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Resonant superfluidity in the Rabi-coupled spin-dependent Fermi-Hubbard model
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We investigate the ground-state phase diagram of the one-dimensional attractive Fermi-Hubbard model with
spin-dependent hoppings and an on-site Rabi coupling using the density matrix renormalization group method.
In particular, we show that even in the limit of one component being immobile the pair superfluidity can be
resonantly enhanced when the Rabi coupling is on the order of the interaction strength just before the system
starts to strongly polarize. We derive an effective spin-1/2 XXZ model in order to understand the ground-state

properties in the strong attraction limit.
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I. INTRODUCTION

Thanks to their high controllability, systems of ultracold
two-component Fermi gases have served as an ideal play-
ground for studying superfluids (SF) consisting of fermions
[1,2]. Since the realization of the crossover between a
Bardeen-Cooper-Schrieffer (BCS) type SF and Bose-Einstein
condensate [3,4], which is caused by tuning the s-wave scat-
tering length using a Feshbach resonance [5], various types of
phenomena related to superfluidity have been observed, such
as elementary excitations [6,7], quantum vortices [8], and SF
critical velocities [9,10].

Although most experimental studies on two-component
Fermi gases with attractive interactions have been performed
in continuum systems, some experiments have used optical
lattices in order to address lattice systems [11-14], which are
described by the attractive Fermi-Hubbard model (FHM) [15].
Since the temperatures realized in the lattice systems so far
are above the SF phase-transition temperature, the precursors
of SF phase transitions, namely, the development of pairing
correlations [13] and the pseudogap in the occupied spectral
function [14] have been investigated.

The use of optical lattices further improves the controllabil-
ity of the system. For instance, the single-particle dispersion
relation can be changed rather flexibly since several types of
lattice geometry, including cubic [16], chain [17], ladder [18],
square [19], triangular [20], honeycomb [21], kagome [22],
and Lieb [23] lattices have been realized. Moreover, state-
dependent optical lattices [24-26] allow for controlling the
ratio between the hoppings of the two components. Although
a rich phase diagram emerges as a function of the hopping
imbalance and the interaction strength [27], it is well known
that superfluidity is suppressed, in general, for a large hopping
imbalance. In the limit that one component is completely
immobile where the model is reduced to the Falicov-Kimball
model [28], the SF state is not present.
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In this paper, we add an on-site Rabi coupling between
the two components to the attractive Hubbard model with
unequal hoppings in order to investigate its effects on su-
perfluidity. Liu et al. [29] have introduced such a model
and analyzed it within a mean-field approximation. The
fact that the Rabi coupling has been successfully imple-
mented and controlled in recent experiments using optical
lattices loaded with ultracold gases [30,31] has led to re-
newed theoretical interest in understanding the physics of
such variations of the attractive FHM. We solve the model
at one spatial dimension numerically utilizing the density
matrix renormalization group (DMRG) method [32] in order
to calculate the ground-state properties as a function of the
Rabi coupling and the on-site attraction. In the case that the
hopping of one component is zero suppressing superfluidity,
we show that the superfluidity can be resonantly restored
when the Rabi coupling is slightly smaller than the attrac-
tive interaction strength. We explain these results at large
attractive interactions in terms of an effective spin-1/2 XXZ
model.

The remainder of the paper is organized as follows. In
Sec. IT we introduce the FHM under investigation and explain
how a unitary rotation clarifies the role of the model param-
eters. In Sec. III we present our results, first introducing the
relevant physical correlation functions and their significance
in Sec. IIT A. In Sec. III B we investigate the commensurate
half-filling case utilizing DMRG. In Sec. III C we introduce
an effective spin-1/2 XXZ model for large attractive inter-
actions and discuss how it explains the results of Sec. III B.
In Sec. IID we present a schematic phase diagram based
on the effective model as well as DMRG results for the
correlations of the full model at some representative param-
eters. In Sec. IIIE we further investigate the validity of the
schematic phase diagram in the full FHM by means of DMRG
calculations. Specifically, we investigate the correlations as
a function of the number of particles per site. Section IV
contains a summary and outlook. The Appendix contains a
detailed derivation of the effective spin-1/2 XXZ model based
on second-order degenerate perturbation theory.

