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Local phase shift due to interactions in an atom interferometer
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We study the phase shift induced by atomic interactions at the output of an atom interferometer. Due to the
mutual interaction between the two overlapping Bose-Einstein condensates, the phase exhibits a spatial profile.
We evaluate the phase gradient using a perturbative method based on the Feynman path-integral approach. Our
model accounts for the effects of the population imbalance between the two arms of the interferometer and the
difference between the scattering lengths of the hyperfine levels. We also investigate these effects experimentally
by measuring the interaction phase shift for a set parameters. Our experimental results are well reproduced by
our theoretical model.
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I. INTRODUCTION

Matter-wave interferometry has been used to measure with
extreme accuracy several physical quantities [1] such as grav-
ity [2–7], inertial forces [8–11], and fundamental constants
[12–14] enabling advanced tests of general relativity [15–18]
and quantum electrodynamics [13,14]. In addition, many ex-
periments based on atom interferometry are underway or have
been proposed in order to test short-range forces [19–22] and
different models of particle physics in the search for unknown
forces or dark energy [23–29]. This technology, which has not
yet reached its full potential, is also at the heart of large-scale
or space instruments [30–32]. These instruments are being
built, with targeted significantly improved performances, for
testing fundamental physics with unprecedented accuracy, de-
tecting gravitational waves [33–36], and mapping the Earth’s
gravitational field from satellites [37,38].

Both the sensitivity and accuracy of the most advanced
atom interferometers are limited by the transverse motion
of the atomic cloud [39], which exalts systematic effects
related to short-scale intensity fluctuations [40], the Gouy
phase, and wave-front curvature [41]. Due to wave-front dis-
tortions, transverse motion also limits the diffraction order
of large-momentum beam splitters [42–45]. In this context,
Bose-Einstein condensates (BECs) constitute ideal atomic
sources. In addition, the atomic interactions that are inherent
in such dense clouds can generate spin squeezing, which could
be exploited to surpass the standard quantum limit [46–48].

However, atomic interactions also induce a detrimental
phase shift that can undermine the benefits of using Bose-
Einstein condensates for precision measurements with atom
interferometry. Effects of interactions have been studied both
theoretically and experimentally to understand their impact
on the phase of Bose-Einstein condensates during free evo-
lution [49–53]. Early work showed that upon release from
the trapping potential, the BEC expands due to repulsive
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interactions and develops a nonuniform phase profile [54–56].
In Ref. [49], the authors measured the functional form and
time evolution of this phase profile by combining interfer-
ometry with spatially resolved autocorrelation. They also
measured the small velocity imparted to the two BEC wave
packets from their mutual repulsion. More recent work has
focused on the local modification of the condensate phase
due to mutual interactions and has showed that modifications
occur only in the region where the wave packets overlap [53].

This nonuniform phase profile impacts the accuracy of
measurements based on atom interferometry. In this paper,
we experimentally evaluate this effect by measuring locally
the phase shift at the output port of an atom interferome-
ter and its dependence upon the population imbalance, the
trapping-potential frequencies, and the condensate release
time. Furthermore, we present an approach to calculate the
effect of interactions using the Feynman path integral. Nu-
merical simulation based on this method reproduces well our
experimental data. This approach differs from that used in
previous works [50–53] where the evolution of the BEC phase
was obtained from the Gross-Pitaevskii equation by consid-
ering the time evolution of its density. In most works the
expansion of the condensate is described by the Castin-Dum
model [57] valid in the Thomas-Fermi regime. Our method
based on the Feynman path integral allows us to calculate
the phase shift at the output of the interferometer for any
geometry. It also allows the contributions of the self- and
mutual interactions to be evaluated separately.

