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Spectral analysis for compressible quantum fluids
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Turbulent fluid dynamics typically involves excitations on many different length scales. Classical incompress-
ible fluids can be cleanly represented in Fourier space enabling spectral analysis of energy cascades and other
turbulence phenomena. In quantum fluids, additional phase information and singular behavior near vortex cores
thwarts the direct extension of standard spectral techniques. We develop a formal and numerical spectral analysis
for U(1) symmetry-breaking quantum fluids suitable for analyzing turbulent flows, with specific application
to the Gross–Pitaevskii fluid. Our analysis builds naturally on the canonical approach to spectral analysis of
velocity fields in compressible quantum fluids and establishes a clear correspondence between energy spectral
densities, power spectral densities, and autocorrelation functions, applicable to energy residing in velocity,
quantum pressure, interaction, and potential energy of the fluid. Our formulation includes all quantum phase
information and also enables arbitrary resolution spectral analysis, a valuable feature for numerical analysis.
A central vortex in a trapped planar Bose–Einstein condensate provides an analytically tractable example with
spectral features of interest in both the infrared and ultraviolet regimes. Sampled distributions modeling the
dipole gas, plasma, and clustered regimes exhibit velocity correlation length increasing with vortex energy,
consistent with known qualitative behavior across the vortex clustering transition. The spectral analysis of
compressible quantum fluids presented here offers a rigorous tool for analyzing quantum features of superfluid
turbulence in atomic or polariton condensates.
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I. INTRODUCTION

Many features of the complex dynamics of classical fluid
turbulence are more clearly represented using a Fourier rep-
resentation of the energy distribution across length scales.
Spectral analysis provides an essential tool for understand-
ing classical [1,2] and quantum [3] turbulence, where energy
transport over a large range of scales is a central feature of
steady-state turbulent flow and provides insights into energy
cascades [4,5] and nonthermal fixed points [6] in far from
equilibrium systems. A clear formulation of spectral analysis
is an important open problem in compressible quantum flu-
ids [3,7] where turbulent flows typically involve significant
interaction between fluid velocity and density [8]. As perhaps
the simplest example of such a fluid, dilute-gas Bose–Einstein
condensates (BECs) exhibit rich phenomenology due to the
presence of coupled incompressible (vortex) and compressible
(phonon) excitations [9,10]. Fluids with similar properties
occur in a range of quantum degenerate systems including
in unitary Fermi gases [11], Bose-Fermi mixtures [12], and
polariton condensates [13,14]. Quantum fluids are distin-
guished by the central role of quantum phase information in
their dynamics. However, a complete spectral formulation for
compressible quantum fluids that includes all quantum phase
information has remained an open problem. A number of
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important questions could be addressed by such a formula-
tion: what is truly quantum in quantum turbulence? How does
quantum phase information enter quantum turbulence? What
is the physical role of enstrophy?

Here we generalize the Helmholtz decomposition approach
for velocity power spectra [3] to formulate a general spec-
tral analysis for compressible quantum fluids described by
a U(1) symmetry-breaking order parameter. Our formulation
provides a natural definition of energy spectral densities that
includes all quantum phase information and reduces to famil-
iar velocity power spectra when this information is neglected.
We formulate the general problem of computing a spectral
density in terms of a spectral inner product that allows an-
gular integrals in k space to be carried out analytically, with
obvious formal advantages. Numerically, a remaining spatial
two-point correlation may be accurately evaluated using a
discrete Fourier transform. Spectra can thus be calculated
without the binning approximation. The k-space accuracy
also allows high-resolution position correlations to be easily
computed from spectra. Our approach is particularly useful
for analyzing long-wavelength phenomena in planar quantum
fluids where spectral condensation dominates at high vortex
energy [15,16] and offers a pathway to calculating energy
fluxes in quantum turbulence.

The Gross–Pitaevskii equation (GPE) provides an accurate
description of trapped Bose-Einstein condensates (BECs) far
below the BEC transition temperature [17]. As an exemplar
of a U(1) symmetry-breaking quantum fluid dynamics, the
GPE offers a test bed for spectral analysis of turbulent flows
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[3,7,18–20], created in experiments by forced injection of
quantum vortices or acoustic excitations [4,5,21,22]. Spec-
tral analysis forms a central tool for understanding quantum
fluid turbulence [3–6,13,15,16,19,23–35], providing a com-
pact representation of kinetic features at widely different
scales � in terms of wave number k = 2π/�; for reviews see
Refs. [36–39]. Classical spectral analysis was extended to
compressible quantum fluids by introducing a generalized ve-
locity field that uses the spatially dependent density to remove
the velocity singularity encountered at a vortex core [3], while
retaining the formulation of kinetic energy as a quadratic form
in the generalized velocity field.

The identification of power-law behavior signifying turbu-
lent cascades requires an accurate representation of kinetic
energy in k space. Famously, the Kolmogorov −5/3 power
law [1] signifies an inertial energy cascade through scale
space. First observed in ocean currents [2], numerical ev-
idence for the ∼k−5/3 energy spectrum has been reported
in fully developed turbulent flows in a variety of quantum
fluid settings including the two-dimensional (2D) point-vortex
model [40,41], and in three-dimensional (3D) and 2D Gross–
Pitaevskii turbulence [3,7]. However, the velocity power
spectrum measures of classical turbulence have limitations for
describing compressible quantum fluids due to their neglect of
quantum phase information. Formally, the compressible and
incompressible power spectra are not locally additive in k
space [30], precluding a strict interpretation in terms of energy
fluxes [34]. While some progress has been made by assuming
decoupling of the compressible and incompressible energies
[29], a fully quantum spectral analysis is required to move
forward.

The paper is structured as follows. In Sec. II we give a
short introduction to the GPE, and the representation of the
GPE energy in momentum space. In Appendix B we develop
a general mapping between power spectra and correlations
suitable for compressible quantum fluids. In Sec. III we apply
this approach to the GPE, developing a number of useful
formal properties of energy spectral densities and velocity
power spectra. In Sec. IV we present applications to a 2D
tapped ground state, and the ground state imprinted with quan-
tum vortices. In Sec. V we offer our concluding remarks and
outlook.

II. BACKGROUND

A. Gross–Pitaevskii Equation

Bose–Einstein condensation of trapped gases occurs at a
critical temperature Tc where the excited states are saturated
and, upon further cooling, atoms are forced en masse into the
trap ground state. Well below the critical temperature, T �
Tc, a nearly pure BEC with wave function (order parameter)
ψ has Gross–Pitaevskii energy

H ≡
∫

d3r
h̄2

2m
|∇ψ |2 + V |ψ |2 + g

2
|ψ |4, (1)

where g = 4π h̄2a/m is the two-body interaction parameter
for atoms with s-wave scattering length a, and V (r, t ) is the
external trapping potential. In what follows we will suppress

space-time arguments unless there is risk of ambiguity. There
is a clear interpretation of each term, with

Ekin ≡ h̄2

2m

∫
d3r |∇ψ |2, (2)

Epot ≡
∫

d3r |ψ |2V (r, t ), (3)

Eint ≡ g

2

∫
d3r |ψ |4, (4)

giving the total kinetic, potential, and interaction energies re-
spectively. The GPE may be written as a functional derivative

ih̄
∂ψ (r, t )

∂t
= δH

δψ∗(r, t )
= Lψ, (5)

where we define the nonlinear GP-operator

Lψ ≡
(

− h̄2

2m
∇2 + V + g|ψ |2

)
ψ. (6)

The GPE conserves the energy H and total particle number

N =
∫

d3r |ψ |2. (7)

Despite its relative simplicity, the GPE exhibits an extremely
rich phenomenology.

