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Light-pulse atom interferometric test of continuous spontaneous localization

Sascha Vowe ,1 Sandro Donadi,2,* Vladimir Schkolnik ,1 Achim Peters,1 Bastian Leykauf ,1,† and Markus Krutzik1

1Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
2Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy

(Received 12 March 2021; revised 10 May 2022; accepted 15 September 2022; published 19 October 2022)

We investigate the effect of the continuous spontaneous localization (CSL) model on light-pulse atom
interferometry. Using a path-integral approach with an additional stochastic potential accounting for CSL, we
derive an exponential loss of the contrast that scales linearly with the interferometer time T if both interferometer
arms are spatially separated. We compare our theoretical results with measurements from a cold rubidium atom
interferometer based on counterpropagating two-photon transitions with pulse separation times up to T = 260 ms
and obtain the corresponding bounds on the CSL parameters.
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I. INTRODUCTION

Collapse models are popular in giving a realistic inter-
pretation of the wave-function collapse, which solves the
measurement problem. In these models, the Schrödinger
equation is extended by adding terms that describe the col-
lapse of the superposition of a particle’s wave function in
position space into a localized state [1–3]. In the continuous
spontaneous localization (CSL) model [4], the nonlinear and
stochastic terms describing the collapse depend on two newly
introduced phenomenological parameters λCSL and rC . λCSL

is the collapse rate and sets the strength of the collapse, while
rC is a length which sets the spatial resolution of the collapse.
Bounds on these parameters have been deduced for various
experiments and physical systems [5–12] (for a recent review
see [13,14]).

The best interferometric tests of the CSL model currently
stem from Talbot-Lau interferometry using molecules that
have a mass of ≈25000 u [9], setting the bound of λCSL �
10−7 s−1 for rC = 10−7 m.

In this paper we study CSL effects on light-pulse cold
atom interferometry, more specifically on the contrast of the
measured interference fringes. Similar work has been reported
in [15] with a focus on many-body enhanced decoherence
based on interferometry with Bose-Einstein condensates.

Our theoretical analysis is simplified compared to solving
the CSL nonlinear equation, since we are only interested in
expectation values. Then, the nonlinear CSL dynamics can be
replaced by a stochastic Schrödinger equation [16]:

ih̄
d

dt
|ψt 〉 = (Ĥ0 + V̂CSL)|ψt 〉, (1)

where V̂CSL is an additional stochastic potential which ac-
counts for CSL. Equation (1) does not lead to wave-function
collapse, yet it leads to the same master equation and,
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therefore, the same expectation values as the CSL nonlinear
equation. For composite systems, the CSL effective stochastic
potential takes the form

VCSL(q̂1 · · · , q̂N , t )

= − h̄
√

λCSL

m0(
√

πrC )3/2

∫
dr w(r, t )

N∑
k=1

mke
− (r−q̂k )2

2r2
C , (2)

where N is the number of the nucleons composing the sys-
tem, q̂k denotes their positions, m0 is one atomic mass unit,
and w(r, t ) is Gaussian white noise that is characterized
by the expectation values E[w(r, t )] = 0 and correlations
E[w(r, t )w(r′, t ′)] = δ(r − r′)δ(t − t ′). The electrons’ con-
tribution is omitted because CSL is mass proportional, and
their masses are negligible compared to those of the nucleons.

In the case of an atom, we can simplify Eq. (2) further by
approximating the protons’ and neutrons’ positions (up to a
difference on the order of femtometers, much smaller than the
range of possible rC) q̂k = q̂, where q̂ is the position operator
of the center of mass of the nucleus. We will also not consider
the small difference in mass between neutrons and proton,
hence they all have the same mass m = m0. In this case, we
can write Eq. (2) as

VCSL(q̂, t ) = − h̄
√

λCSLN

(
√

πrC )3/2

×
∫

dr w(r, t ) exp

(
− (r − q̂)2

2r2
C

)
. (3)

This additional potential alters the time evolution of atomic
systems that can be observed in precision measurements using
atom interferometry.