This paper is organized as follows. Section II presents the
theoretical model we have developed to evaluate the phase
shift at the output of an atomic interferometer formed by a
sequence of three light pulses in the so-called Mach-Zehnder
configuration (see Fig. 1). Each pulse induces a stimulated
Raman transition. We use a perturbation approach to derive a
general formula for calculating the effects of self-interaction
and mutual interaction between the two interfering conden-
sates. Finally, based on Castin and Dum’s description of the
BEC wave function, we obtain a formula for the phase profile,
the signature of the mutual interaction. In Sec. III we present a
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FIG. 1. At time t0 we release the BEC from the dipole optical
trap. During the free-fall time, it expands, and the interaction energy
decreases. After a falling time TF , we apply the three-pulse sequence
θ -π -θ . Trajectory A is in green, and trajectory B is in blue. Solid lines
show state |1〉, and dashed lines show state |2〉. Thick lines show the
trajectories RA/B of the center of mass of the atomic wave packet.
Thin lines show the trajectory rA/B used to integrate the Lagrangian
for a given final position robs

set of experimental results. We study the behavior of both the
phase gradient and the total interaction phase shift by varying
different experimental parameters.

II. THEORETICAL EVALUATION OF THE INTERACTION
PHASE SHIFT

The goal of this section is to calculate the phase at the out-
put of an atom interferometer in the mean-field approximation
using the Feynman path-integral method [58]. Here, we apply
this approach, which is commonly used in atom interferome-
try to calculate the phase induced by the external potential, to
the case of the mean field. The Feynman path-integral method
states that, given an initial wave packet with phase φ(r(t0), t0)
at time t0, the phase at time t can be calculated by integrating
the Lagrangian L along the classical trajectory r(t ) that makes
the action extremal:

φ(r(t ), t ) − φ(r(t0), t0) = 1

h̄

∫ t

t0

L(ṙ(t ), r(t ), t )dt, (1)

with

L(ṙ(t ), r(t ), t ) = 1
2 mṙ2(t ) − V (r, t ) (2)

and V being the potential experienced by an atom of mass m.
The trajectory should match the initial velocity of the cloud
[ṙ(t0) = −i(h̄∇φ/m)].

In the mean-field approximation, the interaction potential
is proportional to the cloud density ρ(r, t ). To calculate the
phase in our interferometer, we have to consider the internal
states and the effect of the Raman transition. The Raman
transition couples two internal states, namely, |1〉 and |2〉. The
total mean field experienced by an atom in state |i〉 is the
sum of the mean field induced by the atoms in state |i〉 from
its own atomic cloud (the so-called self-interaction) and the
one induced by the atoms from the other cloud (the so-called

mutual interaction; see Fig. 1). It can be written as

VMF(r, t, i) =
∑

j

Ngi jρ(r, t, j), (3)

with gi j = 4π h̄2ai j/m, where ai j are the scattering lengths.
The interaction potential depends on the normalized density
ρ(r, t, j) of the atoms in the internal states | j〉.

Raman transitions are performed with two counterpropa-
gating laser beams (k1, ω1 and k2, ω2), leading to an effective
momentum keff = k1 − k2 and pulsation ω = ω1 − ω2 [59].
To use the Lagrangian formalism, one can take into account
the effect of the Raman transitions with an effective potential.
For the three-pulse interferometer in Fig. 1, this potential is
given for each path A and B by [60]

WA(r, t ) = h̄[keff · r(t ) − ωt][δ(t − ti ) − δ(t − t1)], (4)

WB(r, t ) = h̄[keff · r(t ) − ωt][δ(t − t1) − δ(t − tf )]. (5)

Indeed, when an atom performs a Raman transition and is
transferred from |1〉 to |2〉, the effective phase of the laser is
added to the phase of its wave function. It is subtracted when
the atom is transferred from state |2〉 to state |1〉. With this
effective potential, the trajectory that extremizes the action
accounts for the recoil induced by each Raman transition.

To compute the phase difference at a given observation
position robs and time tobs (see Fig. 1), we consider two tra-
jectories, rA(t ) and rB(t ), which start with the initial velocity
v0 of the cloud and satisfy rA(tobs) = rB(tobs) = robs (note
that they may not start at the same position). The spatially
dependent phase difference between the two waves is given
by

�φ(robs) = φ(rA(t0), t0) − φ(rB(t0), t0)

+ 1

h̄

∫ tobs

t0

[LA(ṙA, rA, t ) − LB(ṙB, rB, t )]dt . (6)

In typical experiments, the Thomas-Fermi approximation
is applicable, and the Castin-Dum description of the BEC
density [57] is commonly used. However, due to the mu-
tual interaction, it is not possible to compute analytically the
density in each branch of the interferometer and therefore
the classical trajectories which depend on the interaction po-
tential. We propose here to treat the mutual interaction as a
perturbation.