B. Madelung transformation

Before exploring some of the essential physical phenom-
ena of the GPE, it is helpful to define some further properties.

The order parameter can be written as

ψ =
√

n(r, t )ei�(r,t ) (8)

in terms of the particle density n(r, t ) = |ψ (r, t )|2, and the
phase �(r, t ). In these hydrodynamic variables we have the
superfluid velocity

v(r, t ) ≡ h̄

m
∇�(r, t ) (9)

and current density

J(r, t ) ≡ ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ ) = nv, (10)

and the Hamiltonian becomes

H =
∫

d3r
m

2
n|v|2 + h̄2

2m
|∇√

n|2 + V n + gn2

2
. (11)

The kinetic energy has been written in terms of a hydrody-
namic term and a quantum pressure term. The hydrodynamic
term is the primary focus of quantum turbulence studies be-
cause it allows identification of links with classical turbulence
in incompressible fluids. In a BEC this regime occurs when
there is a static, homogeneous background density n(r, t ) ≈
n̄, usually associated with a high chemical potential and hard-
wall confinement [42,43], with ground-state wave function
ψ0(r), satisfying μψ0 ≡ Lψ0. A planar BEC containing vor-
tices is a special case of this regime, where the vortices move
in a static background density [44]; when the cores are well
separated the system can enter an approximate point-vortex
regime. However, being compressible, BECs also exhibit
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significant coupling between Bogoliubov excitations and vor-
tices, and analysis of kinetic energy requires decomposition
into compressible (acoustic) and incompressible (vortex) parts
[3,7].

C. Compressible-incompressible decomposition

The hydrodynamic kinetic energy can be expressed as a
quadratic form in the field

u(r) ≡ √
n(r)v(r). (12)

This choice of density weighting regularizes the singular be-
havior near a vortex core arising from the 1/r divergence of
the velocity field (

√
n ∼ r near the core). The expression of

energy as a quadratic form in u allows application of Parse-
val’s theorem to derive power spectra.

For finite systems, the definition (12) also allows a
Helmholtz decomposition [3], u(r) = ui(r) + uc(r), with in-
compressible and compressible components satisfying

∇ · ui(r) = 0, (13)

∇ × uc(r) = 0, (14)

respectively.1 The decomposition is easily effected in momen-
tum space, see Appendix A. The vector fields are orthogonal
in momentum space by construction.2 Defining the quantum
pressure velocity field

uq ≡ h̄

m
∇√

n, (15)

the total kinetic energy can be written as

Ekin = Ei
kin + Ec

kin + Eq
kin, (16)

where

Eα
kin = m

2

∫
dd r|uα (r)|2, (17)

for α ∈ {i, c, q}.3 Note that, due to Eq. (15), we have ∇ ×
uq = 0, and the quantum pressure is formally compressible.
We emphasize here that while we use the uα notation to
represent all components, only uc and uq are physical fluid
velocities related to v itself, while uq merely has the physical
dimension of a velocity.

1The usual conditions on the decomposition hold. In three dimen-
sions, it is equivalent to the existence of a vector potential A and
a scalar potential φ, such that u = ∇φ + ∇ × A. Furthermore, the
field should be twice continuously differentiable, and |u| should
vanish faster than 1/r as r → ∞.

2Note that there exist potential solutions, e.g., the quantum phase
�(r) ∝ x2 − y2, which will generate velocity fields that satisfy both
(13) and (14). Such harmonic potential flows also arise in uni-
form translation or rotation and can be handled by subtracting the
harmonic part of the velocity field explicitly before carrying out
Helmholtz decomposition.

3Note that the quantum pressure is strictly a compressible effect.
However, since it does not depend on explicitly on the fluid veloc-
ity, we separate it from the compressible part of the hydrodynamic
kinetic energy.

D. Velocity power spectra and energy spectral densities

It is worthwhile to briefly state some useful results from
Fourier analysis. Parseval’s theorem allows any integral ex-
pressed as a quadratic form of the kind (17) to be written as
an integral in a corresponding frequency domain:

Eα
kin = m

2

∫
dd k|ũα (k)|2, (18)

where

ũα (k) ≡ 1

(2π )d/2

∫
dd re−ik·ruα (r), (19)

and we use the usual shorthand uα (r) ←→ ũα (k). As a con-
crete example, in 2D, we can move to cylindrical coordinates
in k space to find

Eα
kin =

∫ ∞

0
dk

mk

2

∫ 2π

0
dθk|ũα (k cos θk, k sin θk )|2

≡
∫ ∞

0
dk εα

kin(k), (20)

with the latter serving to define the velocity power spectral
density, or simply the “power spectrum.” We have taken care
not to refer to this as an energy spectral density: In a compress-
ible superfluid we can identify three sources of kinetic energy,
(16). While each form of energy may be written as an integral
similar to Eq. (20) using Parseval’s theorem, summing to the
total kinetic energy, it is well understood in Fourier analysis
that the integrands do not sum to the energy density locally at
k. To be explicit, in suitable coordinates we can always write
the total kinetic energy as

Ekin = h̄2

2m

∫
dd r|∇ψ |2 ≡

∫ ∞

0
dk ekin(k), (21)

where the integrand serves to define the spectral density. For
example, in 2D we have

ekin(k) = h̄2k

2m

∫ 2π

0
dθk|∇ψ |2, (22)

where ekin(k)dk is the amount of kinetic energy in the range
[k, k + dk). However, the local additive property does not
hold for the velocity power spectra obtained using Parseval’s
theorem:

ekin(k) �= εi
kin(k) + εc

kin(k) + ε
q
kin(k). (23)

One of our main aims of this paper is to reconcile the de-
composition (16) with the spectral representation (20). A
constructive statement of the true spectral densities for a com-
pressible quantum fluid of the Gross–Pitaevskii type will be
given in Sec. III B. Note also that the mapping to Fourier
space simplifies for an incompressible classical fluid: only the
incompressible kinetic energy remains and hence the addi-
tivity property is not required, and Parseval’s theorem gives
Ekin → Ei

kin, and εi
kin(k) is a legitimate spectral density.

We can clarify the situation by noting that the standard
spectral measures applied to turbulent BECs [3,7,13,22,25]
in the form (20) are not energy spectral densities, but rather
power spectral densities of autocorrelation functions:∫

dd r uα (r)∗ · uα (r + r′) ←→ (2π )d/2|ũα (k)|2. (24)
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The quantity on the left is the two-point correlator for the
vector field, while its Fourier transform represents the same
information in scale space. Such quantities provide a wealth
of useful semiclassical information about superfluid dynamics
and are often loosely referred to as “energy spectra.”

Numerous works have used this Parseval theorem approach
to compute velocity power spectra for GPE simulations
of atomic [3,7,18,25,30,45,46] and polariton BECs [13].
Because the simulations are almost always performed on
Cartesian grids, the spectra are typically computed by binning
the data in k space. Binning involves computing a numerical
approximation to the angular integral by summing over annuli
k1 < k < k2. For Cartesian data this process is inherently a
rather crude approximation, particularly in the small-k regime
where the point density in each bin becomes sparse. This
motivates the approach developed in the present work, which
instead evaluates the k-space angular integrals analytically. A
further benefit of this approach is a decoupling of the grid
resolution of the wave function, from the k-space resolution
of the resulting spectra. The latter is entirely flexible, allow-
ing high-resolution spectra to be easily computed. This also
allows for accurate construction of angle-averaged two-point
correlations by Fourier inverting the spectra to position space.