©2022 American Physical Society
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II. MODEL

We consider an ultracold two-component Fermi gas in
a three-dimensional optical lattice. We assume that the
optical lattice is so deep in the transverse directions (say,
xy directions) that the motion of the particles is forbidden
in these directions, i.e., the system is one dimensional. We
anticipate that the two components correspond to either two
different Zeeman sublevels of an alkali atom or two in-
ternal states of electrons in an alkali-earth(-like) atom. We
regard the two components as the (pseudo-)spin degrees of
freedom in the FHM. We also assume that there exists an
on-site Rabi coupling between the two components, which
can be correspondingly created by either near-resonant radio-
frequency radiation or a laser. When the optical lattice in the
longitudinal direction (z direction) is component dependent
and sufficiently deep, the system is well described by the
attractive FHM with an on-site Rabi coupling and component-
dependent hoppings [29],
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Here cz > Co,jyand 7, ;j = cJf c(, . are the creation, annihila-
tion, and number operators of spin o (=1, 2) at site j, f, is
the hopping of spin o between nearest-neighboring sites, U
is the strength of the on-site interparticle attraction, u is the
chemical potential, and €2y and § are the strength of the Rabi
coupling and detuning. All the parameters can be widely con-
trolled in actual experiments. For convenience, we hereafter
call the model of Eq. (1) the Rabi-coupled spin-dependent
FHM (RSFHM).

A. On-site diagonalization and rotated frame

The RSFHM represented in terms of ¢, . and &, ; as in
Eq. (1) is physically meaningful in the sense that the com-
ponent index o indeed corresponds to two internal states of
an atom. However, some of the essential properties of the
model become clearer by considering a unitary rotation of
the Hamiltonian with an angle which diagonalizes the on-site
Hamiltonian at a given value of § and Qo The unoccupied and
doubly occupied states (]0) and |2) = czcl |O)) are eigenstates
of this Hamiltonian with eigenvalues 0 and —U, respec-
tively, whereas the two remaining eigenstates are given by the
creation operators ¢, = aé] + B¢} and &' = —gél + aél,
where o = cos(8), B = sin(#). Here 6 is an angle determined
by the values of 8 and €2y by the equations o8 = J&T and
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Rotating the full Hamiltonian at the angle 6, it can be
written in terms of the operators ¢ ; and ¢_ ; as
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The interaction and chemical potential terms are covariant
under this transformation, whereas the § and €2, fields com-
bine as a Zeeman-type field for the new Hamiltonian with the
direction determined by the angle 6. For #; =1, the rotated
Hamiltonian is just the FHM with a Zeeman field that has
a symmetric contribution from the Rabi and Zeeman terms
of the original Hamiltonian. The SU(2) symmetry, which is
present before the application of the on-site fields, remains
such that the physics is essentially the same regardless of
the orientation of the field. This model has been investigated
in the literature, famously leading to the emergence of a
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase between the
BCS phase at small fields and the fully polarized phase at
large fields [33,34]. See also Refs. [35,36] for exact numerical
studies of the FFLO phase in a population-imbalanced one-
dimensional FHM.

On the other hand, since #; # , breaks the initial SU(2)
symmetry, the orientation of the on-site field becomes im-
portant. For €y = O the rotated Hamiltonian corresponds to
the original Hamiltonian, that is, a spin-dependent Hubbard
model with a Zeeman field § which has been studied in, e.g.,
Ref. [37]. This case has been investigated in order to under-
stand how the FFLO phase is affected by asymmetric hopping.
For Q( # 0 the effective hoppings of the rotated components
change but are still asymmetric and an extra symmetric hop-
ping term which transforms between the components is added.
This means that [H, fix ;] # 0 breaking the U(1) symmetry
of these components, unlike the #; = £, or 2y = 0 case. So
even if the system is defined in the rotated frame, the Hilbert
space cannot be divided into separate spin sectors. On the
other hand, the system conserves the total number of particles
which is, therefore, still a good quantum number.

ty— = ha®+1p%,

II1. RESULTS

The main focus of this paper is the limiting case t, =0
where superfluidity is entirely suppressed in the absence of
the Rabi coupling. It, therefore, provides the clearest setting in
which to study the effect of the Rabi coupling on superfluidity.
As we keep the total particle number fixed, the chemical
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potential is unimportant for our results, and we set it to zero.
We utilize the C + + version of the ITensor library [38] in
order to implement a standard DMRG algorithm. In general,
we keep the truncation dimension capped at 200 which leads
to well-converged results. However, due to the degeneracy of
the ground states in the €2¢p = 0 limit, it is difficult to obtain
correct results for small values of 2 where low-lying states
are almost degenerate, and the DMRG algorithm tends to end
up in a superposition of almost degenerate ground states. At
half filling, well-converged results corresponding to the true
ground state are generally obtained for 2y > 0.1U, whereas
larger values of €2 are required away from half filling.

