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Classical route to ergodicity and scarring phenomena in a two-component Bose-Josephson junction
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We consider a Bose-Josephson junction (BJJ) formed by a binary mixture of ultracold atoms to investigate
the manifestation of coherent collective dynamics on ergodicity and quantum scars, unfolding the connection
between them. By tuning the inter- and intraspecies interaction, we demonstrate a rich variety of Josephson
dynamics and transitions between them, which plays a crucial role in controlling the overall ergodic behavior.
The signature of underlying classicality is revealed from the entanglement spectrum, which also elucidates the
formation of quantum scars of unstable steady states and of periodic orbits leading to athermal behavior. The
degree of ergodicity across the energy band and scarring phenomena can be probed from the autocorrelation
function as well from the phase fluctuation of the condensates, which has relevance in cold atom experiments.
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I. INTRODUCTION

Coherent collective dynamics in a quantum many-body
system is a fascinating phenomenon. It attracts considerable
interest since the realization of Bose-Josephson junctions
(BJJ) formed by coupling two atomic Bose-Einstein con-
densates (BECs) in a double-well trap [1–7]. The interplay
between phase coherence of the BECs and interparticle in-
teraction can lead to various nonlinear oscillations [8–14],
quantum transitions [5,7,15], phase diffusion [6,16–18], and
onset of chaos [19,20]. Moreover, cold atom systems are an
ideal platform to study such out-of-equilibrium phenomena of
many-body systems [21–27].

To date, a complete understanding of ergodicity and devi-
ations from it in an interacting quantum systems remains a
challenging issue. To shed light on it, the eigenstate thermal-
ization hypothesis (ETH) [28–30] has been put forward, and
its connections with the random matrix theory (RMT) has also
been explored [31–35]. However, deviation from ergodicity
and the violation of ETH has also drawn a lot of interest in
the recent years [36,37]. In this context, a recent experiment
on a chain of strongly interacting Rydberg atoms reveals that,
even in the ergodic regime, a special choice of initial states
exhibits nonthermal and revival behavior [38]. This has been
attributed to many-body quantum scars (MBQSs) [39–44],
which has also been studied theoretically in other interacting
models [45–59]. The concept of a quantum scar was originally
introduced for single-particle states as the enhancement of
spectral density near a quantum state whose corresponding
classical orbit is unstable [60]. However, such correspondence
in a generic many-body system is not obvious due to the
absence of a phase-space description.

This raises the question of a possible connection between
underlying classicality and ergodicity of an interacting sys-
tem, which can unveil an alternate route to ergodicity as well
as to the formation of scars. To address this issue, we con-
sider an experimentally realizable setup of a two-component

BJJ [61–65], where its phase coherence and collective na-
ture can pave the way to explore such a connection. In this
work, we demonstrate how a rich variety of steady states can
influence the overall ergodicity of a BJJ, as summarized in
Fig. 1. To investigate the route to ergodicity and its deviation,
we explore the entanglement properties of such a bipartite
system in detail. Apart from entanglement entropy, the entan-
glement spectrum (ES) can also unveil the various features
of a many-body system starting from its topological aspects
to many-body localization [66–68]. In the present work, we
demonstrate how the underlying classicality can also be un-
folded from the ES, which elucidates the quantum scarring
phenomena. Such a feature of the ES can also provide a
deeper understanding of the use of the time-dependent matrix
product states with reduced dimensionality, which can shed
light on the formation of MBQSs in a generic many-body
system [41,43]. Finally, we discuss the methods to probe the
energy-dependent ergodicity and scarring phenomena in this
experimentally realizable setup.

The rest of the paper is organized as follows: We describe
the model for two-component BJJs in Sec. II and analyze the
different branches of Josephson dynamics, their stability, as
well as transitions between them in Sec. III. In Sec. IV, the
manifestation of underlying classicality in quantum ergodicity
is discussed through spectral statistics and bipartite entan-
glement. Next, we investigate the quantum scars of unstable
fixed points and periodic orbits in Sec. V. In Sec. VI, we
discuss the methods to detect the scars as well as probe the
energy-dependent ergodicity by using autocorrelation func-
tion and phase diffusion. Finally, we summarize our results
and conclude in Sec. VII.

II. THE MODEL

The BJJ formed by a binary mixture of ultracold bosons
with equal population N of each component can be described
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FIG. 1. Collective dynamics and ergodicity: (a) Steady-state
phase diagram as a function of interaction strengths U and V where
the phase boundaries are obtained from the stability analysis; see
the text for details. The shaded regions denote the stability of the
“π0 mode” (dark magenta) and the AST state (light blue). The
AST state becomes unstable in the white region (triangular area).
(b) Schematics of spin orientation corresponding to different steady
states (FP). Degree of ergodicity, quantified from the average (c) Lya-
punov exponent �̄L and (d) ratio of level spacing 〈r〉, is shown as a
color scale in the U -V plane [71]. The lines carry the same meaning
as in panel (a). (e) Entanglement entropy Sen of the eigenstates scaled
by the page value Smax [72] at energy density E , with increasing V
at U = 0.8. The solid (dashed) lines denote stable (unstable) FPs
mentioned in the figure. For panels (d) and (e), S = 40. Here and
in all other figures, the inter(intra)-species interaction strength V (U )
and energy E are measured in units of hopping amplitude J . We set
h̄, kB = 1.

within a two-mode approximation [8] by the Hamiltonian

Ĥ =
∑
i,α

[
−J

2
â†

i,α âi,ᾱ + U

2N
n̂i,α (n̂i,α − 1) + V

2N
n̂i,α n̂ī,α

]
.