III. COMPRESSIBLE QUANTUM FLUIDS

Our aim is to construct accurate spectral densities in mo-
mentum space using spatial data for the wave function ψ (r, t ).
Typically numerical simulations of the GPE are computed on
Cartesian grids, while the spectral density used for analysis is
a function of k. We approach this problem by formally writing
a general vector inner product as a spectral density, carrying
out the angular integrals analytically. As a corollary we de-
velop an angle-averaged Wiener-Khinchin theorem relating
a spectral density to an associated correlation function. We
focus on dimensions 2 and 3, as in one dimension (1D) the
problem reduces to mapping a two-sided power spectrum to a
one-sided power spectrum.

A complete description of the proof is given in Ap-
pendix B. Here we summarize the main results. Given two
complex-valued vector fields u, v, we define the spectral den-
sity of their inner product 〈u||v〉(k) as

〈u|v〉 ≡
∫ ∞

0
dk〈u||v〉(k), (25)

and this is shown to be given by

〈u||v〉(k) ≡
∫

dd x�d (k, |x|)C[u, v](x), (26)

where the two-point correlation in position is

C[u, v](x) ≡
∫

dd R〈u|R − x/2〉〈R + x/2|v〉, (27)

and the kernel function is dimension dependent:

�d (k, r) ≡
{

1
2π

kJ0(kr) for d = 2
1

2π2 k2sinc(kr) for d = 3.
(28)

The Cartesian two-point correlation is thus directly mapped
to a spectral density function of k by formal integrating over

angles in k space. A further useful consequence of this formu-
lation is that we also find an exact mapping from k space back
to an angle-average of the two-point correlation function (27),
which takes the form

guv (r) ≡
∫ ∞

0
dk�−1

d (k, r)
〈u||v〉(k)

〈u|v〉 , (29)

with inverse kernel

�−1
d (k, r) ≡

{
J0(kr) for d = 2
sinc(kr) for d = 3.

(30)

We have absorbed the value of C[u, v](0) = 〈u|v〉 for conve-
nience, so that guv (0) ≡ 1 by definition. We can summarize
this as an angle-averaged Wiener–Khinchin theorem:

(u, v) −→ 〈u||v〉(k) ←→ guv (r), (31)

where the first mapping is a Fourier transform followed by
angular integration in k space. The second is the Fourier
relation between the k and r variables. Our analysis amounts
to an explicitly angle-averaged formulation of the standard
Wiener–Khinchin theorem linking power spectra with two-
point correlation functions. Our development in terms of
general vector fields allows many quantities of interest to be
calculated for compressible quantum fluids, by choosing u
and v appropriately. We will consider examples below.

Explicit angular integration offers formal and numerical
advantages for spectral analysis, particularly in the context
of quantum turbulence [3,7]. The formal gains will appear
clearly in the following sections where we apply these results
to energy spectral densities, enabling a rigorous decom-
position of the kinetic spectral density into compressible,
incompressible, and quantum pressure terms, and their mutual
interactions.

The numerical advantages are twofold. First, we can ex-
ploit standard Fourier methods to efficiently evaluate the
convolution (27). Second, by writing the power spectrum (26)
and the two-point correlation (29) in terms of the kernels (28)
and (30), we have decoupled the grid of the vector fields from
the grid of the spectrum and correlator: the kernel functions
can be evaluated on any desired k or r grids to create the
desired spectra or correlator. This avoids the need to bin Carte-
sian grid data or interpolate onto a suitable grid for angular
integration; it also allows for rectangular spatial domains,
as the convolution may be evaluated for vector fields with
arbitrary coordinate range. Moreover, for computing spectra
spanning many orders of magnitude in turbulent flows it is
often desirable to have a linear point density in log space—a
choice that can be freely made in the present formulation.

We now apply the angle-averaged Wiener-Khinchin theo-
rem derived in Appendix B to central problems of spectral
analysis in compressible quantum fluids.

A. Velocity power spectrum

We return now to the compressible, incompressible, and
quantum pressure kinetic energies (18). Taking u = v ≡ uα

in (31), we have

Eα
kin =

∫ ∞

0
dkεα

kin(k), (32)
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with velocity power spectrum εα
kin(k) ≡ m

2 〈uα||uα〉(k) given
by

εα
kin(k) = m

2

∫
dd x�d (k, |x|)C[uα, uα](x). (33)

We have arrived at a formulation of the velocity power spec-
trum that may be quickly and accurately evaluated on a
Cartesian grid using a discrete Fourier transform. The inter-
pretation is also straightforward: for any of the position-space
fields uα , there is a spectral density (33) that is equivalent to
an angle-averaged two-point correlation (24) represented in k
space.

B. Kinetic spectral density

In this section we derive a spectral decomposition of the
kinetic energy that does not rely on Parseval’s theorem. Un-
like the Parseval approach, the resulting quantities are true
spectral densities that are locally additive in k space. They
include all quantum phase information and provide a natural
starting point for computing energy fluxes and other measures
of quantum turbulence.

For the total kinetic energy (21), we find the spectral den-
sity in the form

ekin(k) ≡ h̄2

2m
〈∇ψ ||∇ψ〉(k), (34)

equivalent to the integrated two-point correlation function

ekin(k) = h̄2

2m

∫
dd x�d (k, |x|)C[∇ψ,∇ψ](x), (35)

used for fast numerical evaluation. The total kinetic energy
(21) is immediately recovered by integrating (35) over all k
and using (B3). We note that this is also equivalent to the
Fourier representation

Ekin = h̄2

2m

∫
dd k|kφ(k)|2, (36)

where φ(k) is the Fourier transform of ψ (r). In momentum
space we can thus identify the kinetic spectral density as

ekin(k) = h̄2k

2m

∫
d
d |kφ(k)|2, (37)

where we integrate over the k-space solid angle in d di-
mensions. However, the decomposition into compressible,
incompressible and quantum pressure contributions is more
direct in position space; in what follows we primarily use
Eq. (35) for numerical evaluation.

C. Decomposed kinetic-energy density

With Eq. (35) in hand, we can now decompose the total
kinetic-energy density into the kinetic-energy density of the
compressible and incompressible parts, and the quantum pres-
sure.

We retain all phase information and apply a Madelung
transformation (8) and a Helmholtz decomposition. Evaluat-
ing the gradient of ψ in terms of n and �, we find

∇ψ = m

h̄
[wi + wc + wq], (38)

where the imaginary unit and phase factors are absorbed into
the vector fields

(wi, wc, wq) ≡ (iui, iuc, uq )ei�. (39)

Equation (38) contains all information about kinetic energy in
a quantum fluid. We use it here to promote the well-known
semiclassical spectral analysis to a quantum treatment that in-
cludes all phase information. Before we proceed, it important
to note that these fields do not inherit the properties of uα:
due to the quantum phase, we have in general ∇ × wc �= 0,
∇ · wi �= 0, and ∇ × wq �= 0; consequently, the following de-
composition makes no assumptions about compressibility or
otherwise of the w fields, relying only on properties of uα .