We, therefore, investigate the half-filling case in Sec. III B.
Motivated by findings in the half-filling case, we introduce an
effective theory in the strongly attractive limit in Sec. IIIC.
From this, we give a more detailed explanation of the physics
observed in the paired regime. The effective model is valid
for any combination of parameters t;, t>, 2, 6 (as long as U
is large) so that it becomes clear that the physics away from
the limiting case of , = 0 is not substantially different. In
Sec. III D, we, therefore, suggest a schematic phase diagram
for the system at r, = 0 as a function of €2y and the number
of particles per site n = N/L based on the effective model
and DMRG calculations for the full model at some repre-
sentative parameters. Finally, we further probe the validity
of the schematic phase diagram in the full model for strong
and moderate attraction by varying the number of particles
per site n in a DMRG calculation in Sec. IITE. In order to
investigate these features we first define how to quantify the
SF and charge-density-wave (CDW) order.

A. Correlation functions and off-diagonal quasi-long-range
order

For attractive interactions, quasi-long-range order (QLRO)
of the pairing and/or CDW can be formed in the ground states
of the RSFHM model. The properties of the pairs and density
waves can be probed by the correlation functions,

PG k) = (@ ¢ e aeig) = (@] ,8 jeuin). @)

C(j k)= ((hyj+n_; — i)y + A — 7))
= ((f,; + Ay j — )Ry + Ao p — 7). (5

Here 7 is the average density and is subtracted in order to
remove the trivial lattice ordering. Note that both functions are
invariant under the rotation of the Hamiltonian and can, there-
fore, be calculated in either frame, using the relevant creation
and annihilation operators. The numerical calculations in this
paper are performed in the original frame of the Hamiltonian
given in Eq. (1). In accordance with general convention for
one-dimensional systems (see, e.g., Refs. [39,40]), we refer to
the presence of the off-diagonal QLRO, signified by a power-
law decay of P(]j — k|) as a SF (quasi-) order throughout the
paper. The density-density correlations C(j, k) can similarly
display off-diagonal QLRO corresponding to a CDW (quasi-)
order. The model under consideration can also display true
long-range CDW order depending on the parameters.

A simple way to gauge the degree of pairing is the average
number of pairs 7,5 = 2Npir/N where N is the number of

particles and

Nyair = Y P(j, J), 6)
J

whereas polarization along the 6 direction,
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quantifies the imbalance between + and — particles.

The presence of QLRO in the real-space correlation func-
tions can also be probed by the eigenvalues of P(j, k), C(j, k)
or the Fourier transforms of P(j, k), C(j, k), see, e.g.,
Refs. [39-41]. The Fourier transforms of P(j, k) and C(j, k)
correspond to the pair momentum distribution and static struc-
ture factor, respectively,

1 .
nk) = 7 an: ef’('"*”)kP(m, n), )
1 A
_ —i(m—n)v
Sw) =+ mZ;e C(m, n), 9)

where L is the number of sites, and these are of
particular interest as both are experimentally measurable
in cold atom setups [13] allowing for the experimental
determination of QLRO. If the system is homogeneous
and the boundary condition is periodic, the peaks in
Fourier space are equivalent to the maximum eigenvalues
of the real-space correlation functions, which can be
diagonalized as P(j, k) /Npair = Zn Apn®pn(J)Ppn(k)
and  C(j,k)/ ;€. j) = Y Aeaden(ibea(k).  where
@pc),n(J) are the eigenfunctions of a pair (density) correlation
function. We denote these eigenvalues as Apg and A¢,o for the
SF and CDW correlations, respectively. Even in the case of
an open boundary condition, which we adopt in our DMRG
analyses shown below, the maximal values of n(k)/Ny,; and
S(w)/ Zj C(j, j) are well approximated by Ap and Ac .

The fact that maximum eigenvalues are proportional to L*
(with 0 < a < 1) whereas the remaining eigenvalues do not
scale with system size indicates the presence of QLRO in the
system [41]. If the maximum eigenvalues are constant with
system size, however, it indicates the absence of order. In
order to test this rigorously and extrapolate the eigenvalues
to the thermodynamic limit, one must investigate A poNpair OF
Aco Y. j C(J, j) as a function of the system size. For constant
L, however, a large value of Apy or Aco compared to the
other eigenvalues signifies QLRO in the real-space correlation
function at that system size. With the above normalization, the
sum of eigenvalues is unity such that Apo and A¢ o correspond
to the relative size of the largest eigenvalues and can measure
the QLRO. Comparing Apo and Ac g also allows us to probe
the dominant order at a constant L as the same normalization
is employed for both.
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FIG. 1. (a) App and (b) Aco, which measure the SF and CDW
QLROs, as a function of U/t and 2¢/U for § = 0. (c) and (d) cor-
respond to U/t; = 30 with the lines corresponding to § = 0, and the
triangles and diamonds corresponding to § = U/2. (c) shows np,;
(blue line and triangles) and m = M /N (red dashed line and dia-
monds) whereas the inset corresponds to a zoom-in on the polarized
regime. (d) shows the ground-state energy (black line and triangles)
and the energy of the fully paired (blue dotted line) and fully po-
larized (red dashed line) state in the absence of the hopping, where
|Epgs| = NU /2 is the unit of energy. All results are for N = L = 100.