(1)
The first two terms represent a two-site Bose-Hubbard model
with on-site interaction strength U and hopping amplitude J
between the two sites denoted by α ∈ {L, R} (ᾱ �= α), where
âi,α (â†

i,α) represents the annihilation (creation) operator of the
two species of bosons indexed by i ∈ {1, 2} (ī �= i). The third
term describes the interspecies interaction of strength V . We
set h̄, kB = 1 and scale energy (time) by J (1/J ).

This Hamiltonian of a two-component BJJ can be written
as a generalized coupled-top model [69,70] describing two
large interacting spins [see Appendix A for the derivation],

Ĥ = −Ŝ1x − Ŝ2x + U

2S

(
Ŝ2

1z + Ŝ2
2z

) + V

S
Ŝ1zŜ2z, (2)

where the spin components of each species with magnitude
S = N/2 are written as Ŝix = ∑

α â†
iα âiᾱ/2 and Ŝz = (n̂iL −

n̂iR )/2, within the Schwinger-boson representation.

III. CLASSICAL DYNAMICS AND STEADY STATES

For large spins, S �1, the spin operators can be treated
as the components of the classical spin vector, �Si =
S(sin θi cos φi, sin θi sin φi, cos θi ). Consequently, the Hamil-
tonian in Eq. (2) can be written in terms of the canonically
conjugate variables φ, z = cos θ as

Hcl =
∑

i

(
−

√
1 − z2

i cos φi + U

2
z2

i

)
+ V z1z2. (3)

Note that the classical Hamiltonian Hcl is scaled by S, and
the corresponding classical energy E is equivalent to the
quantum-mechanical energy density En/S, where En are the
energy eigenvalues of Ĥ in Eq. (2). The corresponding classi-
cal equations of motion (EOM) are given by

żi = −
√

1 − z2
i sin φi, φ̇i = zi cos φi√

1 − z2
i

+ Uzi + V zī. (4)

Here, zi and φi denote the population imbalance (niL − niR)/N
and the relative phase between the condensates on the two
sites for each atom-species i. The resulting rich variety of col-
lective Josephson dynamics can be demonstrated on a Bloch
sphere using the spin representation [5,61]. We investigate
them by analyzing the fixed points (FPs) of the above EOM.
A stability analysis performed around the FPs, {z∗

1, z∗
2, φ

∗
1 , φ∗

2 }
reveals transitions between the steady states, as discussed
below.

The symmetry-unbroken ground state, FP-I: {z∗
1,2 =

0, φ∗
1,2 = 0} with energy density E = −2, becomes unsta-

ble when V � U + 1 [dotted-line in Fig. 1(a)], undergoes a
quantum phase transition (QPT) and bifurcates to the twofold
degenerate, antiferromagnetic ground state FP-III: {z∗

1 =
−z∗

2 = ±[1 − 1/(U − V )2]1/2, φ∗
1,2 = 0} with E = 1/(U −

V ) + U − V . Similarly, the highest excited state, FP-II:
{z∗

1,2 = 0, φ∗
1,2 = π} with E = 2, becomes unstable when V �

−U + 1 [dashed-line in Fig. 1(a)] and undergoes a dynamical
transition (DT), giving rise to symmetry-broken ferromag-
netic states, FP-IVA: {z∗

1,2 = ±[1 − 1/(U + V )2]1/2, φ∗
1,2 =

π} with E = 1/(U + V ) + U + V , see Fig. 1(b). In the con-
text of BJJ, the ferromagnetic and antiferromagnetic orders
indicate the same and opposite density imbalance with equal
magnitude, respectively, corresponding to the two atomic
species [61]. FP-IVA represents a self-trapped state [5,10,11]
with equal imbalance of both the species.

Additionally, there are two important classes of steady
states which include FP-V: {z∗

i = z∗̄
i = 0, φ∗

i = 0, φ∗̄
i = π}

(i �= ī) with E = 0. We call these states “π0 modes,” describ-
ing the interspecies phase difference π , which is represented
by an angle between the two spins, see Fig. 1(b). It re-
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mains stable in the region V < U < (V 2 + 1)1/2 [magenta
region in Fig. 1(a)] and becomes unstable across the line
U = (V 2 + 1)1/2 (dash-dotted line), bifurcating to “asymmet-
ric self trapped” (AST) states, denoted FP-VI: {|z∗

i | < |z∗̄
i | �=

0, φ∗
i = 0, φ∗̄

i = π} with unequal imbalance |z1| �= |z2| and
E > 0. This state remains stable in the light-blue region of
the phase diagram shown in Fig. 1(a), whereas it becomes
unstable in the white region (triangular area) in between the
stable regions. Note that, in this white region, apart from
the unstable AST state, there also exists other stable steady
states: FP-I, IVA, as well as unstable steady states: FP-II,
FP-V (π0 mode) at different energies. The spin orientations of
FPs are summarized in Fig. 1(b). Next we ask, how such rich
steady-state structure and the underlying collective dynamics
influence the overall ergodicity of the system and what is
the signature of emergence of such classicality in quantum
dynamics?

