2,s′

2
δms1 ,m′

s1
δms2 ,m′

s2

}
. (B4)

APPENDIX C: ANALYTICAL PROOF THAT 〈ms1〉(t ) = 〈ms2〉(t ) = 1
2 〈Mz〉(t )

Below we show the exact analytical proof that 〈ms1〉(t ) = 〈ms2〉(t ) = 1
2 〈Mz〉(t ) for two indistinguishable bosonic spin-3 atoms

in a 1D harmonic trap. We consider the case where the quantum number S is conserved and Mz is not. We assume that eigenstates
of the system are expressed as

|�S
p

〉 =
∑
nMz

anMz |n〉|S, Mz〉. (C1)

The time evolution of 〈ms1〉 for the system in a initial state |ψ0〉, which is not an eigenstate of the system, is calculated as

〈ψ (t )|ŝ1z|ψ (t )〉 =
∑
S,S′

∑
p,q

〈
�S

p

∣∣ψ0
〉〈
�S′

q

∣∣ψ0
〉
exp

[ − i
(
ES

p − ES′
q

)
t
]〈
�S

p

∣∣ŝ1z

∣∣�S′
q

〉
, (C2)

where |ψ (t )〉 = Û (t )|ψ0〉 and Û (t ) is the unitary time evolution operator. First, we look at the expectation value:〈
�S

p |ŝ1z|�S′
q

〉 =
∑
nn′

∑
MzM ′

z

(anMz )∗bn′M ′
z
〈n|n′〉〈SMz|ŝ1z|S′M ′

z〉 (C3)
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=
∑

n

∑
MzM ′

z

∑
ms1 ,ms2 ,m′

1,m
′
s2

(anMz )∗bnM ′
z
C

ms1 ms2
SMz

C
m′

1m′
s2

S′M ′
z

〈ms1 ms2 |ŝ1z|m′
1m′

s2
〉 (C4)

=
∑

n

∑
MzM ′

z

(anMz )∗bnM ′
z

∑
ms1 ,ms2

C
ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
ms1 (C5)

=
∑

n

∑
MzM ′

z

(anMz )∗bnM ′
z

1

2

∑
ms1 ,ms2

(
C

ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
ms1 + C

ms2 ms1
SMz

C
ms2 ms1
S′M ′

z
ms2

)
. (C6)

From the symmetry of the Clebsch-Gordan coefficients we know that

C
ms1 ms2
SMz

= (−1)S−(s1+s2 )C
ms2 ms1
SMz

, (C7)

and therefore,

C
ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
= (−1)S+S′−2(s1+s2 )C

ms2 ms1
SMz

C
ms2 ms1
S′M ′

z
; (C8)

however, we know that due to the symmetry of the states, anMz are nonzero only if n and S have the same parity because only
those states are part of the basis (then S and S′ must have the same parity, too). For nonzero elements of the sum, S + S′ is always
even. Then, 〈

�S
p |ŝ1z|�S′

q

〉 =
∑

n

′ ∑
MzM ′

z

′(anMz )∗bnM ′
z

1

2

∑
ms1 ,ms2

(
C

ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
ms1 + C

ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
ms2

)
(C9)

=
∑

n

′ ∑
MzM ′

z

′(anS )∗bnS′
1

2

∑
ms1 ,ms2

C
ms1 ms2
SMz

C
ms1 ms2
S′M ′

z
(ms1 + ms2 ), (C10)

where
∑ ′ means the summation with the preserved parity of n and S, S′. We know that C

ms1 ms2
SMz

are equal to 0 if ms1 + ms2 	= Mz,
and then 〈

�S
p |ŝ1z|�S′

q

〉 =
∑

n

′ ∑
Mz

′(anS )∗bnS′
1

2

∑
ms1 ,ms2

C
ms1 ms2
SMz

C
ms1 ms2
S′Mz

Mz. (C11)

Moreover,

〈SMz|S′Mz〉 =
∑

ms1 ,ms2 ,m′
s1

,m′
s2

C
ms1 ms2
SMz

C
m′

s1
m′

s2
S′Mz

〈ms1 ms2 |m′
s1

m′
s2
〉 =

∑
ms1 ,ms2

C
ms1 ms2
SMz

C
ms1 ms2
S′Mz

; (C12)

therefore 〈
�S

p |ŝ1z|�S′
q

〉 =
∑

n

′ ∑
Mz

′(anMz )∗bnMz

1

2
MzδS,S′ (C13)

= 1

2
Mz

〈
�S

p |�S′
q

〉 = 1

2

〈
�S

p |Mz|�S′
q

〉 = 1

2

〈
�S

p |Ŝz|�S′
q

〉
, (C14)

and therefore

〈ψ (t )|ŝ1z|ψ (t )〉 = 1
2 〈ψ (t )|Ŝz|ψ (t )〉 = 〈ψ (t )|ŝ2z|ψ (t )〉. (C15)

[1] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz,
and S. Jochim, Science 332, 336 (2011).

[2] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner,
and M. D. Lukin, Science 354, 1024 (2016).

[3] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, Science 354, 1021 (2016).

[4] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature (London) 462, 74 (2009).

[5] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,
I. Bloch, and S. Kuhr, Nature (London) 467, 68
(2010).

[6] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V.
Ramasesh, W. S. Bakr, T. Lompe, and M. W. Zwierlein, Phys.
Rev. Lett. 114, 193001 (2015).

[7] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf,
G. D. Bruce, and S. Kuhr, Nat. Phys. 11, 738 (2015).

[8] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo, L.
Pollet, I. Bloch, and C. Gross, Science 353, 1257 (2016).

[9] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature
(London) 424, 47 (2003).

[10] E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C.
Wilson, D. S. Jin, E. A. Cornell, and C. E. Wieman, Phys. Rev.
Lett. 94, 120402 (2005).

043324-11

https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.114.193001
https://doi.org/10.1038/nphys3403
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1038/nature01738
https://doi.org/10.1103/PhysRevLett.94.120402


SUCHOROWSKI, DAWID, AND TOMZA PHYSICAL REVIEW A 106, 043324 (2022)

[11] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart,
N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, Science
321, 1062 (2008).

[12] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B.
Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, Science 322, 231 (2008).

[13] L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P.
Covey, and J. Ye, Science 363, 853 (2019).

[14] L. Tarruell and L. Sanchez-Palencia, C. R. Phys 19, 365
(2018).

[15] M. Gall, N. Wurz, J. Samland, C. F. Chan, and M. Köhl, Nature
(London) 589, 40 (2021).

[16] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T.
Lahaye, and A. Browaeys, Nature (London) 534, 667 (2016).

[17] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E.
Demler, and W. Ketterle, Nature (London) 588, 403 (2020).

[18] D. Rossini and R. Fazio, New J. Phys. 14, 065012 (2012).
[19] F. Hofmann and M. Potthoff, Phys. Rev. B 85, 205127 (2012).
[20] A. Dhar, J. J. Kinnunen, and P. Törmä, Phys. Rev. B 94,

075116 (2016).
[21] A. Dhar, P. Törmä, and J. J. Kinnunen, Phys. Rev. A 97,

043624 (2018).
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