Proceeding with our analysis of (34) using the decomposi-
tion (38), we can write the vector convolution in (35) as

h̄2

m2
C[∇ψ,∇ψ](x) =

∑
α,β

C[wα, wβ ](x), (40)

and the complete kinetic spectral density may now be written
as

ekin(k) ≡ ei
kin(k) + ec

kin(k) + eq
kin(k)

+ eic
kin(k) + eiq

kin(k) + ecq
kin(k), (41)

where

eα
kin(k) ≡ m

2

∫
dd x�d (k, |x|)C[wα, wα](x), (42)

eαβ

kin(k) ≡ m

2

∫
dd x�d (k, |x|){C[wα, wβ ](x)

+ C[wβ, wα](x)}. (43)

In this form we use the angle-averaged Wiener-Khinchin
theorem of Appendix B to establish a number of important
properties of the kinetic spectral density.

Using Eq. (B3), the integral of each spectral density gives
[just as we found for the velocity power spectrum (32)]∫ ∞

0
dkeα

kin(k) = m

2

∫
dd r|uα (r)|2 = Eα

kin, (44)

since the exponential phase factors in C[wα, wβ](x) cancel at
x = 0. Moreover, as shown in Appendix C, the coupling terms
all integrate to zero:∫ ∞

0
dkeαβ

kin(k) = 0, α �= β. (45)

We immediately recover the total kinetic energy by inte-
grating over Eq. (41):

Ekin =
∫ ∞

0
dk

[
ei

kin(k) + ec
kin(k) + eq

kin(k)
]
. (46)

This shows two important features of the quantum kinetic-
energy density. First, eαβ

kin(k) does not contribute to the total
energy, but instead redistributes energy between different
scales. These terms hence describe an interaction between
different forms of energy. Second, the quantum phase infor-
mation present in (39) is essential to obtain locally additive
spectral densities in k space [30], required for interpreting
changes in spectra as energy transport phenomena. Neglecting

043322-5



BRADLEY, KUMAR, PAL, AND YU PHYSICAL REVIEW A 106, 043322 (2022)

the quantum phase in (39) imposes a semiclassical approxima-
tion. The formal replacement ei� → 1 is equivalent replacing
quantum spectral densities with semiclassical velocity power
spectra: eα

kin(k) → εα
kin(k). The velocity power spectrum mea-

sures of turbulence thus focus on a reduced set of degrees of
freedom associated with classical turbulence. As such they are
useful for understanding links between quantum and classical
fluids, as explored extensively in previous works [3,33,47].

A spectral density can also be found for the potential and
interaction energy terms using (B8) to correlate the fields√

nV and n respectively:

epot(k) =
∫

dd x�d (k, |x|)C[√
nV ,

√
nV

]
(x), (47)

eint(k) = g

2

∫
dd x�d (k, |x|)C[n, n](x). (48)

Such quantities are automatically locally additive because the
quantum phase factor plays no role in the corresponding term
in (1). Hence, the total system energy can be decomposed into
locally additive spectral densities in k space as

etot(k) = ekin(k) + epot(k) + eint(k), (49)

where ekin(k), defined in Eq. (37), may be further decomposed
using (41), and the coupling terms eαβ

kin(k) are in general non-
vanishing.

IV. APPLICATIONS

We consider three readily accessible systems in which to
apply the spectral analysis, in two dimensions: a pure GPE
ground state in a harmonic trap, a GPE ground state with a
single central vortex, and a GPE ground state with a neutral
vortex distribution. We compute spectral densities and corre-
lation functions. For the first two systems, we also compare
with analytical results.

A. Thomas–Fermi state in a two-dimensional harmonic trap

As a first application we compute a range of spectral den-
sities for the ground state of the GPE in an oblate cylindrical
harmonic trap

V (r) = m

2

[
ω2

r (x2 + y2) + ω2
z z2

]
, (50)

where ωz � ωr . As the ground state contains no velocity field,
all velocity power spectra are zero. Integrating over a tightly
confined z dimension, assumed in the ground state

φ0(z) =
(

1

πa2
z

)1/4

e−z2/2a2
z , (51)

with oscillator length az = √
h̄/mωz, the effective interaction

strength becomes

g2 = g√
2πa2

z

. (52)

For N atoms in such a trap, we use the Thomas–Fermi (TF)
wave function

ψTF(r) =
{√

n0

√
1 − r2/R2 for r � R

0 for r > R.
(53)

for r = (x2 + y2)1/2, peak density n0 = μ/g2, and TF-radius
R = (2μ/mω2

r )1/2. The Thomas–Fermi chemical potential is
then

μ = h̄ωr

(√
8

π

aN

az

)1/2

. (54)

We consider a system of N = 1.21 × 105 87Rb atoms in a
trap with angular frequencies ωz = 2π × 100 Hz, ωr = 2π ×
3 Hz. In units of h̄ωr and ar = √

h̄/mωr , we have μ = 30,
g2 = 0.0233h̄ωra2

r , and the Thomas–Fermi radius and healing
length are R = 7.46ar , and ξ = h̄/

√
mμ = 0.18ar respec-

tively. The system is thus in the Thomas–Fermi regime ξ �
R. In all of our computations, we use a spatial domain of side
length 22ar , with 512 points, so that �x = �y = 0.043ar .
As our reference state is a Thomas–Fermi ground state, we
present our results in units of ξ and μ, and in these units
ar = 5.6ξ , g2 = 0.0239μξ 2, and R = 41.4ξ .

The spectral densities can be calculated analytically for the
kinetic, trap, and interaction energies. We start with the kinetic
term. First we note that as the ground state has no phase
gradient, the kinetic energy is entirely due to ∇√

n; we can
hence compare the analytical kinetic spectral density with the
numerical quantum pressure spectral density. The analytical
results are more easily computed directly in Fourier space,
while numerically we use the expression in terms of the in-
tegrated spatial field correlation. Moving to polar coordinates
and using cylindrical symmetry, we have

ekin(k) = h̄2k2

2m
2πk|φ(k)|2. (55)

We make the Thomas–Fermi approximation, neglecting the
kinetic energy from the BEC boundary at r ∼ R. The pure
TF state has no velocity field contribution to the kinetic en-
ergy and the quantum pressure term is the only nonvanishing
term. Proceeding as in Appendix E, we can write the kinetic-,
interaction-, and potential-energy densities in the form

ekin,TF,a(k) = ε̄F (kR), (56)

eint,TF,a(k) =
( μ

h̄ωr

)2
ε̄G(kR), (57)

epot,TF,a(k) =
( μ

h̄ωr

)2
ε̄H (kR), (58)

where the energy density unit is

ε̄ ≡ h̄2n0πR/m, (59)

and

F (q) ≡ (sin q − q cos q)2/q3, (60)

G(q) ≡ J2(q)2(2/q)3, (61)

H (q) ≡ π2[qJ0(q/2) − 2J1(q/2)]2J1(q/2)2/q3. (62)

In Fig. 1 we compare kinetic-, potential-, and interaction-
energy densities for the Thomas–Fermi analytic results with
numerical energy densities calculated for Thomas–Fermi and
Gross–Pitaevskii solutions. In the TF treatment we should
expect exact agreement between ekin,a(k) found by evaluating
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FIG. 1. Energy densities for Thomas–Fermi and Gross–
Pitaevskii wave functions in units of ε̄. (a) Total kinetic energy,
(b) potential energy, (c) interaction energy. The line at k = 2π/R
shows the wave number associated with the TF radius R.