Let us now consider a reference configuration in which (i)
there is no interaction between the two clouds and (ii) the
mean field is the same on both arms of the interferometer
(same scattering length g11 = g22 and a 50:50 atomic beam
splitter). In this situation, the two clouds are identical with
respect to their centers of mass and have the same density
ρref (r, t ). The reference potential used to calculate the clas-
sical trajectories is

Vref,A/B(RA/B(t ) + r, t ) = cref (t )Ng11ρref (r, t ), (7)

where RA/B are the trajectories of the centers of mass (thick
lines in Fig. 1) and

cref (t ) =
{

1 t < ti,
1
2 ti � t � tobs.

(8)
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Assuming that the shape of the cloud is given by this refer-
ence density, the potential due to the atomic interactions felt
by the atoms in the cloud along trajectory A, for ti < t < t f , is

VA(RA(t ) + r, t ) = N
g11

2
ρref (r, t )

+ N
[
cA(t )gξA(t ),ξA(t ) − g11

2

]
ρref (r, t )

+ NcB(t )gξA(t ),ξB (t )ρref (r + �R, t ), (9)

where ξA/B(t ) represents the internal state of the atom (1
or 2), cA/B(t ) is the proportion of atoms in path A or B,
and �R(t ) = RA(t ) − RB(t ). The first term corresponds to the
reference potential, the second corresponds to the correction
of the self-interaction due to the difference in the scattering
lengths a11 and a22, and the last term corresponds to the mu-
tual interaction. For trajectory B, there is a similar equation,
exchanging A and B and replacing �R(t ) by −�R(t ).

For rubidium, |(a22 − a11)/a11| is around 6%, and in a
typical experiment, the population imbalance is a few percent.

Moreover, the mutual interaction term is non-negligible only
when the two clouds overlap. Our approximation consists of
considering the last two terms of Eq. (9) as perturbations when
we derive the equations of motion for the classical trajectories.
This means that only the first term of Eq. (9) is responsible
for the repulsive force. We denote by V pert

A/B the interaction
potential that accounts for the last two terms.

We now consider an atom after the first Raman pulse.
It is in a superposition of two wave packets that propagate
along the reference trajectories rA and rB. These trajecto-
ries are determined from the reference configuration. Due to
symmetry, the relative trajectories with respect to the motion
of the center of mass are the same: we can write rA/B(t ) =
RA/B(t ) + rref (t ). In the absence of any perturbation, the two
trajectories are symmetric, and the total phase shift at the out-
put of the interferometer is zero. At first order, the total phase
shift could be calculated by integrating the perturbation along
the unperturbed trajectories [58]. These trajectories overlap
for t < ti and t > t f , and the potential is the same (atoms
are in the same state); we can therefore restrict the integral
to ti < t < t f and

�φ(robs) = 1

h̄

∫ t f

ti

[
V pert

A (RA(t ) + rref (t ), t ) − V pert
B (RB(t ) + rref (t ), t )

]
dt . (10)

By separating contributions from mutual and self-interaction, we obtain

�
self (robs) = 1

h̄
Nα(g11 + g22)

∫ tf

ti

ρref (r, t ) dt + 1

h̄

N

2
δg

[∫ t1

ti

ρref (r, t ) dt −
∫ tf

t1

ρref (r, t ) dt

]
, (11)

�
mut(robs) = 1

h̄
Ng21

(
1

2
− α

)[∫ tA
s

ti

ρref (r + �R(t ), t ) dt +
∫ tf

tA
c

ρref (r + �R(t ), t ) dt

]

− 1

h̄
Ng12

(
1

2
+ α

)[∫ tB
s

ti

ρref (r − �R(t ), t ) dt +
∫ tf

tB
c

ρref (r − �R(t ), t ) dt

]
, (12)

where α = |cA(t ) − cB(t )|/2 is the population imbalance be-
tween the two arms of the interferometer and δg = g22 − g11.
The boundaries of the integrals (11) and (12) account for
the finite extension of the two interfering clouds: tA

s (tB
s ) is

the separation time when the atom on trajectory A (B) leaves
the overlap zone, and tA

c (tB
c ) is the recombination time when

the atom on trajectory A (B) enters the overlap zone. They
depend on the expansion and the separation velocities of the
two interfering condensates.