In this paper, we employ cold atom interferometry in
a fountain configuration to test CSL. By evaluating the
contrast for different interrogation times in a symmetric
Mach-Zehnder configuration, we can place upper bounds on
the collapse rate λCSL for different values of rC . Towards
this, we first derive the contrast of the interference fringes in
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FIG. 1. Atom interferometer in Mach-Zehnder configuration us-
ing stimulated Raman transitions between two hyperfine ground
states |F = 1〉 and |F = 2〉. The paths are used in the path-integral
approach outlined in the text.

a Mach-Zehnder interferometer (MZI) using a path-integral
approach. Afterwards, we give a brief description of our
light-pulse atom-interferometer experiment and present the
experimental sequence and data used to put bounds on λCSL

for different values of rC . In the conclusion, we discuss
limitations and prospective developments in light-pulse atom
interferometry that could improve this bound.

II. CONTRAST LOSS MECHANISM IN ATOM
INTERFEROMETRY INDUCED BY CSL

Light-pulse atom interferometry is an important tool in
modern metrology and has been used to measure inertial

effects in, e.g., gravitational accelerometers [17], gravity gra-
diometers [18], and gyroscopes [19]. It also found many
applications in fundamental physics through measurements of
the fine-structure constant [20,21], the gravitational constant
[22], tests of Lorentz invariance [23], general relativity [24],
dark-energy theories [25], and the universality of free fall [26].

In this paper, we present a light-pulse atom interferomet-
ric test of CSL. In order to compute the phase difference
�φCSL due to the presence of CSL, we follow the perturbative
path-integral approach described in [27], for a Mach-Zehnder
configuration (see Fig. 1):

�φCSL = 1

h̄

∮
ABCDA

VCSL(z(t ), t )dt . (4)

We note that, precisely speaking, the CSL effective potential
depends on the position q(t ) in all the three space directions.
However, for the effect we are computing, only the coordinate
along the z direction is relevant (see Appendix A).

Since VCSL is not deterministic, all predictions need to be
computed by averaging over the noise. However, the aver-
aged phase difference acquired during passage of the atom
interferometer vanishes as a consequence of E[w(r, t )] = 0.
Therefore, CSL effects cannot be observed as a phase shift.

On the other hand, the noise has a nonzero second moment
since E[w(r, t )w(r′, t ′)] = δ(r − r′)δ(t − t ′). Therefore, we
expect deviations in the variance of �φCSL. Through a
straightforward calculation reported in Appendix A we show
that

E
[
�φ2

CSL

] = E

[
1

h̄2

∮
ABCDA

∮
ABCDA

VCSL(z(t ), t )VCSL(z(t ′), t ′)dtdt ′
]

= 4λCSLN2T

[
1 −

√
π

2

erf
(

v2−v1
2rC

T
)

v2−v1
2rC

T

]
. (5)

Here, v1 and v2 are the velocities of the two arms of the
atom interferometer as shown in Fig. 1. In the case of our
light-pulse atom interferometer, this velocity difference is in-
duced by driving Raman transitions with an effective wave
number keff = (v2 − v1)/(h̄mRb) where mRb is the mass of a
87Rb atom.

A variance in the expectation value of the phase will result
in a loss of fringe contrast of the atom interferometer which
is determined by the relative population of the two ground
states. This relative state population depends on the relative
phase difference and is described by

P = 1
4E[|1 + exp(i�φ0) exp(i�φCSL)|2] (6)

where the phase difference in a light-pulse MZI is [28,29]

�φ0 = (keffg − α)T 2, (7)

with the gravitational acceleration g (we omit a gravity gra-
dient), α the two-photon detuning chirp rate, and T the pulse
separation time of the MZI. By choosing an appropriate chirp
rate α, it is possible to compensate for the phase shift induced
due to gravity by effectively moving to the frame falling with

the atoms [30], i.e., the frame depicted in Fig. 1. In this case,
the phase difference �φ0 in Eq. (7) is zero for all T .