B. DMRG results at half filling for £, = 0

In this subsection, we show results obtained by DMRG
simulations of Eq. (1) for#, = 0 and half filling. All results are
calculated for N = 100 and L = 100. In Figs. 1(a) and 1(b) we
plot Apo and Ac as functions of the interaction strength U /¢
and the Rabi coupling /U for § = 0. Although the CDW
QLRO is always large for ¢ < U, a clear maximum in Ap
emerges when €2 is slightly smaller than U (although the
CDW QLRO is still dominant), particularly, for strong interac-
tions. The area in which this enhancement is observed is very
small, however, as a transition to an almost polarized band
insulator (in which both the SF and the CDW off-diagonal
correlations decay exponentially) takes place at 2y &~ U. The
transition to the band insulator takes place at smaller values of
Q0/U for smaller interactions U'.

Npair and m = M/N [Fig. 1(c)] as well as the energy
[Fig. 1(d)] as functions of V8> + Q3 for § =0 and § = U
are also shown. Unlike the symmetric case (¢; = ;) where the
Rabi coupling is equivalent to a Zeeman field and [H@, fy il =
0 as y» = 0, the magnetization is not a good quantum number
for t; # ¢t and 2y # 0, i.e., [H,, fiz ;1 #0. In the former
case, the system becomes fully polarized, whereas it only
asymptotically approaches 1 after the transition in the latter
case [see the inset of Fig. 1(c)] due to the presence of spin
fluctuations. The behavior as a function of V8% + QF is very
similar for any combination of €2y, (as long as 2y # 0).
Finally, we plot the pair momentum distribution in Fig. 2.
Before the transition a clear peak due to the presence of SF
QLRO is visible. See the next two sections for a more detailed
explanation of both the momentum distribution (e.g., why the

pairs

n(k)/N,
1.2 0.04

1
>
=
(=}
c

0.8

0.6
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FIG. 2. The pair momentum distribution at half filling (N = L =
100) is plotted as a function of /U (§ = 0) for U = 30¢;, t, = 0.

peak is shifted from k = 0 to k = ) and the physics in the
paired regime in general.

C. Effective Hamiltonian for large attractive interactions

In the limit of strong attractive interactions, an effec-
tive Hamiltonian in terms of the fermion-fermion composite
bosons can be derived using second-order degenerate pertur-
bation theory. The perturbation starts from the ground state of
the Hamiltonian without hopping terms, given by N/2 pairs
with an energy E,,s = —NU /2 considering the hopping terms

as a perturbation. Note that, for U < /8% 4+ Q2, the state
consisting of N spin-polarized fermions becomes the ground
state, and the perturbation definitively breaks down. This ap-
proximately corresponds to the transition point identified in
Sec. III B, and the energies plotted in Fig. 1(d) correspond to
—NU/2 (blue dotted line) before the transition, whereas the
energy after the transition corresponds to ——v 8% + Q2 (red
dashed line). The alignment of the energies shown in Flg 1(d)
and the high degree of pairing displayed in Fig. 1(c) for
V82 + Q3 < U indicates that the perturbation theory should
describe the system well for large values of U.

Carrying out the perturbation (see the Appendix for de-
tails), an effective Hamiltonian given in terms of the hard-core
bosons &; = ¢; 1¢;,— can be found as

Hefr = —tefr Z(&jaﬂ-l +H.c.)

+ Verr D Ajijen — peir Y i, (10)
J J
where
fer = l|:21‘112 + Q—%(n —t2)2<1 - 1~ )}
U 2(25 +6?) 1- Q2
(11)
and
Vetr = et = l[Z(If +5)+ 52— 0 (t1 —1)*
U Qz + 52
( 1+ ! ):| (12)
1-Q2
with @ = V@7 +6%/U.
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The hard-core bosonic model can be equivalently described
by an XXZ model, utilizing the mapping a" — §*,a — S§~,

and A — 8% 4+ %, which results in
Heyr = —J{Z (8387, + 8387, — Z <S§5§+1 - -)]
(13)

J

where J =2 and A = ;/;“ . Note that the model
can be equivalently described by the antiferromag-
netic model by applying the unitary transformation
—H(UJ,-AN)=U'HUJ, AU and (A,J) —> (—A, =J),
where U = exp(—i ZZJW=1 S‘j) [42]. For t; =t, the model
corresponds to the SU(2)-symmetric Heisenberg model for
any values of § and 2. The transverse and longitudinal spin
correlations, respectively, correspond to the SF and CDW
correlations in the full model.