(56) and ekin,TF(k) computed numerically using the full spec-
tral analysis on the TF wave function, in the form (42). Indeed
we see excellent agreement between these two calculations,
validating our general formulation of spectral analysis. We
also see excellent agreement between the three approaches for
kR � 1, as expected in the TF regime. Note that, in general,
there is no restriction on the spectrum resolution in the in-
frared, in contrast with the binning approach that is strongly
grid limited for small k. In the opposite regime, kR � 1, the
sharp TF boundary generates a Bessel tail which dominates
the spectra. The scale k ∼ 2π/R indicates the transition from
the infrared features to the ultraviolet regime. The analytical
result and the numerical spectral analysis for the TF wave
function are in excellent agreement for all k.

The potential and interaction energy densities decay
much more rapidly with k than the kinetic-energy density,
strongly suppressing energy density beyond k ∼ 2π/R. The
interaction-energy density shows excellent agreement for all
k, while the potential energy agrees well except at the peak
kξ ∼ 0.05. The difference arises from the GP solution having
slightly lower density near r ∼ 0 and higher density near
r ∼ R than the TF state, a feature amplified by the radial
trapping potential.

B. Central vortex: Velocity power spectrum

We now consider a trapped BEC containing a central vortex
of charge 1. The state has a nontrivial velocity field and inter-
esting interactions between incompressible and compressible
energies. We use three different wave functions, as follows:

(1) TF background, ansatz core. We construct a trapped
state containing a central vortex by multiplying a smooth TF
background wave function by an ansatz for the vortex core,
with appropriate healing length for the local density, and the
phase factor for a charge-1 vortex. This gives the Thomas–

FIG. 2. Gross–Piteaveskii ground state in a harmonic trap,
imprinted with a charge-1 vortex: (a) atomic density n(r) =
|ψ (r)|2, relative to the maximum density; (b) quantum phase
� = −(i/2) ln (ψ/ψ∗). The visible domain has side length 22ar =
120.5ξ . (c) Radial slice through the atomic density, relative to the
peak density. (d) Vortex core ansatz χ̃ (r) (64) and exact (numerical)
vortex wave function χ (r) (see text).

Fermi vortex (TFv) approximation to the wave function,

ψTFv,a(r) = ψTF(r)χ̃ (r)eiθ , (63)

where ψTF(r) is given by Eq. (53) and the vortex core is
approximated as

χ̃ (r) ≡ r√
r2 + (ξ/�)2

, (64)

and � � 0.8249 ensures the correct slope at the vortex core
[7]. The core function encodes the rapid variation of the
density over the healing length ξ = h̄/

√
mμ, and eiθ applies

the quantum phase for a charge-1 vortex with winding 2π

around the origin. This state gives an analytically tractable
approximation to the true GPE vortex.

(2) GP ground-state background, GP core. The GPE
ground state for the harmonic trap, found using imaginary
time evolution, is imprinted with a numerically exact GP-
vortex core

ψv (r) ≡ ψGP(r)χ (r)eiθ , (65)

where the core shape χ (r) is found numerically by solving the
single vortex GPE [48] on an infinite domain using a Cheby-
shev basis. Since ξ � R, this approach gives a very accurate
approximation to the GPE vortex ground state; it has also
been used to construct initial states for dipole dynamics, with
negligible compressible energy introduced by the imprinting
[49]. The state ψv (r) is shown in Figs. 2(a)–2(c). In Fig. 2(d)
we show the exact (numerical) vortex radial wave function
χ (r), and the core ansatz wave function χ̃ (r), Eq. (64). The
ansatz has the same asymptotics for r � ξ and r � ξ as the
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GP vortex core but differs slightly in the intermediate region
r ≈ ξ .

We calculate the velocity power spectrum numerically
using Eq. (33) and compare the result with two analytical
approaches.

First, a homogeneous approximation may be found by con-
sidering the vortex core of (63) in a uniform BEC with density
n0 [7]. The velocity power spectrum is

εi
kin,h(k) = πn0ξ

3μF�(kξ ), (66)

where F�(q) = f (q/2�)2/q, and

f (q) = q[I0(q)K1(q) − I1(q)K0(q)], (67)

and Kν (q) and Iν (q) are modified Bessel functions of the
first and second kind, respectively. This velocity power spec-
trum has universal asymptotics in the IR and UV given by
F�(q) → 1/q, and F�(q) → �2/q3, respectively. The former
is the spectrum for an ideal point vortex, while the latter
is the spectrum for a single compressible vortex solution of
the Gross–Pitaevskii equation; the UV k−3 regime is a well-
known property of a single GP-vortex core stemming from the
χ (r) ∼ �r/ξ behavior as r → 0 [7,50].

Second, we can semi-analytically calculate the velocity
power spectrum for ψTFv (r). The density-weighted velocity
field of the central vortex

u(r) = ± h̄
√

n0

m

√
1 − r2

R2

(− sin θ, cos θ )√
r2 + (ξ/�)2

(68)

is entirely incompressible, u(r) ≡ ui(r), due to orthogonality
between density gradient and the (divergence free) velocity
field of a vortex. As shown in Appendix E, the Fourier trans-
form is

ũi(k) = ∓i
h̄
√

n0R

m
(− sin θk, cos θk )T1(kR, ξ/(�R)), (69)

where k = k(cos θk, sin θk ) in polar coordinates, and the re-
maining radial integral is a special case of the integrals

Tn(a, b) ≡
∫ 1

0
dqJ1(aq)qn

√
1 − q2

q2 + b2
, (70)

that are easily evaluated numerically. Note that the angular
behavior of (69) shows that a vortex in position space is also
a vortex in momentum space. We can use Eq. (69) to con-
struct the velocity power spectrum for ψTFv,a(r). Rotational
symmetry means that εi

kin(k) = 2πk(m/2)|ũi(k)|2, giving the
semi-analytic velocity power spectral density

εi
kin,TFv,a(k) = ε̄kRT1(kR, ξ/(�R))2, (71)

where the energy unit is again Eq. (59). As a basic test of the
spectral analysis, in Appendix D we show the spectrum calcu-
lated using Eq. (B8) compared with the analytical result (71).
The results are identical over all scales. Figure 3(a) compares
Eq. (71) with the GP vortex state. The two agree well at scales
less than the system size; in the IR the numerical velocity
power spectrum turns over due to the finite system size. The
semi-analytical result (71) is very close to the numerical result
over the entire scale range, apart from a small deviation in the
range kξ ∼ 1, due to the difference in vortex core shape. In
addition to the different IR behavior, the trapped system also

FIG. 3. Spectral analysis of the central vortex in a trapped BEC:
(a) Velocity power spectrum for the TFv (thick red line), compared
with the result of numerical spectral analysis of the GP vortex (thin
red line). The analytic spectrum for a single vortex in a homogeneous
BEC is shown for comparison [7] (thin blue). The two red curves
agree for kξ � 1 (within the vortex core). (b) Angle-averaged auto-
correlation function of the incompressible velocity computed from
εi

kin(k) using (B10), for the TFv wave function. (c) Kinetic spectral
density of the TFv, GPE, and analytic central vortex states. (d) De-
composed spectral densities of the GP vortex state, and coupling
interaction, compared with the total kinetic spectral density for the
GPE vortex state.

shows oscillations on a scale k ∼ 2π/R, that are not evident
in the homogeneous velocity power spectra. Such oscillations
also occurred in the spectral density shown in Fig. 1 for
the pure TF wave function and are due to the sharp circular
boundary at r = R in combination with cylindrical symmetry.