The average over the noise in Eq. (6) can be computed
exactly since the noise is Gaussian to obtain

P = 1

2

[
1 + exp(−E

[
�φ2

CSL

]
2

) cos(�φ0)

]
. (8)

Our result shows an exponential loss of contrast. The strength
of this loss depends on the collapse rate λCSL, the correlation
length rC , the number of nucleons squared N2, the time of the
experiment 2T , and the velocities of the two wave packets v1

and v2.
According to Eqs. (5) and (8), there are two relevant

regimes.
(i) When rC is much larger than the maximum distance

between the interferometer arms (v2 − v1)T ≈ 10−3 m, the
loss of contrast gets smaller as rC increases. Consequently,
the bound on λCSL gets weaker for larger rC .

(ii) When rC � (v2 − v1)T ≈ 10−3 m, the error func-
tion in Eq. (5) becomes negligible and the damping factor
E[�φ2

CSL] becomes independent of rC . Therefore, the bound
on λCSL becomes constant, i.e., independent of rC as well.
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FIG. 2. Sketch of the experimental apparatus, showing its func-
tional subsections, the trajectory of the atomic cloud, as well as
optical access to the vacuum chamber indicated by arrows. For more
details on the experimental sequence, see the main text.

While having the merit of being relatively simple and
giving a good insight into the physics of the problem, the
analysis presented until now completely neglects the finite
size of the atomic wave packets 	. This approach is a reason-
able approximation as far as rC � 	. However, for smaller rC

a wave-packet analysis is required. This analysis is detailed
in Appendix B: In order to observe interference, we require
that the two wave packets in the interferometer have sufficient
spatial overlap at time 2T . This requirement leads to an upper
bound for the ratio λCSL/r2

C , i.e., the bound gets stronger as
rC decreases. For the experimental parameters investigated in
this paper, this bound is stronger than the one obtained from
Eqs. (5) and (8) (which neglects the finite wave-packet size) if
rC � 3.8 × 10−6 m.

III. EXPERIMENT AND RESULTS

In this section we describe the measurement protocol for
multiple contrast measurements over different interferometry
times 2T . We use the observed loss in contrast to estimate
an upper bound for λCSL in Eq. (8). See Fig. 2 for a sketch
and [31] for a more detailed description of the experimental
apparatus.

The atom interferometer is formed by driving stimulated
Raman transitions between the two hyperfine ground states
F = 1 and 2 of 87Rb by counterpropagating laser beams.
The velocity difference between the two arms of interferome-
ter is v1 − v2 ≈ 11 × 10−3 ms−1. For a single measurement,
a laser-cooled cloud of about 109 87Rb atoms is launched

FIG. 3. Interference fringes obtained by scanning the chirp rate
α for three values of T . Lines are fits to Eq. (8).

upwards using moving molasses with a temperature of ≈2 µK
into a magnetically shielded interferometry tube. Atoms
within a narrow velocity class along the z direction corre-
sponding to a vertical temperature of ≈80 nK are selected by
Doppler sensitive stimulated Raman transitions and the other
atoms are removed from the sample by a blow-away laser
pulse. After selecting atoms in the first-order magnetically
insensitive mF = 0 states by employing a microwave pulse
and another blow-away pulse, the remaining ≈2 × 107 atoms
are interrogated by three consecutive laser pulses forming a
Mach-Zehnder interferometer.

The maximum pulse separation time is limited by the
height of our interferometry tube and is 260 ms. As the cloud
falls, it eventually passes the detection region in which the rel-
ative population P of the two ground states is determined via
normalized fluorescence detection of ≈5 × 105 atoms within
the sample.