The Castin-Dum model [57] provides a good descrip-
tion of the BEC dynamics in time-dependent traps when the
Thomas-Fermi approximation is satisfied. It gives the follow-
ing formula for the BEC density at time t :

ρ(r, t ) = μ

g11λx(t )λy(t )λz(t )

×
(

1 −
∑

s=x,y,z

[rs(t )/rslλs(t )]2

)
(13)

when the last term is positive and ρ(r, t ) = 0 otherwise. μ

denotes the chemical potential of the initial state, i.e., of the

system before the application of the first Raman light pulse:

μ = h̄ω̄

2

(
15Na

√
mω̄

h̄

) 2
5

, ω̄ = (ωxωyωz )
1
3 . (14)

ωs is the optical trap frequency along the s axis, rsl =√
2μ/mω2

s is the Thomas-Fermi radius, and the scaling factor
λs(t ) is governed by differential equations derived by Castin
and Dum from the scaling ansatz for a single-component BEC
[57]:

d2λs(t )

dt2
= ω2

s

λs(t )λx(t )λy(t )λz(t )
. (15)

In our experiment, the Raman beams propagate along the z
axis. The two clouds hence separate along this direction, lead-
ing to a phase gradient from the mutual interaction. We obtain
the spatial profile of the phase shift �
mut(z) by averaging
Eq. (12) over transverse coordinates (x, y).

For α = 0 (perfect π/2 Raman pulses), we show that the
phase �
mut can be written in first order in z as

�
mut(zobs) = 2

h̄

a12

2a11

zobs

λz(tobs)

∫ tf

ti

μ(t ) f (�ZR)dt, (16)
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FIG. 2. Evolution of the quantity f (�ZR )μ(t ) during the inter-
ferometer sequence for different values of the release time TF and
trapping frequencies.

with

μ(t ) = μ

λx(t )λy(t )λz(t )
, �ZR = �Z

zlλz(t )
, (17)

and the function f is defined by

f (x) =
{

x(x4 − 1) if x < 1,

0 otherwise.
(18)

The form of Eq. (16) is interesting as it dissociates the effects
of the chemical potential μ(t ) and of the separation of the
two condensates f (�ZR). The temporal evolution of these
two terms depends on the expansion dynamics of the con-
densate, which is set by the trap frequencies. In Fig. 2 we
plot μ(t ) f (�ZR) for two sets of trapping frequencies and two
different release times TF. We clearly observe that the mutual
interaction is significant at the beginning of the interferometer
and that it decreases as the condensates dilute.

III. EXPERIMENT

We produce a 87Rb Bose-Einstein condensate by evapo-
rative cooling in an all-optical trap which consists of three
Gaussian laser beams at a wavelength of 1070 nm. Two rel-
atively wide beams of 170-μm waist cross under a shallow
angle and provide a large trapping volume, the so-called reser-
voir, which is loaded from an optical molasses. A tightly
focused third beam of 25-μm waist, the so-called dimple
beam, crosses the reservoir at an angle of 65◦. This geom-
etry provides the high confinement necessary for efficient
evaporation. The maximum laser power in the reservoir and
in the dimple is 24 and 0.5 W, respectively. To produce a
BEC in a pure Zeeman state, we use the spin-distillation
technique [61], where we apply a magnetic field gradient dur-
ing evaporation that selectively reduces the depth of the trap
for magnetically sensitive states. We produce about 220 000
atoms in |F = 1, mF = 0〉 after 1.7 s of evaporation. The trap-
ping frequencies (νx, νy, νz ) at the end of the evaporation were
measured to be (50(2), 115(10), 115(10)) Hz. At time t0, the
BEC is released by turning off the trapping potential and falls
freely for a duration TF prior to us applying the light-pulse
sequence θ -π -θ (Fig. 1). Each light pulse consists of two ver-

FIG. 3. An overview of the experimental setup. The bottom inset
shows the detection timing sequence.