IV. FROM CLASSICAL TO QUANTUM ERGODICITY

In this section, we demonstrate the manifestation of un-
derlying classicality on the overall quantum ergodicity. To
quantify the degree of chaos, we compute the Lyapunov ex-
ponent (LE) [73,74] and obtain its mean value �̄L averaged
over an ensemble of phase-space points. The overall chaotic
behavior in the U -V plane is displayed by �̄L as a color scale
plot in Fig. 1(c).

A. Spectral statistics

In the quantum domain, the signature of chaos is studied
from spectral statistics of the Hamiltonian in Eq. (2). We sort
the eigenvalues En belonging to a particular symmetry sector
of Ĥ [see Appendix C]. To probe the degree of chaos, we
compute the average level-spacing ratio [75], namely,

〈r〉 = 〈min(δn, δn+1)/max(δn, δn+1)〉, (5)

where δn = En+1 − En. In terms of 〈r〉, chaoticity is por-
trayed in the U -V plane [cf. Fig. 1(d)]. In the classically
regular regime, the level-spacing distribution follows Poisson
statistics with 〈r〉 ≈ 0.386 [76]. With increasing degree of
chaoticity, 〈r〉 increases and finally approaches to 〈r〉 ≈ 0.529
in the completely chaotic regime [76], where the underlying
distribution of δn approaches Wigner-Surmise [77].

Remarkably, the map of dynamical chaos based on �̄L

retains its fingerprints at the quantum level obtained from
〈r〉, see Figs. 1(c) and 1(d). As expected, BJJ exhibits regular
dynamics for weak interactions, whereas with increasing V , a
crossover to chaos occurs when V > U + 1. Interestingly, the
stability of the π0 mode has a dramatic impact on the overall
ergodicity of the BJJ, as evident from comparatively lower
values of �L and 〈r〉 [cf. Figs. 1(c) and 1(d)]. With increasing
U , a mixed phase-space behavior is observed above the region
of stability of the π0 mode [see Fig. 1(c)], where small regular
islands form within the chaotic sea.

B. Energy-dependent ergodicity and mixed phase space

We also investigate the ergodic behavior of different eigen-
states |ψn〉 across the energy band from relative entanglement
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FIG. 2. Energy-dependent degree of ergodicity: Poincaré sec-
tions at z2 = 0 plane for (a) E = −1.0 and (b) E = 0.0, for U = 0.8
and V = 1.2. (c), (d) Color-scaled plots of time-averaged devia-
tion of EE 	Sen from the ergodic limit for initial coherent states
representing the same phase-space points in panels (a) and (b), re-
spectively. For quantum calculations, we set S = 30.

entropy (EE) Sen/Smax, where

Sen = −Tr(ρ̂S lnρ̂S ) (6)

is computed from the reduced density matrix ρ̂S =
TrS̄ |ψn〉〈ψn| obtained by tracing out the other spin (S̄ �=
S ). The degree of ergodicity is maximum at the center
of the energy band with E ≈ 0 compared with the band
edges, indicating an energy-dependent ergodic behavior [see
Fig. 1(e)]. Such behavior is also observed near a delocaliza-
tion to localization transition across the many-body mobility
edges [78,79]. The maximum value of EE corresponding to a
completely random state is given by [72]

Smax = ln(2S + 1) − 1/2. (7)

In the fully chaotic regime, EE approaches its maximum limit
(Sen 
 Smax) at the band center.

To analyze such a dynamical route to the ergodic behavior,
we first plot the Poincaré sections at z2 = 0 for different ener-
gies [cf. Figs. 2(a) and 2(b)]. In the quantum domain, we time
evolve the initial coherent states |ψc〉 = |z1, φ1〉 ⊗ |z2, φ2〉,
where |z, φ〉 represents the spin coherent state given by [80]

|z, φ〉 =
(

1 + z

2

)S

exp

√
1 − z

1 + z
eiφ Ŝ−|S, S〉, (8)

which provides a semiclassical description of phase-space
points. Using the time-evolved state, we compute devia-
tion of the late-time-averaged EE from its maximum limit,
namely, 	Sen = |S̄en − Smax|/Smax. As evident from Figs. 2(c)
and 2(d), the regular (chaotic) regions give higher (lower)
	Sen, revealing the underlying classicality as well supporting
the energy-dependent ergodic behavior.
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FIG. 3. Quantum scars of π0 mode: (a)Variation of time-
averaged eigenvalue gap 	λ (left axis) and instability exponent �I

scaled by J (right axis) are shown for the π0 mode with increasing V .
(b) Entanglement spectrum (ES) for eigenstate containing the scar of
the π0 mode exhibiting a gap 	λ (black circles), and for an arbitrary
ergodic eigenstate (green crosses). In the inset, Husimi distribution
Q(z1, φ1) of the reduced density matrix ρ̂ tr

S corresponding to largest
eigenvalues marked by the red circle for the scarred eigenstate.