In order to obtain an interference fringe, this procedure
is repeated under variation of the two-photon detuning chirp
rate α while the interferometry time 2T stays constant. Three
interference fringes for different pulse separation times T are
shown in Fig. 3. From these measurements, we obtain C by a
least-squares fit to

P(α) = Pmean + 1
2C cos[(α0 − α)T 2] (9)

where Pmean, C, and α0 are free parameters.
As a proof-of-principle demonstration of the method pre-

sented in this paper, we analyze data that were collected
during a previous gravity survey campaign [32]. While the
data have not specifically been recorded for this purpose, the
data span a wide range of available values of T and were
recorded back to back. Figure 4 shows the contrast C obtained
from 23 interference fringes as a function of T . The line is the
result of a weighted least-squares fit of the contrast C obtained
from fitting Eq. (9) to

ln C(T ) = ln C0 − 2λCSLN2T, (10)

where ln C0 and λCSL are free parameters. The loss of contrast
C0 independent of T is due to the uncertainty of �φ0 in
Eq. (6).

043317-3



SASCHA VOWE et al. PHYSICAL REVIEW A 106, 043317 (2022)

0 50 100 150 200 250

T (ms)

−0.80

−0.75

−0.70

−0.65

−0.60

−0.55

ln
C

FIG. 4. Logarithm of the contrast obtained from 23 interference
fringes as a function of the pulse separation time T . Error bars are
1σ fit uncertainties. The line is a weighted fit to Eq. (10). The shaded
area is the 1σ confidence interval.

To give a conservative estimate, we neglect other mech-
anisms for loss of contrast inherent in the experiment and
attribute them to a potential CSL effect. The CSL parameters
excluded by our analysis are presented in Fig. 5 alongside the
results from other interferometric measurements.

In Fig. 5 we evaluated our data explicitly including the term
dependent on rC in Eq. (5) in order to get the correct bound for
larger values of rC . For the approximated Eq. (10), we obtain
an upper bound on the collapse rate λCSL � 5.6(7)e − 5 s−1

where the bound on λCSL is not dependent on rC .
As discussed in Sec. II, we can obtain a stronger bound

for small rC by requiring that the two wave packets used in
the interferometer have a relevant overlap at time 2T . For our

FIG. 5. Exclusion plot for the CSL parameters comparing differ-
ent interferometric methods as compiled in [13]: atom interferometry
[33] (green dashed and red solid line), interferometry with entangled
diamonds [34,35] (orange dotted line), and molecular interferometry
[9,36,37] (blue dash-dotted line). Shaded areas indicate the excluded
regions and Adler’s theoretical predictions [16] are shown for com-
parison. Note that stronger bounds on the CSL parameters can be
established by noninterferometric experiments not shown in this
figure [14].

experimental parameters, this leads to a bound of λCSL/r2
C �

3.9 × 106 / m2 s−1. This bound becomes stronger than λCSL �
5.6(7)e − 5 s−1 for rC � 3.8 × 10−6 m and is thus reported as
the diagonal section of the red solid line in Fig. 5.

IV. SUMMARY AND OUTLOOK

Using the path-integral formalism, we derived the variance
of the phase difference occurring in a Mach-Zehnder atom
interferometer due to the nonlinear and stochastic additions of
CSL to the Schrödinger equation. This yields an exponential
decrease of the contrast proportional to the interrogation time
T and the square of the number of nucleons N2. We measured
the contrast for T ranging from 11 to 260 ms and found
bounds for the CSL parameters reported in Fig. 5.

This result could further be improved by characterizing
other mechanisms of contrast loss. We identify two major
sources for decreased contrast in our experiment from nu-
merical simulations: (i) the finite size and temperature of the
atomic sample and its convolution with the Gaussian intensity
profile of the laser beams leading to varying Rabi frequencies
and, thus, reduced transfer efficiencies of the laser pulses and
(ii) the finite temperature of the atomic sample along the laser
beams giving rise to Doppler shifts, again resulting in reduced
transfer efficiencies. However, these effects have not been
studied experimentally for our setup, yet.