Velocity power spectra can also be easily mapped to
velocity two-point correlations. Two-point correlations of
vorticity provide a useful characterization of point vortices
[40,41]. Here we calculate a closely related measure ac-
cessible directly from the wave function of a compressible
quantum fluid: the autocorrelation of the incompressible,
density-weighted velocity field ui defined via Helmholtz de-
composition in Sec. II C. From the general expression (B15),
the particular definition here is

gi
kin(r) ≡ 1

C[ui, ui](0)

∫ 2π

0

dθ

2π
C[ui, ui](r), (72)
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where as usual C[u, v](r) is the two-point correlation (B9). To
use the angle-averaged Wiener–Khinchin theorem (B18), we
use 〈u||v〉(k) = εi

kin(k) in Eq. (B10), and with Eqs. (B11) and
(B15), this is simply

gi
kin(r) = 1

Ei
kin

∫ ∞

0
dkJ0(kr)εi

kin(k). (73)

This integral can be evaluated very accurately due to (i) the
flexibility of our k grid in constructing εi

kin(k); (ii) the behavior
in the scale range kξ � 1 is determined by the vortex core
structure εi

kin(k) ∼ k−3, and hence the integral always con-
verges.

The angle-averaged two-point correlator of the incom-
pressible velocity is shown in Fig. 3(b). The velocity field
decorrelates over a scale of order R, becoming weakly anti-
correlated at long range due the circulation of the fluid.

C. Central vortex: Total kinetic energy

We now consider a more physical state consisting of a
GPE ground state with a single central vortex imprinted in
density and phase. The state ψv includes quantum pressure
from the condensate edge, and the compressible vortex core
created using the exact GP numerical solution for the same
background density as occurs in the trap center. To make ana-
lytical progress, we also approximate it using ψva(r), defined
in Eq. (63), which treats the state as a TF background density
with a rational function ansatz for the vortex core.

For the full kinetic spectral density of ψTFv (r), we Fourier
transform the wave function (see Appendix E) to find the
approximate spectral energy density

ekin,TFv,a(k) = ε̄(kR)3T2(kR, ξ/(�R))2. (74)

In Fig. 3(c) we compare the semi-analytical energy spectral
density with the results for the TFv and GP wave functions.
We observe good agreement in the infrared, and the numerical
TFv and analytical results agree well over a wide range of
k. Departure from the GPE spectral density is evident for
k � 1/R. The most obvious contrast with Fig. 1(a) is that
every second peak is suppressed due to vortex lifting the
angular degeneracy. Since the vortex core used to construct
the TF wave function numerically is the true GPE core, the
UV departure is due to the extra kinetic energy at the outer
edge of the condensate, as also observed in Fig. 1(a).

D. Central vortex: Kinetic-energy decomposition

We now decompose the kinetic energy of the central vor-
tex state into compressible, incompressible, and quantum
pressure components. The central vortex state has formally
zero compressible kinetic energy. Applying the Helmholtz
decomposition to a single vortex confirms that the density
weighted velocity field u(r) ≡ ui(r) is entirely incompress-
ible [7]. Moreover, for a central vortex in a cylindrical trap
density and phase gradients are everywhere orthogonal, so
ui(r) · uq(r) = 0. This does not preclude a finite coupling
between quantum pressure and incompressible energy, eiq

kin(k),
that can acquire negative values and so redistributes energy
between different scales as seen in Fig. 3(d). Nevertheless,
as shown in Eq. (45), the total contribution to the energy

found by integrating eiq
kin(k) is always zero, and the total-

energy density computed directly from the wave function
without decomposition, ekin,v (k), agrees exactly with the sum
of incompressible and quantum pressure energy densities,
esum,v (k).

The quantum pressure terms depart for kR � 1, as should
be expected from the sharp feature at the TF boundary, r = R.
The construction of the states means that the vortex core plays
no role in this difference, as in both states the core is the exact
GPE core.

The essential role of the coupling energy between incom-
pressible and quantum pressure components may be observed
in Fig. 3(d). The coupling term eiq

kin(k) serves to redistribute
energy, and must be included in the sum (41) in order to
correctly reproduce ekin(k). In Figs. 3(c) and 3(d) rotational
symmetry breaking appears to suppress every second peak,
relative to Fig. 1(a). In Fig. 3(d) we see the coupling term
eiq

kin(k) redistributing energy between peaks creating the sup-
pression and enhancement of alternate peaks.

E. Vortex distributions

We calculate the energy spectral densities and velocity
power spectra for neutral distributions in the same harmoni-
cally trapped system as considered in the previous section. We
sample three distributions shown schematically in Figs. 4(a)–
4(c), with representative samples after imprinting on the GPE
ground state:

(a) Vortex dipoles distributed uniformly, with random ori-
entations, within a disk r < R◦ = 0.7R. The dipole centroids
are uniformly distributed on the disk, and the dipole length
d = 5.48ξ corresponds to a low-energy dipole gas, Fig. 4(a).

(b) Uniformly distributed vortices, within the same disk
r < R◦, and uncorrelated with respect to both sign and posi-
tion. In a uniform BEC this uncorrelated state, referred to as
the vortex plasma has a universal k−1 velocity power spectrum
[51], as seen in Fig. 4(b).

(c) Sign-polarized and sampled uniformly within two
smaller disks (radius Rc = 0.3R) separated by distance D =
0.8R = 34ξ , corresponding to a high-energy clustered state,
Fig. 4(c).

Each of these states is sampled using suitably scaled and
shifted uniform random variates. We imprint vortices using
the numerically exact (homogeneous) GPE core solution, us-
ing local GPE healing length, and the ideal quantum phase
for a vortex in a homogeneous background density. Individual
sample wave functions in the three regimes are shown in
Fig. 4.

We calculate velocity power spectrum, Eq. (20), once again
using the convolution expression (33). The velocity power
spectra for the incompressible velocity, averaged over Ns =
50 samples, are presented in Fig. 5(a). The notable features
are (i) the k−3 ultraviolet region, associated with the core of a
single planar quantum vortex core [7,50,52]; (ii) the extended
≈k−1 region for the plasma phase [51–53]; and (iii) a signifi-
cant increase in the velocity power spectrum in the infrared as
the state proceeds from dipole gas to clustered.

Starting from the numerically accurate spectra shown in
Fig. 5(a), we compute the velocity autocorrelation using the
exact mapping (B18), to give the results shown in Fig. 5(b).

043322-9



BRADLEY, KUMAR, PAL, AND YU PHYSICAL REVIEW A 106, 043322 (2022)

FIG. 4. (top) Schematic of regimes for neutral planar quantum
vortex distributions in a disk domain r < R◦. (a) Dipole gas with
dipole centroids uniformly distributed on the disk, angles uniform on
[0, 2π ), and fixed dipole length d � R◦. (b) Plasma with vortices
uniformly distributed on the disk of radius R◦. (c) Clustered distri-
bution where vortices of each sign are distributed in smaller discs
of radius Rc < R◦, with centers separated by D. For each regime we
show the atomic density (middle) and quantum phase (bottom) of the
wave function for a single sample. See text for parameters; spatial
regions and color maps are defined in Fig. 2.

This provides a compact representation of incompressible
velocity correlations for the system. The dominant velocity
correlation length scales can be seen clearly: the dipole gas
spatial correlations decay over scale ξ � d � R◦; the plasma
phase has velocity correlations decaying over the scale ≈R◦,
the size of the distribution; the clustered phase develops ve-
locity anticorrelations peaked at the cluster separation scale
≈D.