C. Underlying classicality from entanglement spectrum

To study the signature of classicality in quantum dynam-
ics, we focus our discussion on the π0 mode. We time
evolve the initial coherent state |π+〉 = 1√

2
(|0, 0〉 ⊗ |0, π〉 +

|0, π〉 ⊗ |0, 0〉) describing the π0 mode for sufficiently long
time and study the “entanglement spectrum” (ES) of the final
state |ψ (t )〉. The ES represents the eigenvalues {λν} of the
reduced density matrix,

ρ̂S =
∑

ν

λν |ν〉S〈ν|S, (9)

which is obtained from the Schmidt decomposition of |ψ〉 =∑
ν

√
λν |ν〉S ⊗ |ν〉S̄ . In the weak-interaction regime, for the

stable π0 mode, only a few eigenvalues are significantly larger
compared with others with a gap 	λ. Such structure of ES
justifies the validity of the product state in the weak-coupling
regime, capturing the classical dynamical behavior. In con-
trast, the ES of an arbitrary ergodic state is extended and
the eigenvalues {λν} are distributed without any significant
gap 	λ, which follows the “Marchenko-Pastur distribution”
corresponding to random matrix theory [81]. Such behavior
can be observed in a strongly chaotic system [82]. In the
intermediate regime, we observe that the ES contains a few
large eigenvalues separated from the extended tail by a gap
	λ [see Fig. 3(b)]. The distribution of eigenvalues in the tail
part approaches that of a random state. On the other hand,
the reduced density matrix constructed from the few large
eigenvalues of ES contains the underlying classical structure
of phase space. To investigate the dynamical signature of
stability of the π0 mode, we compute the time-averaged gap
	λ for the final state |ψ (t )〉 with varying V and compare it
with the classical instability exponent �I obtained from sta-
bility analysis [see also Appendix B]. As seen from Fig. 3(a),
	λ decays with increasing V in the stable regime and a dip
appears at the point of instability of the π0 mode. Even after
the instability of the π0 mode, a few significantly large eigen-
values with a gap 	λ still persist in the ES [see Fig. 3(a)],
which retain the memory of the π0-mode, leading to the for-
mation of quantum scars. However, as the system approaches
the completely chaotic regime, the instability exponent of the

π0 mode grows rapidly. Consequently, the gap 	λ vanishes
as the distribution of eigenvalues {λν} approaches that of a
Marchenko-Pastur distribution.

V. QUANTUM SCARS

In this section, we investigate the quantum scarring phe-
nomena which arises as a reminiscence of an unstable fixed
point and a periodic orbit. In the unstable regime of the
π0 mode, we identify the scarred eigenstates |ψn〉 from a
significant overlap with the coherent state |π+〉 representing
the π0 mode, |〈ψn|π+〉|2 � 1/N , where N = (2S + 1)2 is
the system size. To illustrate the classicality of such scarred
states, we construct a truncated reduced density matrix ρ̂ tr

S
corresponding to a few large eigenvalues in ES and compute
the Husimi distribution,

Q(z, φ) = 1

π
〈z, φ|ρ̂ tr

S |z, φ〉, (10)

which exhibits a localized phase-space density around FP-V
(π0 mode), indicating the scarring phenomena [cf. Fig. 3(b),
inset]. Additionally, there is another symmetry-broken antifer-
romagnetic state “FP-IVB,” that exhibits scarring phenomena
in the unstable regime, which is discussed in detail in Ap-
pendix E.

Apart from the fixed points, we also analyze the scars
of periodic orbits in the most ergodic regime near E ≈ 0.
From EOM, we identify two classes of dynamics belonging to
Class-I: {z1 = −z2, φ1 = −φ2} and Class-II: {z1 = z2, φ1 =
φ2}, for which the dynamics is restricted in the respective
subregions of the available phase space, containing two types
of periodic orbits [see Appendix D for details]. From stability
analysis, we obtain a region in the parameter space where the
Class-II orbits remain stable while the Class-I orbits become
unstable, see Fig. 4(a). Correspondingly, we observe a few
eigenstates in the ergodic regime (E ≈ 0) maximally deviate
from the Gaussian orthogonal ensemble (GOE) limit of the
Shannon entropy, see Fig. 4(b). Interestingly, from among
these deviated states, we identify the eigenstates bearing the
scars of unstable orbits coexisting with those containing the
image of the stable orbits, as evident from their respective
Husimi distributions shown in Figs. 4(c) and 4(d). Moreover,
the scarred eigenstates exhibit a few significantly large eigen-
values separated from the rest by a gap 	λ in the ES [see
Fig. 4(e)], retaining the memory of classical orbits in the
phase space. To confirm the scarring due to periodic orbits,
we compute the Fourier transform of the autocorrelation func-
tion [83],

A(t ) =
∑

a=x,y,z

〈Ŝ1a(t )Ŝ1a(0)〉, (11)

evaluated for such scarred eigenstates. This exhibits a sharp
peak at the frequency of the corresponding orbits [cf.
Fig. 4(f)], which can be obtained analytically [see Ap-
pendix D]. Note that the scars of the periodic orbits have
characteristics similar to that of the fixed points (π0 mode
and FP-IVB). However, for the scar of a fixed point, the semi-
classical phase space density (Husimi distribution) is localized
around that point [see the inset of Fig. 3(b)], whereas in the
case of the periodic orbit, the density spreads out in phase
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Class-I
Class-II

(b)