Using modern tools of atom interferometry, the bounds on
λCSL could be further lowered. By employing high momentum
transfer beam splitters [38] CSL could be tested for larger
rC using our method. Further improvements are within reach
using ultracold atomic sources and squeezing techniques [39]
and the mechanisms of contrast loss could be studied at
extended interferometry times T such as in large atomic foun-
tains [33], optical lattices [40], microgravity experiments [41],
or space [42,43].
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APPENDIX A: COMPUTATION OF EQ. (5) OF
THE MAIN TEXT

The evolution of z(t ) and ż(t ) in the free-falling frame
along the paths ABC and ADC is (see Fig. 1 of the main text)

AB : zAB(t ) = v2t, żAB = v2

AD : zAD(t ) = v1t, żAD = v1︸ ︷︷ ︸
t∈[0,T ]

BC : zBC (t ) = v2T + v1(t − T ), żBC = v1

DC : zDC (t ) = v1T + v2(t − T ), żDC = v2︸ ︷︷ ︸
t∈[T,2T ]

.

The terms in Eqs. (4) and (5) of the main text can be
evaluated by calculating the integrals along these paths. For
example, the integral along the path ABC is given by∫

ABC
VCSL(z(t ), t )dt =

∫ T

0
VCSL(zAB(t ), t )dt

+
∫ 2T

T
VCSL(zBC (t ), t )dt (A1)

and similarly for the other one.
We now derive the result in Eq. (5):

E
[
�φ2

CSL

] = E

[
1

h̄2

∮
ABCDA

∮
ABCDA

VCSL(z(t ), t )VCSL(z(t ′), t ′)dtdt ′
]

= E

[
1

h̄2

( ∫
ABC

VCSL(z(t ), t ) −
∫

ADC

VCSL(z(t ), t )

)( ∫
ABC

VCSL(z(t ′), t ′) −
∫

ADC

VCSL(z(t ′), t ′)
)

dtdt ′
]

= φUU − φUD − φDU + φDD, (A2)

where the superscript U refers to the upper path ABC and D refers to the lower path ADC (see Fig. 1 in the main text). In
Eq. (A2), each of the four terms introduced in the last line has the form (here and below X = U, D and Y = U, D)

φXY := E

[
1

h̄2

∫ 2T

0
dtV X

CSL(t )
∫ 2T

0
dt ′V Y

CSL(t ′)
]

(A3)

and

V X
CSL(t ) = − h̄

√
λCSLN

(
√

πrC )3/2

∫
ds w(s, t )e

− [s−qX (t )]2

2r2
C (A4)

with qU (D)(t ) the trajectory along the points ABC (ADC). Then Eq. (A3) becomes

φXY = λCSLN2

(
√

πrC )3

∫ 2T

0
dt
∫ 2T

0
dt ′

∫
ds
∫

ds′e
− [s−qX (t )]2

2r2
C e

− [s′−qY (t ′ )]2

2r2
C E[w(s, t )w(s′, t ′)]

= λCSLN2

(
√

πrC )3

∫ 2T

0
dt
∫

dse
− [s−qX (t )]2

2r2
C e

− [s−qY (t )]2

2r2
C

= λCSLN2
∫ 2T

0
dt e

− [qX (t )−qY (t )]2

4r2
C .

(A5)

We see immediately that

φUU = φDD = 2λCSLN2T, (A6)

while

φUD = φDU = λCSLN2
∫ 2T

0
dt e

− [zU (t )−zD (t )]2

4r2
C

= λCSLN2

(∫ T

0
dt e

− [zAB (t )−zAD (t )]2

4r2
C +

∫ 2T

T
dt e

− [zBC (t )−zDC (t )]2

4r2
C

)

= λCSLN2

(∫ T

0
dt e

− (v2−v1 )2t2

4r2
C +

∫ 2T

T
dt e

− (v2−v1 )2 (2T −t )2

4r2
C

)

= λCSLN2

√
πerf

[(
v2−v1

2rC

)
T
]

(
v2−v1

2rC

) ,

(A7)
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where we used1

zAB(t ) − zAD(t ) = (v2 − v1)t,

zBC (t ) − zDC (t ) = (v2 − v1)(2T − t ) (A8)

and the fact that xU (t ) = xD(t ) and yU (t ) = yD(t ) as the paths
differ only along the z direction. Inserting the results from
Eqs. (A6) and (A7) into Eq. (A2) one obtains the result in
Eq. (5) in the main text.