V. CONCLUSIONS

We have developed a spectral analysis for compressible
quantum fluids that includes all quantum phase information
and clearly distinguishes between velocity power spectral
densities and energy spectral densities. Focusing on the
example of a Gross–Pitaevskii fluid, we have obtained well-
resolved and numerically accurate angle-averaged quantities
in momentum space and tested against analytical results for
a central vortex in a 2D harmonic trap. Our treatment pro-
vides a decomposition into compressible, incompressible, and
quantum pressure contributions for energy spectral densities
and velocity power spectra. The latter are standard measures
of quantum turbulence [3,7] that have a classical origin and
explain energy fluxes in incompressible classical fluids. In

FIG. 5. (a) Velocity power spectra of the incompressible velocity
field for dipole gas, plasma, and clustered vortex distributions. The
gray lines show k−1 and k−3 power laws for comparison. (b) Angle-
averaged autocorrelation of the incompressible velocity, Eq. (73), for
dipole gas, plasma, and clustered distributions.

compressible quantum fluids the former are required for a full
account of energy transport, and e.g., rigorous definition of
energy fluxes. A complete treatment of energy transport in
scale space for compressible quantum fluids in a range of flow
scenarios offers an interesting future direction.

The semi-analytically tractable two-dimensional vortex
state provides a strong test of spectral analysis and allowed
verification of local additivity of energy spectral densities.
High-resolution velocity power spectra also allow conve-
nient evaluation of angle-averaged velocity autocorrelation
functions, providing sufficient information in the infrared to
give an accurate reconstruction in position space. Represen-
tative vortex distributions show the qualitative value of such
correlations as a system-wide representation of significant
correlation lengths for the dipole gas, plasma, and clustered
phases of neutral quantum vortices. It would be very interest-
ing to apply these measures to a broader class of vortex or
phonon-dominated flows.

We have focused on kinetic-energy spectra due to their
importance in quantum turbulence studies. However, the to-
tal kinetic-energy spectrum is essentially equivalent (up to a
polynomial factor) to the occupation number per mode n(k),
the central quantity in the study of nonthermal fixed points
[54,55]. High-resolution spectral analysis may also address a
similar challenge faced in computing the superfluid fraction
at finite temperature via momentum correlations [56]. Our
approach also offers a pathway for robust calculation of en-
ergy fluxes in quantum fluids, central to measures of turbulent
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cascades [8,23,29,57]. The spectral analysis developed here
offers a quantitative path to address the question: what is truly
quantum in quantum turbulence?
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APPENDIX A: HELMHOLTZ DECOMPOSITION

The decomposition may be carried out in momentum space
by the projection parallel and orthogonal to the radial unit
vector k̂ ≡ k/|k|. Defining

ũ(k) ≡ 1

(2π )d/2

∫
dd re−ik·ru(r) = F (u), (A1)

for a general vector field, the decomposition is written in
momentum space as

ũc
i (k) =

∑
j

kik j

k2
ũ j (k),

ũi
i(k) =

∑
j

(
δi j − kik j

k2

)
ũ j (k), (A2)

where δi j is the Kronecker delta, u(i,c)(r) = F−1(ũ(i,c) ), and
subscripts refer to Cartesian components i ∈ {1, . . . , d}. The
incompressible or longitudinal component is associated with
quantum vortices. The compressible or transverse component
is associated with density variations, including Bogoliubov
quasiparticles in the small-fluctuation limit.

APPENDIX B: ANGLE-AVERAGED WIENER–KHINCHIN
THEOREM

The angle-averaged Wiener–Khinchin theorem is most
clearly and generally formulated by considering the inner
product of two vector fields u(r) and v(r) in n dimensions,
expressed in Fourier space as

〈u|v〉 =
∫

dd k〈u|k〉〈k|v〉. (B1)

We emphasize that the bra-ket notation used here is con-
venient for expressing basis changes, but should only be
interpreted in the pure-state sense with respect to the wave
function, as is standard in mean-field theory; our approach can
be generalized beyond mean-field theory via truncated Wigner
or other semiclassical quantum Monte Carlo methods [58].
We can write Eq. (B1) more usefully by expanding the Dirac
delta as

〈u|v〉 =
∫

dd k
∫

dd r
∫

dd r′〈u|r′〉〈r′|k〉〈k|r〉〈r|v〉. (B2)

The Dirac δ function can be evaluated in Fourier space by
integrating over the relevant k-space (solid) angle to give

δ(d )(r − r′) =
∫

dd k〈r′|k〉〈k|r〉

=
∫ ∞

0
dk�d (k, |r − r′|), (B3)

where

�d (k, r) ≡
{

1
2π

kJ0(kr) for d = 2
1

2π2 k2sinc(kr) for d = 3,
(B4)

and sinc(x) ≡ sin (x)/x. We can thus write the inner product
as

〈u|v〉 =
∫ ∞

0
dk〈u||v〉(k), (B5)

where the spectral density of the inner product is defined as

〈u||v〉(k) ≡
∫

dd r
∫

dd r′�d (k, |r − r′|)〈u|r′〉〈r|v〉. (B6)

The change of variables

R = 1
2 (r + r′), x = r − r′, (B7)

with unit Jacobian, gives

〈u||v〉(k) ≡
∫

dd x�d (k, x)C[u, v](x), (B8)

where

C[u, v](x) ≡
∫

dd R〈u|R − x/2〉〈R + x/2|v〉 (B9)

is the two-point correlation function of the vector fields (24).
Equation (B8) is the main result of this Appendix and forms
the basis of an accurate spectral analysis developed in this
work. We now use this formulation to develop a formal map-
ping between spectral density and system averaged two-point
correlations.

Two special cases are worth emphasizing. First, at x =
0, the correlation reduces to the vector inner product
C[u, v](0) ≡ 〈u|v〉. Second, for any two vector fields that are
orthogonal everywhere in momentum space the correlation
vanishes, C[u, v](0) ≡ 0, at x = 0. We prove this property
in Appendix C and use it in Sec. III C where we analyze the
spectral energy densities.

In each spatial dimensionality there is a well-defined
inversion operation that transforms the spectrum to an angle-
averaged two-point correlation function in position space. The
inverse is defined as

Guv (r) ≡
∫ ∞

0
dk�−1

d (k, r)〈u||v〉(k), (B10)

with inverse kernel

�−1
d (k, r) ≡

{
J0(kr) for d = 2
sinc(kr) for d = 3,

(B11)

as follows immediately from the closure relations for Bessel
and sinc functions∫ ∞

0
dkkJ0(kr)J0(kr′) = 1

r
δ(r − r′), (B12)
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∫ ∞

0
dkk2sinc(kr)sinc(kr′)

= π

2r2
δ(r − r′) + π

2r2
δ(r + r′). (B13)

Using the closure relations and the spectral density (B8), in
cylindrical and spherical coordinates, we evaluate (B10) to
arrive at the angle-averaged correlation functions in the form

Guv (r) = 1


d

∫
dd r′δ(r − |r′|)C[u, v](r′), (B14)

where 
d = ∫
d
d is the total solid angle in dimension d . In

detail, for d = 2, 3 we have

Guv (r) = 1

2π

∫ 2π

0
dθC[u, v](r cos θ, r sin θ ), (B15)

and

Guv (r) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

× C[u, v](r sin θ cos φ, r sin θ sin φ, r cos θ ),
(B16)

respectively. This establishes the formal connection between
the inverse Eq. (B10) and the angle-averaged two-point cor-
relation function in position space. The two-point correlation
may be computed conveniently by first calculating the power
spectral density (B8) with high resolution, and then using the
definition (B10) to transform to position space. The value
of Guv at r = 0 stems from the inner product, and does not
provide any useful information about correlations for r �= 0.
We can choose the normalization guv (0) = 1, in which case
we work with

guv (r) ≡ Guv (r)

C[u, v](0)
= Guv (r)

Guv (0)
. (B17)

In summary, for any two vector fields u, v, we use the def-
initions (B8), (B4), and (B10), (B11), (B14) to construct an
angle-averaged power spectrum in k space, and a correspond-
ing angle-averaged two-point correlation function in position
space

(u, v) −→ 〈u||v〉(k) ←→ guv (r), (B18)

where the first mapping, Eq. (B8), is a Fourier transform
followed angular integration in k space, and the second,
Eq. (B10), is the Fourier relation between the k and r vari-
ables. Our analysis amounts to an explicitly angle-averaged
formulation of the standard Wiener-Khinchin theorem linking
power spectra with correlations.