1.0 1.0

FIG. 4. Quantum scars of periodic orbits: (a) Phase diagram of
periodic orbits with E = 0 belonging to different classes. The pe-
riodic orbits in Class II (I) become unstable across the dashed blue
(solid red) line with increasing V . (b) Shannon entropy of eigenstates
SSh scaled by Gaussian orthogonal ensemble (GOE) value SGOE near
E ≈ 0 at the marked place in panel (a). (c), (d) Husimi distribution
Q(z1, φ1) of the encircled states in panel (b). The corresponding
classical trajectories are overlayed with initial conditions close to
Classes II and I, respectively. (e) ES for eigenstates marked by red
square in panel (b). (f) Fourier transform Ã() of autocorrelation
function A(t ) evaluated for the encircled states in panel (b). Here and
in remaining figures, time t and frequency  are scaled by 1/J and
J , respectively.

space, resembling the shape of the underlying classical orbit
[see Figs. 4(c) and 4(d)].

VI. DYNAMICAL DETECTION OF DEGREE
OF ERGODICITY AND SCAR

To this end, we discuss the dynamical signature of the
energy-dependent degree of ergodicity and quantum scar,
from the autocorrelation function and phase diffusion dynam-
ics. The saturation value of the autocorrelation function A(t )
[given in Eq. (11)], namely, Asat, averaged over an ensemble
of initial coherent states |ψc〉 with fixed energy density E ,
can be used as a dynamical probe for the energy-dependent
nonergodic behavior. Notably, Asat vanishes for states in the
most ergodic region at E ≈ 0, whereas it remains finite for the
states near the band edges, see Fig. 5. The ergodic behavior

(a) (b)

FIG. 5. Dynamical probing of energy-dependent degree of er-
godicity: (a) Dynamics of autocorrelation function A(t ) evaluated at
different energy densities E and for U = 0.8, V = 2.8. (b) Variation
of saturation value of the autocorrelation Asat across the energy band.

can also be characterized by studying the phase coherence
from nonequilibrium dynamics. The phase coherence between
the two sites of BJJ signifies the wave nature of the macro-
scopic condensate, and the relative phase between the two
wells can be calculated by constructing an orthonormal basis
of 2S + 1 phase states as follows [7,84]:

|φm〉 = 1√
2S + 1

S∑
n=−S

exp (inφm)|n〉, (12)

with φm = φ0 + 2πm/(2S + 1), where m is an integer m ∈
[0, 2S] and φm ∈ [−π, π ]. The phase distribution for a state
|ψ〉 corresponding to a particular spin sector is given by
p(φm) = Tr(ρ̂S |φm〉〈φm|) with

∑
m p(φm) = 1, where ρ̂S =

TrS̄ (|ψ〉〈ψ |) is the reduced density matrix obtained by tracing
out the other spin (S̄ �= S ). To study the phase diffusion dy-
namics, we evolve an initial coherent state with energy density
E and analyze its phase distribution corresponding to one of
the bosonic component at different times. It is expected, the
phase distribution for the states in the ergodic regime (center
of the energy band with E ≈ 0) will become flat quickly,
indicating the loss of phase coherence. On the other hand,
for the states in the nonergodic regime (edge of the energy
band), the phase distribution remains mostly localized and
spreads comparatively less, indicating the retention of phase
coherence.

To quantify the degree of ergodicity, we study the dynamics
of phase fluctuations,

(	φ)2 =
∑

m

(φm − 〈φ〉)2 p(φm), (13)

for initial states at different energy densities E , where 〈φ〉 =∑
m φm p(φm). As shown in Figs. 6(a) and 6(b), starting from

an initial state close to the band edge, the growth rate of (	φ)2

is small and increases as we approach the band center (E ≈ 0),
which is already indicated from EE in Fig. 1(e). In this regime,
the phase fluctuation grows rapidly and saturates close to its
maximal value (	φ)2

max 
 π2/3 corresponding to a random
state [7], indicating complete loss of phase coherence. In
addition, such behavior can also be quantified from 〈cos φ〉 =∑

m cos φm p(φm), where a (nonzero) zero value signifies the
loss (persistence) of the phase coherence. Interestingly, the
phase coherence factor 〈cos φ〉 exhibits a revival phenomena
for the unstable π0 mode during the time evolution of the
corresponding coherent state |π+〉, capturing the scarring be-
havior. In contrast, for any other arbitrary state with the same
energy, 〈cos φ〉 decays to zero, signaling the loss of phase
coherence. The energy-dependent ergodicity can be probed
and the detection of quantum scarring of the π0 mode can
be tested by using relevant experiments [6].