APPENDIX B: ANALYSIS USING WAVE PACKETS

In this Appendix, we discuss CSL effects on atom interfer-
ometry performing a more detailed analysis which accounts
for the finite extent of the wave packets. As we will see, this
will not change the decay of the coherences between the wave
packets, confirming the results from the calculation in the
main text. However, we will also see that a new effect arises,
which is relevant for small rC : by requiring that the two wave
packets overlap at the end of the interferometer (i.e., at time
t = 2T ), we can set another bound on the CSL parameters.

We start by modeling the state of each atom, after the action
of the first π/2 pulse, as a superposition of two Gaussian wave
packets with width σ :

|ψ (0)〉 = |ψ1〉 + |ψ2〉√
2

(B1)

where

ψ j (x) = 1

(
√

2πσ )
3
2

e− x2

4σ2 +ik j z with k1 �= k2. (B2)

The corresponding statistical operator is

ρ(0) = 1

2

2∑
i, j=1

|ψi〉〈ψ j |. (B3)

Given this initial state, the free evolution of the statistical
operator from zero to T can be computed using the relation
[1]

ρCSL
i j (x, y, T ) = 1

(2π )3

∫
dk

∫
dwe−ik·wF CSL(k, x − y, T )

× ρ
QM
i j (x + w, y + w, T ) (B4)

where

F CSL(k, x − y, t )

= exp

[
−λCSL

m2

m2
0

t

(
1 − 1

t

∫ t

0
dτ e

− (x−y− h̄kt
m )2

4r2
C

)]
(B5)

and ρ
QM
i j is the statistical operator evolved according to the

free Schrödinger equation

ρ
QM
i j (x, y, T ) = ei(ki·x−k j ·y)ψi(x)ψ∗

j (y) (B6)

1The paths considered here are those seen by an observer in the
free-falling frame. However, the result would be the same for an
observer in the laboratory frame: this is because the effect of CSL
on the phase shift depends only on the difference between the two
paths, which is the same in both frames.

where

ψ j (x) = 1[√
2π
σ

σ 2
T

] 3
2

e
− (x−x j )2

4σ2
T , (B7)

with x j := h̄T
m k j and σT = σ

√
1 + ih̄T

2mσ 2 .
Starting from Eq. (B4), we first perform the integration in

w, that gives

Ii j (x, y, T ) :=
∫

dwe−ik·wρ
QM
i j (x + w, y + w, T )

=
( σ

σT

)3
exp

i

2
[k·(x − xi − x j + y)

+ ki · (x + xi + x j − y) + k j · (x − xi − x j − y)]

× e− σ2
T
2 (k−ki+k j )2

e
− (x−y−xi+x j )2

8σ2
T , (B8)

and Eq. (B4) becomes

ρCSL
i j (x, y, T ) = 1

(2π )3

∫
dkF CSL(k, x − y, T )Ii j (x, y, T ).

(B9)
This equation will be the starting point for the following
analysis.

(a) First, we will study the dynamics of the off-diagonal
terms (i �= j) and show that they are not affected by the finite
size of the wave packets for all values of rC .

(b) Then we show how CSL diffusion affects the diagonal
elements, i.e., the dynamics of each wave packet.

By requiring that the wave packets have a relevant overlap
at time 2T , we find a bound on the ratio λ/r2

C .

1. Study of the off-diagonal terms

We study the term ρCSL
12 . Then Eq. (B9) becomes

ρCSL
12 (x, y, T ) = 1

(2π )3

∫
dkF CSL(k, x − y, T )I12(x, y, T ).