For Q¢ = 0 the above Hamiltonian corresponds to ear-
lier derivations [27,43]. In this case t, = O (or, equivalently,
t; = 0) maps to the pure Ising model. Finite Asymmetry inter-
polates between the two limits with the SU(2) symmetry being
slowly restored as r, — #;. A Kosterlitz-Thouless- (KT-) type
transition takes place at A = 1 at half filling, with long-range
CDW (antiferromagnetic order in the spin chain) present for
A > 1 in the thermodynamic limit [27,42-44]. Due to the
exponentially slow opening of the gap, however, QLRO is still
observed for relatively large system sizes even at half filling.

Similar observations can be made for the finite 2 case.
The sign of e changes when v/ + 87 is larger than
some value, resulting in a change of sign for both J and
A which means that the model corresponds directly to the
antiferromagnetic XXZ model. In the limit of v/ Q3 + 8% =
(€ =1), A=—1 so that the SU(2) symmetry is restored
for any combination of #; and #,. This corresponds to the
maximum possible value of the ratio between the effective
hopping f.¢ and repulsive interaction Vg and leads to the
same degree of superfluidity as the #; = #, case. The effective
model breaks down in this limit, however, as this is the exact
point at which the energy of the polarized state becomes
smaller than that of the paired state. The exact point at which
SU(2) symmetry is restored can, therefore, not be observed
in the original FHM. The ratio 'te“l for ©, = 0 is plotted as a
function of § and 2 in Fig. 3. Tfns explains why the results
for finite 6 and § = 0 in Sec. III B are so similar, in both cases
the resonant enhancement is observed as long as 2y # 0.
From this, we conclude that there is a resonant enhancement
of the superfluidity for v/Qj+ 8> — U as observed in
Fig. 1(a). Q@ = +/Qj +8%/U determines the importance of
the Rabi contribution to the effective hopping with Q = 1
corresponding to the resonant limit.

The change in sign for #.¢ in the effective model shifts the
energy bands and the lowest energy is, therefore, expected at
k = m rather than at k = 0. From the pair momentum distribu-
tion plotted in Fig. 2 (based on the DMRG calculations of the
full FHM), we see that the peak is indeed observed at k = 7.

D. Schematic phase diagram and finite-size scaling

Owing to the presence of the U(1) symmetry breaking for
the individual components { = + and — in the Hamiltonian,
the system will always have pair-breaking fluctuations. This

1 [test]
Vett
0.4

FIG. 3. The ratio % as a function of § and 2 for t, = 0. The

white space corresponds to v/Q3 + §* > U where the perturbation is
no longer applicable.

cannot be captured by the effective model, which describes a
definite conserved number of fermion pairs which leads to an
XXZ model with a well-defined and finite spin gap. However,
the contribution beyond the effective theory is relatively less
important in the regime of applicability of the perturbation
theory, which explained the numerical results at half filling
fairly well as discussed in the previous section. We, therefore,
expect to be able to understand the important physical proper-
ties in the paired regime from the effective model but will also
confirm by numerical calculations of the full model.

The one-dimensional XXZ model can be solved exactly
utilizing the Bethe ansatz approach [45,46]. As the magne-
tization in the XXZ model is connected to the number of
particles per site in the Hubbard model, we can utilize the
results and formulas presented in Ref. [46] to understand the
phase diagram of the effective model. Based on these prior
results and numerical evaluations of the full model, the n vs

= +/Q} + 8% /U schematic phase diagram of the RSFHM
with £, = 0 at constant (relatively large) U is given in Fig. 4,
where n = N/L is the number of particles per site.

For n =1 (half filling), the system displays long-range
CDW order for any 2 < Q. according to the effective model.
Away from half filling, however, the effective model corre-
sponds to a Luttinger liquid. In the Luttinger-liquid regime,
the decay of the two correlation functions can be expressed as
functions of r = |i — j| [46,47],

Kp cos(2kgr)

C(r)y~ ) s

(14)

P(r) ~ (15)

where «k, and k, are, respectively, the Luttinger parameters
for the charge and spin degrees of freedom and kp corre-
sponds to the Fermi momentum. Within the effective theory
corresponding to the paired regime, the XXZ model is spin
gapped, and we can consider k, = 0. The dominant QLRO
can then be determined by calculating the Luttinger charge
parameter k,. The shape of the k, = 1 line in Fig. 4, which
separates the two regimes of dominant SF or CDW QLRO in
the system, is based on numerically solving the Bethe ansatz
equations. The Luttinger parameter can also be approximately
obtained from the numerical DMRG results in the full model
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FIG. 4. Schematic phase diagram as a function of the number
of particles per site n and € for #, = 0 and fixed large attractive
interaction U when £ is not too close to zero. For € < . at half
filling the system displays CDW long-range order (thick blue line)
with a transition to a polarized band insulator (thick orange line)
taking place at a critical value. For n < 1 and € < . the system
corresponds to a Luttinger liquid (LL). The dominant QLRO in the
LL depends on the filling n, and & and is separated by the line
k, = 1.Forn < 1 and Q > 1, the system becomes mostly polarized,

and the CDW QLRO is dominant.

as Kk, = C(k =2 /L)L/2 [48] and is expected to converge
to a constant with increasing system size in the regime of
applicability of the Luttinger theory. The SF QLRO for the
Luttinger liquid corresponds to a standard SF (i.e., a single
superfluid peak in the pair momentum distribution), and the
resonantly enhanced superfluid region described by the effec-
tive model is, therefore, not of the FFLO type.