VII. CONCLUSION

To summarize, we have explored a rich variety of collective
dynamics in a two-component BJJ, which unveils the classical
route to ergodicity and quantum scarring phenomena in an in-
teracting system. The steady states, particularly the π0 mode,
has a dramatic influence on the overall ergodic behavior.
Moreover, an energy-dependent ergodicity is also observed,
and its connection with the mixed phase-space regions is also
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FIG. 6. Phase diffusion dynamics in two-component BJJs: Time
evolution of the relative phase fluctuations (	φ)2(t )/(	φ)2

max [where
(	φ)2

max 
 π 2/3] starting from an arbitrary initial coherent state
with energy density (a) E = −1.9 (nonergodic) and (b) E = 0.0
(ergodic) for V = 2.8, indicating the energy-dependent ergodic be-
havior. The insets show the snapshots of the corresponding phase
distribution at different times. The horizontal dashed line indicates
the maximum value (	φ)2/(	φ)2

max 
 1. (c) Variation of saturation
value of relative phase fluctuations (	φ)2/(	φ)2

max across the energy
band. (d) Dynamics of the phase coherence factor 〈cos φ〉 for the
scarred state of the π0 mode (dashed line) at V = 1.2, exhibiting
revival phenomena in contrast with an arbitrary ergodic state (solid
line), which decays to zero, indicating loss of phase coherence.
Parameters chosen are S = 30, U = 0.8.

explored. As a signature of classicality, we identify a few
significantly large eigenvalues in the entanglement spectrum
(ES), which even exist for scarred eigenstates, retaining the
memory of the unstable dynamics. We demonstrate how the
hidden classicality of a quantum state in dynamical evolu-
tion can be unfolded from the gap in the ES, which also
persists for scarred states, separating a few large eigenvalues
from the extended tail. The bipartite nature of BJJ makes
it suitable to probe the above connection in terms of en-
tanglement [25,85,86], which further addresses the issue of
investigating the athermal dynamics in a reduced Hilbert
space of a generic many-body system [41,83]. We elucidate
the formation of scars of the fixed points as well as periodic or-
bits and identified a region where the image of both the stable
and unstable orbits can be observed in the Husimi distribution.
In addition, we also discuss methods to experimentally detect
the scars as well as the energy -dependent degree of ergodicity
from phase diffusion [6] and the dynamics of autocorrelation.

The present work not only sheds light on underlying clas-
sicality of MBQS leading to athermal behavior, but the model
can also be realized in spin systems with applications to infor-
mation processing [87–90] and lattice gauge simulation [91].
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APPENDIX A: DERIVATION OF GENERALIZED
COUPLED TOP MODEL

To derive the effective spin Hamiltonian in Eq. (2) from
Eq. (1) in the main text, we define the spin operators with
spin S = N/2 within the Schwinger-boson representation as
follows:

Ŝix = (a†
iRaiL + a†

iLaiR)/2, Ŝiz = (n̂iL − n̂iR)/2. (A1)

In this representation, the on-site and the interspecies interac-
tion terms can be respectively written as

U

2N

∑
α

n̂iα (n̂iα − 1) = U

4N

(
N2 + 4Ŝ2

iz

)
, (A2)

V

N
(n̂1Ln̂2L + n̂1Rn̂2R) = V

2N
(N2 + 4Ŝ1zŜ2z ), (A3)

since each species has the equal population number n̂iL +
n̂iR = N = 2S. Neglecting the zero-point energy term, we can
write the Hamiltonian of the two-component BJJ as a gener-
alized version of the coupled-top model,

Ĥ = −Ŝ1x − Ŝ2x + U

2S

(
Ŝ2

1z + Ŝ2
2z

) + V

S
Ŝ1zŜ2z.

APPENDIX B: STEADY STATES AND THEIR
STABILITY ANALYSIS

Let us denote the steady states by the fixed points (FPs),
X∗ = {z∗

1, z∗
2, φ

∗
1 , φ∗

2 }. They are obtained by setting żi, φ̇i = 0
in the equations of motion (EOM) in Eq. (A4),

żi = −
√

1 − z2
i sin φ∗

i = 0, (B1a)

φ̇i = z∗
i cos φ∗

i√
1 − z∗2

i

+ Uz∗
i + V z∗̄

i = 0, (B1b)

where different species are denoted by i ∈ {1, 2} with ī �= i.
Note that, in a single component BJJ one observes three
types of steady states, namely, “0 mode,” “π mode,” and self-
trapped state [10,11]. Due to the interspecies interaction in
the two-component BJJ, a hybridization between such steady
states occurs, which gives rise to various different kinds of
Josephson oscillations [61]. Here, we present their stability
analysis in details, which is important for the scarring phe-
nomena associated with these steady states, charted in Table I.
To investigate the stability of the steady states, we con-
sider fluctuation around the FPs, namely, X(t ) = X∗ + δX(t ),
where δX(t ) = δXeiωt . By putting this in the EOM followed
by an expansion up to a linear order in δX, we obtain the
fluctuation equations:

iωδzi = z∗
i sin φ∗

i√
1 − z∗2

i

δzi −
√

1 − z∗2
i cos φ∗

i δφi, (B2a)

iωδφi = − z∗
i sin φ∗

i√
1 − z∗2

i

δφi +
[

cos φ∗
i

(1 − z∗
i )3/2 + U

]
δzi + V δzī.

(B2b)
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TABLE I. Chart of the fixed points (FPs) obtained from Eq. (B1) corresponding to different steady states. Here SST stands for “symmetric
self-trapped.” The region of existence and the stability of the steady states are also mentioned.