(B10)
The calculation for ρCSL

21 is identical with the simple re-
placement k1 ↔ k2. Looking at the terms in the last line of
Eq. (B8), one can see that the only relevant contributions to
the integral are in the range where

|k| � |k1 − k2| ± 	−1
T and |x − y| � |x1 − x2| ± 	T

(B11)

with 	T = σ

√
(1 + h̄2T 2

4m2σ 4 ) (σT cannot be taken directly as the
width of the Gaussian, being a complex quantity). For the
setup considered here, we have

|k1 − k2| � 1.6 × 107 m−1,

|x1 − x2| � 3 × 10−3 m, and 	T � 7 × 10−5 m

(to compute 	T we took σ = 10−6 m and T = 190 ms).
Hence, |x1 − x2|  	T and |k1 − k2|  	−1

T . This confirms
that, if the wave-packet size is much smaller than the distance
between the two, the details about their extent are irrelevant
when studying the coherences. Thus, we can approximate the
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factor accounting for CSL effects in Eq. (B5) as

F CSL(k, x − y, t ) � exp

⎡
⎣−λCSL

m2

m2
0

t

⎛
⎝1 − 1

t

∫ t

0
dτ e

− (x1−x2− h̄(k1−k2 )τ
m )

2

4r2
C

⎞
⎠
⎤
⎦, (B12)

i.e., the CSL factor becomes independent of k and x − y and can be taken out of the integral in Eq. (B10). This implies

ρCSL
12 (x, y, T ) � exp

⎡
⎣−λCSL

m2

m2
0

T

⎛
⎝1 − 1

T

∫ T

0
dτ e

− (x1−x2− h̄(k1−k2 )τ
m )

2

4r2
C

⎞
⎠
⎤
⎦ρ

QM
12 (x, y, T )

= exp

[
−λCSL

m2

m2
0

T

(
1 − 1

T

∫ T

0
dτ e

− h̄2

4r2
C m2 (k1−k2 )2τ 2

)]
ρ

QM
12 (x, y, T ) (B13)

where we used x j := h̄T
m k j and performed the change of vari-

able T − τ → τ .
We have shown that CSL effects on the off diagonal ele-

ments are independent from the wave functions’ spatial extent
and will now take a closer look at two relevant regimes of rC .

(1) rC  |x1 − x2|: In this case, since h̄|k1−k2|τ
m � |x1 − x2|

(with the equivalence when τ = T ), we can expand the expo-
nential and obtain

ρCSL
12 (x, y, T ) � exp

[
− λCSLh̄2

12r2
Cm2

0

(k1 − k2)2T 3

]
ρ

QM
12 (x, y, T ).

(B14)
(2) rC � |x1 − x2|: Here, one gets

ρCSL
12 (x, y, T ) � exp

[
−λCSL

m2

m2
0

T

]
ρ

QM
12 (x, y, T ). (B15)

Equations (B14) and (B15) describe the loss of coherences
due to CSL from time zero to time T . The evolution from T to
2T , after the π pulse, is precisely the same, just starting with
the two wave packets spatially separated and then converging
to the same point. This implies that the final damping factor
will be the same as in Eqs. (B14) and (B15) only with the
exponents doubled. These damping factors are in agreement
with the result in the main text.

2. Study of the diagonal terms

We now consider the evolution of the diagonal terms,
which are of the form

ρCSL
ii (x, y, T ) = 1

(2π )3

∫
dkF CSL(k, x − y, T )Iii(x, y, T )

(B16)
with i = 1, 2 and

Iii(x, y, T ) =
( σ

σT

)3
exp

{
i

2

[
k · (x − 2xi + y)

+ 2ki · (x − y)

]}
e− σ2

T
2 k2

e
− (x−y)2

8σ2
T . (B17)

In this case, the two Gaussians in Eq. (B17) imply that the
relevant ranges for k and x − y are

|k| � ±	−1
T , (B18)

|x − y| � ±	T . (B19)

As before, we consider two regimes.
(1) rC  	T : Here, the second term in the exponent of the

CSL factor F CSL in Eq. (B5) is always very close to 1; hence,
to the lowest order CSL effects are negligible. This is expected
since by studying the diagonal elements we are focusing on
the evolution of each single wave packet: When the size of a
wave packet 	T is much smaller than rC , it is well known that
CSL effects become negligible.