At © > 1, the effective model breaks down as the sys-
tem becomes mostly polarized, requiring analyses of the full
model for understanding the physics. In order to understand
this regime and confirm the predictions of the effective model
in the regime of its applicability, we consider the decay of
the correlation functions with increasing r = |i — j| in the
full system. In Fig. 5(a), we show the Luttinger parameter
ko, which is closely related to the algebraic decay of the
correlation functions through Eqgs. (14) and (15) as a function
of the system size (with a maximum of L = 200) for the half-
filling (n = 1) and quarter-filling (n = 1/2) cases at U = 301,
and €y = 28# (£ = 0.93), which is in the resonant region.
Figures 5(b)-5(d) show three representative parameter sets of
the correlation functions as functions of r = |i — j|, which,
respectively, correspond to the cases at half filling (n = 1) and
at quarter filling (n = 1/2) in the resonant regime ¢ = 28¢,
(€2 = 0.93), and the one at quarter filling (n = 1/2) in the
polarized regime Q2 = 34¢; ( = 1.13). In order to minimize
the boundary effects, we consider P(r) = P(4~, £52) and
Cr)y=C( %, %). In general, the boundary effects start to
come into play as r > L/2 [see Figs. 5(b)-5(d)] after which
the behavior changes drastically. Indeed the calculations at
larger system size clearly shows that this change is a boundary
effect.

For quarter filling in the resonant regime, we clearly see
in Fig. 5(a) that the Luttinger parameter is well converged to
ko ~ 1.3 at L > 50. This is consistent with the fact that both
the SF and the CDW correlations display a power-law decay
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FIG. 5. All plots correspond to t, = 0, U = 30¢;. (a) shows the
Luttinger parameter as a function of system size at € = 0.93 for
n =1/2 (green diamonds) and n = 1 (red triangles). (b), (c), and
(d) show P(r) and C(r) for @ = 0.93, n=1/2,Q=1.13, n=1/2
and € = 0.93, n = 1, respectively. The system sizes are given by
L = 48 (blue triangles), L = 96 (magenta diamonds), and L = 200
(black squares).

with P(r) oc r=%3* and C(r) o r~!? as shown in Fig. 5(b).
Indeed, these exponents are close to those predicted by the
Luttinger theory, which is, respectively, —0.76 and —1.3.
The actual decay exponents are slightly biased towards CDW
QLRO compared to those expected from the Luttinger liquid,
which is likely due to the presence of finite polarization in the
full model. In the polarized regime, both P(r) and C(r) also
display a power-law decay [Fig. 5(c)], implying that there is
no phase transition between the two regimes. Although the
pairing fraction in the polarized regime never becomes zero, it
asymptotically approaches zero as € increases and the power-
law decay for the correlations is very fast P(r) o r=" (n =~ 4).
This is in stark contrast to the resonant regime where the
SF correlations are dominant at quarter filling, and we can,
therefore, clearly distinguish the SF properties of these two
regimes. For half filling, both correlation functions display a
power-law decay [Fig. 5(d)], although a slight flattening of
the C(r) curve is visible for large r at L = 200. The Luttinger
parameter decreases with the system size [Fig. 5(a)], which
suggests that the system is, in fact, not a Luttinger liquid. This
is consistent with the analysis of the effective theory where
a KT transition to a long-range ordered CDW phase takes
place at the resonant point and long-range CDW is expected
for < 1 at half filling. We, therefore, expect that P(r) would
start to show exponential decay for larger system sizes and
that C(r) would become constant. Note that this means the
resonant regime will display SF-like behavior even at half
filling for system sizes relevant in most cold atom lattice
experiments. At half filling, there is a phase transition to a
band insulator as mentioned in Sec. III B.
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FIG. 6. The ground-state properties are plotted by varying the particle number per site n = N/L, where § = 0. (a) shows S(v)/L as a
function of n, where U = 30¢; and 2y = 25¢,. (b) and (c) show Apq (red full line), Ac o (blue dashed line), and «, (black full line) as a function
of the filling ratio n for U = 30t,, Qo = 25¢;, and U = 5t;, Qy = 2.8¢,, respectively.