φ∗
1 , φ

∗
2 z∗

1, z∗
2

FP-I : FP-III (symmetry-broken antiferromagnetic):

0, 0 z∗
1 = z∗

2 = 0, z∗
1 = −z∗

2 = ±
√

1 − 1
(U−V )2

Exists for all U,V Exists for U < V − 1
Stable for U > V − 1 Stable for U < V − 1

FP-II (ππ mode): FP-IVA (ferromagnetic SST): FP-IVB (antiferromagnetic SST):

π, π z∗
1 = z∗

2 = 0, z∗
1 = z∗

2 = ±
√

1 − 1
(U+V )2 , z∗

1 = −z∗
2 = ±

√
1 − 1

(U−V )2

Exists for all U,V Exists for U > −V + 1 Exists for U > V + 1
Stable for U < −V + 1 Stable for U > −V + 1 Stable for (U − V )3 � U + V

FP-V (π0 mode): FP-VI (asymmetric self-trapped):
0, π z∗

1 = z∗
2 = 0, |z∗

1 | < |z∗
2 |

π, 0 z∗
1 = z∗

2 = 0, |z∗
1 | > |z∗

2 |
Exists for all U,V Exists for U >

√
V 2 + 1

Stable for V < U <
√

V 2 + 1 See Fig. 1(a) of the main text for stability

The above set of equations in Eq. (B2) can also be repre-
sented as (J − iωI)δX = 0, where J is the Jacobian matrix
and I is the identity. By solving this characteristic equation,
we obtain the ω as

ω2
± = A1 + A2

2
±

√(A1 − A2

2

)2

+ B, (B3)

where

Ai =
[

cos2 φ∗
i

1 − z∗2
i

+ U (1 − z∗2
i )1/2 cos φ∗

i

]
,

and

B = V 2(1 − z∗2
1 )1/2(1 − z∗2

2 )1/2 cos φ∗
1 cos φ∗

2 .

The stability of the FP is ensured if ω is real and it repre-
sents the frequency of small-amplitude Josephson oscillation.
Whereas, for unstable FPs, the instability exponent is given by
�I = Im[ω], leading to an exponential growth of the fluctua-
tion δX(t ) over time.

APPENDIX C: SYMMETRY CLASSIFICATIONS
AND SPECTRAL STATISTICS

To study spectral statistics, we first compute the eigenspec-
trum of the effective spin Hamiltonian in Eq. (2) by solving
the following eigenvalue equation,

Ĥ|ψn〉 = En|ψn〉, (C1)

where En are the eigenvalues and |ψn〉 are the associ-
ated eigenvectors. We note that the Hamiltonian Ĥ has
two symmetries—parity symmetry corresponding to the op-
erator �̂ = eiπ (Ŝ1x+Ŝ2x ) and spin-exchange symmetry (S1 ↔
S2) associated with operator Ô, that is constructed from
〈m1z, m2z|Ô|m2z, m1z〉 = 1, where miz are the quantum num-
bers of Ŝiz. Both the operators �̂ and Ô have two eigenvalues,
namely, ±1. Accordingly, we separate out the eigenmodes

into different symmetry sectors as follows:

〈ψn|�̂|ψn〉 = ±1 → even(odd),

〈ψn|Ô|ψn〉 = ±1 → even(odd),

We focus on the eigenmodes belonging to the even-even
symmetry sector. In Fig. 7, we plot the distribution of the con-
secutive energy-level spacings, δn = En+1 − En, with mean
and normalization set to one [77], for various interaction
strengths. Notably, in the stability region of the π0 mode
where the underlying dynamics is regular, the level spacing
distribution P(δ) exhibits Poisson statistics, PP(δ) = e−δ [see
Fig. 7(b)]. While above QPT, P(δ) agrees with the Wigner

(c)

(b)

(d)

0.40

0.42

0.44

0.46

0.48

0.50

0.0

0.5

1.0

1.5

2.0

2.5(a)

1.0 2.0 3.00.0
0.40

0.42

0.44

0.46

0.48

0.50

FIG. 7. Spectral analysis of energy levels: (a) Colormap of aver-
age level spacing 〈r〉 in the U -V plane [see also Fig. 1(d) in the main
text]. (b)–(d) Level spacing distribution P(δ) at the marked places are
shown as histograms and are compared with the Poisson distribution
PP(δ) and with the Wigner-Surmise PWD(δ), see the text for details.
Here, we set S = 40 and δ is measured in units of J .
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surmise, PWD(δ) = π/2 δe−πδ2/4, corresponding to the Gaus-
sian orthogonal ensemble (GOE) [see Fig. 1(d)] as a result
of the onset of chaos in the phase space [77]. Interestingly, a
mixed phase space is observed in the region of the U -V plane
where the Lyapunov exponent acquires an intermediate value
[particularly in the unstable region of asymmetric self-trapped
(AST) states, shown in Fig. 1(a) of the main text], which
is reflected as an intermediate statistics of P(δ), depicted in
Fig. 7(c).