(2) rC � 	T : In this regime the diagonal elements are af-
fected by the CSL induced collapse. This does not come as a
surprise since, heuristically, rC gives the spatial resolution of
the collapse. The analysis of this regime is nontrivial because
there are no approximations valid for all times to simplify
F CSL in Eq. (B5). However, this regime is not relevant for our
analysis since for such small values of rC we can set much
stronger bounds by requiring that the two wave packets have
to overlap at the same region in space at time 2T .

In fact, the CSL-induced noise responsible for the collapse
also implies (together with the collapse of spatial superpo-
sition) a diffusion (quite similar to Brownian motion) that
induces an increase of the average energy of the system. This
heating effect for a mass m is given by the CSL heating rate
as [2]

〈Ht 〉 = 〈H0〉 + 3mh̄2λCSL

4m2
0r2

C

t . (B20)

Corresponding to this heating, there is an increase in the
position variance, which, focusing just on the z direction
where interferometry is performed, is given by

〈�z2〉t = 〈�z2〉QM
t + 〈�z2〉CSL

t (B21)

where �z2 := z2 − 〈z〉2, 〈�z2〉QM
t is the standard quantum-

mechanical spread, and

〈�z2〉CSL
t = λCSLh̄2

6m2
0r2

C

t3. (B22)

The last term accounts for the diffusion in space induced by
CSL. It should be noted that Eq. (B21) describes the spread of
a statistical ensemble of atoms, not the spread of the individual
atoms’ wave functions. Furthermore note that this increase
of variance due to CSL is not in contradiction with the fact
that the model collapses in position. The effect of CSL is
indeed to shrink the wave packet, compared to what one would
obtain with only the Schrödinger evolution [2]. However, the
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location where the wave packet will collapse is not always the
same (otherwise there would be a clear violation of the Born
rule). Overall this leads to an increase in the position vari-
ance, 〈�z2〉CSL

t , which quantifies the extension of the space
region where the wave packet is randomly diffused. For a
detailed and quantitative analysis of this point with a simpler
collapse model where all the dynamics can be solved exactly,
see [44].

In order to see interferometric effects, a necessary condi-
tion is that the two wave packets recombine after the last π/2
pulse. This is not possible if the diffusion in position induced
by the CSL model

√
〈�z2〉CSL

t is much larger than the wave-

packet size 	2T =
√

〈�z2〉QM
t at the final time 2T . Hence, to

be conservative we require
√

〈�z2〉CSL
t � 0.1 × 	2T , which

leads to

λCSL

r2
C

� 0.01	2
2T 6m2

0

h̄2(2T )3
� 3.9 × 106 m−2 s−1, (B23)

where we took according to the experiment 2T � 520 ms and

	2T = σ

√
1 + h̄2(2T )2

4m2σ 4 � 1.9 × 10−4 m when taking the initial

wave-packet spread as σ = 10−6 m and m = 1.44 × 10−25 kg
as the mass of a 87Rb atom. Note that inequality (B23) states a
necessary condition to observe interference in our experiment.
Thus, we can exclude the part of the parameter space where
Eq. (B23) is not fulfilled. Furthermore note that, contrary
to typical interference experiments where the reduction of
the fringes’ visibility is due to the accumulation of different
phases by each wave packet of the superposition, here the loss
of contrast is due to the possibly small overlap of the two wave
packets at final time 2T .

The bound in Eq. (B23) corresponds to the diagonal bound
reported in Fig. 5 in the main text. In particular, when rC �
10−6 m, this bound is stronger than the one found due to the
interferometric effects described in Appendix A. We note that
this bound is conservative since we took as a size of the wave
packet 	2T which accounts only for the Schrödinger evolution;
if one includes also the shrinking of the wave packet due to
collapse, the bound may become even stronger.
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