APPENDIX C: VANISHING OF COUPLING TERM
CONTRIBUTIONS TO THE TOTAL ENERGY

We show that the coupling terms integrate to zero. For
eic

kin(k), using Eq. (B3) gives∫ ∞

0
dkeic

kin(k) = m

2

∫
dd xδ(d )(x){C[wi, wc](x)

+ C[wc, wi](x)}
= mRe{C[ui, uc](0)}. (C1)

Although the fields are not in general orthogonal in position
space, in momentum space they are always orthogonal due
to the Helmholtz decomposition. For the special case of an
incompressible and compressible field, the correlation in (C1)
is identically zero: from (B9), using the standard complete-
ness and orthogonality relations for position and momentum
eigenstates, we have

C[ui, uc](0) =
∫

dd R〈ui|R〉〈R|uc〉

=
∫

dd R
∫

dd k
∫

dd k′

× 〈ui|k〉〈k|R〉〈R|k′〉〈k′|uc〉

=
∫

dd k
∫

dd k′〈ui|k〉〈k|k′〉〈k′|uc〉

=
∫

dd k〈ui|k〉〈k|uc〉

=
∫

dd kui(k)∗ · uc(k) = 0, (C2)

since these fields are orthogonal in momentum space by con-
struction. For eiq

kin(k) we have∫ ∞

0
dkeiq

kin(k) = m

2

∫
dd xδ(d )(x){C[wi, wq](x)

+ C[wq, wi](x)}
= mIm{C[ui, uq](0)} = 0. (C3)

Here the result follows from the fact that the correlator of real-
valued fields is always real valued (the fields are not strictly
orthogonal in any space).

∫ ∞
0 dkecq

kin(k) = 0 follows similarly.

APPENDIX D: NUMERICAL CONVERGENCE
OF SPECTRA

One test of numerical accuracy would be to compare our
results with approximate spectra computed using binning into
annular regions of k space. However, since we can compute
the spectrum at any k values using Eq. (B8), we instead
examine the maximum relative error over a range of k, as
tested against the analytical result (71). This offers a much
more exacting test of the numerical spectral analysis. We
show that the numerically computed spectrum for ψTFv (r)
converges to the analytical spectrum εi

kin,TFv,a(k) for all k
including in UV region of the vortex core. In Fig. 6(a) we
show the analytical velocity power spectrum, compared with
the numerically computed spectrum for Nx = Ny = N = 256
points and N = 512 points. Over most of the scale range the
error is small, and it only becomes significant inside the vortex
core where kξ � 1, as seen for N = 256. In Fig. 6(b) we show
the relative error in the IR regime, and the UV regime (also
the maximum over the entire range of k). The relative error
is always small in the IR. It convergences uniformly with
increasing N in the UV region, despite the amplification in
the vortex core due to the very small values of εi

kin,TFv (k). For
N � 512, even the UV relative error is small, corresponding
to choosing a grid with at least four points per healing length.
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FIG. 6. Thomas–Fermi state with ansatz core: (a) Velocity power
spectra showing the analytical result with numerical spectra for two
different grid point densities on the same spatial domain shown in
Fig. 2. (b) Relative error in the IR and UV regions as a function of
grid point density on the same domain, over the interval of k shown in
panel (a). The reported UV error is also the maximum relative error
for all k. The IR error is the constant relative error that is rapidly
approached for kξ � 1.

Two points per ξ achieves very good spectral resolution for
kξ � 1.

APPENDIX E: THOMAS–FERMI INTEGRALS

From the Thomas–Fermi wave function for the ground
state, Eq. (53), we compute Fourier transforms of the GPE
energy terms using cylindrical symmetry:

Epot =
∫

d2rV (r)|ψ |2 =
∫

d2k| f (k)|2, (E1)

Eint = g

2

∫
d2k|ñ(k)|2, (E2)

where

φ(k) = 1

2π

∫
d2re−ik·rψ (r) =

√
μ

g
R2I1(kR), (E3)

f (k) ≡
∫

d2r
2π

e−ik·r√V (r)n(r) =
√

mω2μ

2g
R3I2(kR), (E4)

ñ(k) ≡ 1

2π

∫
d2re−ik·rn(r) = n0R2I3(kR), (E5)

and the integrals are

I1(a) =
∫ 1

0
dqJ0(aq)q

√
1 − q2 = sin a − a cos a

a3
, (E6)

I2(a) =
∫ 1

0
dqq2

√
1 − q2J0(aq)

= π

2a2
[aJ0(a/2) − 2J1(a/2)]J1(a/2), (E7)

I3(a) =
∫ 1

0
dqJ0(aq)q(1 − q2) = 2J2(a)

a2
. (E8)

Using these integrals, we arrive at the expressions (56)–(58).
To compute the velocity power spectrum for ψTF,v (r), we

want to find the Fourier transform of the density-weighted
velocity field ũi(k), defined in (68). In cylindrical polar co-
ordinates k = k(cos θk, sin θk ), k · r = rk cos(θ − θk ), and we
have

ũi(k) = ±
√

n0 h̄

m

∫ R

0
dr

r
√

1 − r2/R2√
r2 + (ξ/�)2

× 1

2π

∫ 2π

0
dθe−ikr cos (θ−θk )(− sin θ, cos θ ). (E9)

Using the Bessel integrals

1

2π

∫ 2π

0
dθe−iβ cos (θ−φ)

{
cos θ

sin θ
= −iJ1(β )

{
cos φ

sin φ,
(E10)

and changing variables to q = r/R, we arrive at Eq. (69).
We complete this Appendix with a derivation of the

kinetic-energy density of a TF state containing a vortex,
Eq. (74). Using the definition Eq. (55), we start by Fourier
transforming the TFv wave function

φva(k) = 1

2π

∫
d2re−ik·rψva(r)

= √
n0

∫ R

0
dr

r2√
r2 + (ξ/�)2

√
1 − r2

R2

× 1

2π

∫ 2π

0
dθe−ikr cos (θ−θk )+iθ . (E11)

Using Eq. (E10) and changing variables to q = r/R gives

φva(k) = −i
√

n0R2
∫ 1

0
dq

q2
√

1 − q2√
q2 + (ξ/�R)2

J1(kRq)

= −iR2√n0T2(kR, ξ/(�R)). (E12)

Using cylindrical symmetry, we have

εkin,TVv,a(k) = 2πk(h̄2k2/2m)|φTFv,a(k)|2, (E13)

and we arrive at Eq. (74).
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