APPENDIX D: CLASSICAL PERIODIC ORBITS

The spin-exchange symmetry (S1 ↔ S2) of the
Hamiltonian in Eq. (2) gives rise to integrable motion
restricted on a subregion of the phase space, where
the dynamical variables satisfy the conditions (I)
{z1 = −z2, φ1 = −φ2} and (II) {z1 = z2, φ1 = φ2}, defining
the two dynamical classes. These conditions can equivalently
be written as (I) {φ+ = 0; z+ = 0} and (II) {φ− = 0; z− = 0},
respectively, in terms of the new coordinates z± = (z1 ± z2)/2
and φ± = (φ1 ± φ2)/2. Consequently, the dynamics of
Classes I and II are governed by the EOM in terms of
{z−, φ−} and {z+, φ+}, respectively,

ż± = −
√

1 − z2± sin φ±,

φ̇± = z±√
1 − z2±

cos φ± + (U ± V )z±. (D1)

The solution of the above equations can be written in terms of
elliptic functions as

z±(t ) = C± cn

(
C±μ±

2k±
(t + t0), k±

)
,

cos [φ±(t )] = −E + μ± z2
±(t )

2
√

1 − z2±(t )
, (D2)

where cn is the Jacobi elliptic function with elliptic modulus
k± and the constants are defined in the following way (see also
Ref. [11]):

C2
± = 2

μ2±

[Eμ±
2

− 1 + ±
]
, k2

± = 1

2

[
1 + Eμ±/2 − 1

±

]
,

t0 = F (cos−1[z±(0)/C±], k±)


1/2
±

, ± =
√

μ2±+ 1− Eμ±,

(D3)

where μ± = (U ± V ) correspond to Classes II and I, re-
spectively, and F(φ, k±) = ∫ φ

0 dx(1 − k2
± sin2 x)−1/2 is the

incomplete elliptic integral of first kind. For repulsive inter-
actions, i.e., U > 0 and V > 0, the dynamics corresponding
to Class II describes an effective antiferromagnetic Lipkin-
Meshkov-Glick (LMG) model [92]. However, the dynamics
of Class I can represent ferromagnetic or antiferromagnetic
LMG model for U − V < 0 and U − V > 0, respectively.
Interestingly, even when the symmetry unbroken state FP-
I (FP-II) becomes unstable in the full phase space, it can
remain stable under the constraint of the corresponding dy-
namical Class I (Class II). Similarly, the periodic orbits
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FIG. 8. Quantum scars of antiferromagnetic symmetric self-
trapped state (FP-IVB): (a) Phase diagram in the U -V plane showing
the presence of FP-IVB in the colored region along with the
schematic of its spin configuration. The plain (∗ shaded) region
indicates the region of stability (instability). (b) Overlap |〈ψn|ψc〉|2
of the scarred eigenstates |ψn〉 with the coherent state |ψc〉 of the
corresponding FP. (c) Husimi distribution plotted on the Bloch sphere
and (d) the entanglement spectrum for the eigenstate with maximum
overlap marked by red square in panel (b).

forming around these fixed points with different energies E
can become unstable in presence of small fluctuation vi-
olating the conditions of the respective classes, depending
on the strength of the interactions. The time period of the
orbits with energy E = 0 belonging to the two classes is
given by

T = 4K (k±)

(1 + μ2±)1/4 , (D4)

where K (k±) = F(π/2, k±). The stability analysis of such pe-
riodic orbits is performed by using the method of Monodromy
matrix described in Refs. [74,93] and the stability regions
of orbits with energy E = 0 in the U -V plane are shown in
Fig. 4(a) of the main text.

APPENDIX E: SCAR OF ANTIFERROMAGNETIC
SYMMETRIC SELF-TRAPPED STATE

As mentioned earlier, there exists a pair of symmetric self-
trapped (SST) steady-state FP-IVB with antiferromagnetic
ordering in the regime U � V + 1, with energy E = 1

(U−V ) +
U − V [see Fig. 8(a)]. This state originates after pitchfork
bifurcation of the symmetry-unbroken state FP-II, when the
dynamics is constrained within Class I (as discussed previ-
ously in Appendix D). Even though this antiferromagnetic
state is stable only in Class I, it looses stability in presence
of small fluctuations violating the corresponding dynami-
cal class when (U − V )3 � U + V , leading to the formation
of scars. Such scarring phenomena can be analyzed quan-
tum mechanically by the method described in the main text.
We identify the corresponding scarred eigenstate |ψn〉 from
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the maximum overlap |〈ψn|ψc〉|2 � 1/N with the coherent
state |ψc〉, describing FP-IVB semiclassically, as shown in
Fig. 8(b). As evident from Fig. 8(c), the Husimi distribution
of the scarred state shows localization of phase-space density
around the phase-space point of the antiferromagnetic SST
state, indicating the scarring phenomena. From the analysis

of the entanglement spectrum (ES) of such scarred state (see
the discussion in Sec. IV C of the main text), we also find a
few large eigenvalues which are separated from the rest with
a significant gap 	λ [see Fig. 8(d)], retaining classicality of
the corresponding steady state. Such a signature of a quantum
scar can also be probed experimentally.
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(2021).

[41] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M.
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Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin, Phys. Rev.
Lett. 122, 220603 (2019).

[45] M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201
(2019).

[46] N. Shiraishi, J. Stat. Mech.: Theory Exp. (2019) 083103.
[47] S. Moudgalya, N. Regnault, and B. A. Bernevig, Phys. Rev. B

98, 235156 (2018).
[48] S. Moudgalya, N. Regnault, and B. A. Bernevig, Phys. Rev. B

102, 085140 (2020).
[49] D. K. Mark, C. J. Lin, and O. I. Motrunich, Phys. Rev. B 101,

195131 (2020).
[50] H. Zhao, J. Vovrosh, F. Mintert, and J. Knolle, Phys. Rev. Lett.

124, 160604 (2020).
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