E. SF and CDW order as a function of the particle
number per site

From the effective model, we expect the values of Q where
superfluidity is dominant to be broadened as n is lowered.
However, observing this in the DMRG calculations is dif-
ficult because the low-energy states are energetically closer
the further one goes from the resonant limit and half fill-
ing. Instead, we focus on the resonantly enhanced region
as the DMRG method gives well-converged results in this
regime, and investigate the CDW and SF QLRO as a function
of the particle number per site n, corresponding to vertical
lines within the nonpolarized regime of the diagram given
by Fig. 4.

To investigate the dominant QLRO as a function of n, we
compute the Luttinger parameter «, as a function of »n for
t, = 0 in the strongly interacting region U = 30z, Q¢ = 2511,
8§ =0 (2 = 0.83) where the effective model is expected to
work well and for more moderate interactions U = 5¢1, Qo =
2.8t,8 = 0(Q = 0.56). A smaller value of € is chosen in the
latter case as the polarization becomes dominant at smaller
Q for smaller values of U. From Fig. 6(a) in which S(v)/L
is shown, it is clear that the single w peak at half filling for
the structure factor splits into two symmetric peaks around
v = 7 and that their absolute values decrease as n is lowered.
In the upper panels of Figs. 6(b) and 6(c), Apo and Ac are
plotted. Apo remains bigger than Ac for a relatively large n
region; 0 < n < 0.8 in the case of U = 30r; and Q¢ = 251
(0 < n <0.5 in the case of U = 5, Qy = 2.8). In Figs. 6(b)
and 6(c), we also plot the Luttinger parameter k, in the
lower panels and show that these crossing points of Apg and
Ac,o correspond to the point where «, crosses 1 signifying
the change in dominant QLRO. Overall this implies that for
lower n the SF QLRO is dominant. These results correspond
to a vertical slice of the schematic phase diagram in Fig. 4
with € = 0.83 and 0.56, respectively, where both are below
the value at which polarization becomes dominant, which is
smaller for the smaller value of U.

IV. CONCLUSION

We have shown that superfluidity can appear by tuning
the Rabi coupling in a spin-dependent Fermi-Hubbard model
for any combination of hoppings. In particular, this still

holds when one component is immobile and the superflu-
idity is entirely absent without the hybridization introduced
by the Rabi coupling. The maximum enhancement of super-
fluidity happens when the Rabi coupling is slightly smaller
than the interaction strength, just before the system starts to
strongly polarize. A slightly doped system (compared to the
commensurate half-filling case) displays a sharply resonant
enhancement, whereas larger doping allows enhancement to
be observed at somewhat smaller Rabi couplings.

Although our results focus on the one-dimensional case
where exact numerical results can be obtained by use of
the DMRG method, the rotated Hamiltonian introduced in
Eq. (3) and the effective model we derive at large attrac-
tive interactions are easily generalized to higher dimensions.
An investigation into the higher-dimensional case would,
therefore, be an interesting future direction. Since the ef-
fect of finite temperature should be taken into account for
a quantitative comparison with experiments, an extension to
finite-temperature systems is a natural continuation of our
research as well.
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APPENDIX: DERIVATION OF THE EFFECTIVE MODEL
AT LARGE ATTRACTIVE INTERACTIONS

In order to carry out the derivation of the effective Hamil-
tonian, let us write the rotated Hamiltonian given by Eq. (3)
as

Hy = Hy + H, (A1)
H=T+01,+1_, (A2)
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Hy = [(—p+ 8y + (—p — )i ]
j

—U Y Ay, (A3)
J
where
T= Z(—f&z@z,,j@c,m +H.c.), (A4)
(=t~ j
f+ =V Z(éi,]‘é—J"‘l + éi,j-&-lé—,j)v (A5)
J
f‘_ = VY Z(éT_“ié.»,_,j_yl + 6T—,j+16+,j)‘ (A6)

J

As a starting point for deriving the effective Hamilto-
nian, we consider the Hamiltonian Hy. For U > /8% + Q%
the manifold of degenerate ground states |yp;) € P is
given by all combinations of N/2 pairs (for example, P =
{1220}, |202), |022)} for N = 4, M = 3). The energy of these
states is —N/2U — Nu. The effective Hamiltonian is derived
by considering the hopping terms as a perturbation. The ex-
cited eigenstates correspond to the complement of the ground-
state manifold and are denoted by [/ ;) € Q. Applying the
hopping terms to the ground states always creates states in the
complement, and the first-order contributions of the pertur-
bation is, therefore, zero Zj’k(t//p,jlﬂl [Vpi [Wpj) (Vpel = 0.
The effective Hamiltonian is then given by the second-order
term,

ﬁeff = Z

i,j.k
x (Yo 1T + Ty + T_[Wpi) (Wpsl.

Note that only terms which can connect two states from the
ground-state manifold to the same state in the complement can
have any contribution. I, connects to a state with one broken
pair and Ny = N/2 + 2 with a corresponding energy E; =
%U +U—-Np+ «/Q% + 82, whereas ["_ connects to a
state with a broken pair and N_ = N/2 4 2 with a correspond-
ing energy E; = YU 4+ U — N — v/QF + 6. T connects
to a state with a broken pair, and Ny = N_ = N/2 with a
corresponding energy E; = %U + U — Npu. This means that
(Wpil T 1o, ) (¥ jIT<|¥p) will have no contribution. Simi-
larly (Ypi| T+ %0, ;) (Yo ;|04 |¥ps) has no contribution, and
we are left with three terms which can be written, such as

1 LA .
W) Wl T+ T + Ty
g Ve T + P+ Pl

(AT)

- —1 A
Heirr = -~ ;(vaﬂTzW/P,k)h//Ri)(WP,I(L (A8)

—1 A A
D el P T W) W) (Wral,

Hpp oo = —————
U—/Q+8 ik

(A9)
and
Aoy = —————=—=> (Ypil D T [Wp) Wi (Yexl.

U+,/s22+82 ik

(A10)

Here we have utilized that E; is constant for any value of the
states in the complement that can be connected to by these
terms. This allows us to pull it out of the sum after which we
see that the remaining sum corresponds to a matrix product
leading to the above equations. Note that the first term corre-
sponds to a perturbation in the absence of the Rabi-coupling
term which has already been carried out in, e.g., Refs. [27,43].
In order to derive the effective Hamiltonian, we need to
evaluate the matrix elements. As these only connect to neigh-
boring pairs we can do this by considering the effect on the
two-site states |20) and |02) (corresponding to the j and j + 1
sites). Applying the local hopping elements twice to the states
corresponding to Eq. (A8), the nonzero terms can be arranged
as
toito,—CL p 18l e j41102) = tp 419, _|20),
toto 1" & &l ey 11102) =t 1y 4]20),

AF A At o4
lo 19 4+Co ;1 1C1jCy ;Cy j+1102) = 19,419 1102),

t@,—te,—61’1'4,16—,]‘61,]‘6—,]'-‘(-1 [02) = 19,15, —102),
and

toto. & ;164 ;00 120 120) =ty 419 -102),

toto 0 6 ¢ 184 7120) =ty 1 4102),

AT A At N
lo 419 4+Cy ;Cy jr1Cy ;11C+,j120) = 19,419, 1120),

toto—&" e el e ;120) =ty 15 _|20).

These can be expressed in terms of the effective hard-core
AL A A A AT
bosop operators aj = c+’]c_,J.and hj = a;a;. As we only
consider states with zero or pair occupation 71 = iy = fi_ at
each site. Utilizing this we can rewrite the sum as that over
the effective operators,

tg, 119, —
U

X (2ﬂjﬁj+1 — ﬁj — ﬁj+1).

th,+15_
U

-2

(21 ajq +al j410) +
(A11)

Here we utilized the fact that ¢, Jc .y =1- jc(7 ;j and the
fermionic anticommutation relations for sw1tchmg operators
at different sites.

The interspecies hopping terms can be arranged as

Vil e el ;24 j41102) = 7120),
VezAJIr ]+|C— /CJf 6+,j+1|02> = )/92|02>,
vi é; 6o el e 120) = ¥7102),
Vael o el 184 120) = 7 120)
for Eq. (A9) and

AT

2 N A a 2
yiel e nél e 11102) = y7120),

Vil aéy el e 1n1102) = 7102),

AT

2 PN AT A
Vs c_’j+lc+,jc+yj+]c_’j|20) =% |02),

AT

V(;ZC—,j5+,j+l aT+,j+16—,j|20> = 3’92|02>

for Eq. (A10). The sums can be rewritten in terms of the effec-
tive operators using the same properties as for the intraspecies
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hopping terms,

2U’}/2 PN AT A A . ~
W;_F(Sz)(ajajﬂ +a5,,8) +20Rj 0 — R — ).
0
(A12)

Note that for the kinetic-energy terms the fermionic commu-
tation relations resulted in a change in sign compared to the
intraspecies hopping case. Combining all terms the effective
Hamiltonian can be expressed using the hard-core bosonic
operators as

Hegp = —tefr Z(&;&ﬂrl +H.c.)
J

+ Vet E Rjijy1 — Mett E i
j J

J

(A13)

with
2 Uy?
g gy MY
and
2 Uy}?
Vetr = pet = — (15, +15_) +4 4 (A15)

U U2 —(Q2+62)

By inserting the values of #y 1, % _, yp» the equations in the
main text are obtained.
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