tically counterpropagating laser beams, which drive Raman
transitions between the two hyperfine levels |F = 1, mF = 0〉
(state |1〉) and |F = 2, mF = 0〉 (state |2〉) of the 5S1/2 elec-
tronic ground state. The two Raman lasers are phase locked.
A detailed description of the electronic system for controlling
their frequencies and their phase difference is given in the
supplementary material of Ref. [14]. The first light pulse splits
the initial Bose-Einstein condensate into two wave packets.
The relative atom number between the two arms (i.e., the
parameter α) is controlled by adjusting the duration of the first
light pulse. Figure 3 gives an overview of the experimental
setup. To measure the number of atoms in F = 2 and F = 1,
we use a sequence of three probe laser pulses, each resonant
with the cycling transition (5S1/2 F = 2 −→ 5P3/2 F ′ = 3).
The first pulse measures the number of atoms in F = 2, which
are then pushed away (pusher beam). The atoms in F = 1
are first pumped to F = 2, then detected by the second probe
pulse. The third pulse shines on the camera without atoms to
get a reference picture of the laser beam intensity.

To probe the atomic phase, we scan the phase difference of
the Raman lasers �φL at the third light pulse. We measure
by absorption imaging and for different values of �φL the
number of atoms in each of the two hyperfine states F = 1
and F = 2 at the end of the interferometer sequence. The top
of Fig. 4 shows the absorption images (yz plane) of the atomic
cloud in F = 1 taken 33 ms after release from the trap for a
set of �φL values. We clearly observe a shift in the center
position of the imaged cloud which reveals that the phase is
not spatially uniform. To obtain the phase at the z position,
we integrate the two-dimensional absorption image, along the
y dimension. Then, for each position z, which corresponds to
a camera pixel, we calculate the number of atoms as a func-
tion of the laser phase �
L and fit those data with a cosine
function to extract the atomic phase. This phase is plotted in
the bottom of Fig. 4 for different values of the pulse area θ .
For θ = π/2, we measure a phase gradient of 3.6 mrad/μm
after a fall time of 7 ms for a BEC with an initial atomic
density of 4.3 × 1014 atoms/cm3. The simulation based on
our model fits the experimental data without any adjustment.
These theoretical curves were obtained as follows: we first
consider an atom at an initial position r(t0) and calculate, for
all times t between t0 and tobs, the expansion parameters λs(t )
by numerically solving Eq. (15) and, subsequently, the coordi-
nates rs(t ) = rs(0)λs(t ) (s = x, y, z). We then determine the
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FIG. 4. Top: Absorption pictures obtained by scanning the phase difference �
L between the two Raman lasers at the last pulse from −π

to π . Optical densities greater than 0.25 have been saturated. The experimental parameters are TR = 6 ms, TF = 7 ms, and θ = 0.3π . Bottom:
Variation of the phase shift at the output of the interferometer along the vertical z axis for different Raman pulse areas θ . The shaded area
accounts for the fluctuation of the pulse area and trapping frequencies.

reference trajectories A and B that account for the effect of
the Raman transitions. Finally, we calculate the accumulated
phase shift �
at using Eqs. (11) and (12).

At time t after the overlap of the wave packets, the proba-
bility P(F = 1) of detecting the atom in |F = 1〉 at position r
is

P(F=1)= μ − 1
2

∑
mω2

s r2
s (0)

g11Nλx(t )λy(t )λz(t )

(
1

4
− α2

)
|1 + e j(�
at+�φL )|2.

(19)
We repeat this calculation for initial positions on a three-

dimensional grid to construct the image of the atomic cloud at
the detection time tobs. Subsequently, we integrate over the xy

FIG. 5. Phase gradient as a function of the release time tF . The
orange shaded curve is the range of calculated phase gradient ac-
counting for the uncertainty in the trapping frequencies.

dimensions to obtain the total number of atoms at position z.
To extract the atomic phase shift, we add a laser phase �φL in
Eq. (19) to probe the atomic phase and analyze the simulated
images the exact same way we do with the experimental ones.

To evaluate the contribution of the mutual interaction
we measured the interaction phase shift as a function of
the condensate release time, the trapping frequency νz,
and the population imbalance α. Figure 5 shows the variation
of the phase gradient as a function of the release time TF. We
see that the phase gradient decreases with the release time
and becomes almost undetectable after 20 ms. As expected,

FIG. 6. Total phase shift accounting for both mutual and self-
interactions as a function of the release time TF for different values
of the Raman pulse area θ (from 0.3π to 0.7π ), with TR = 6 ms.
Squares show experimental data. The shaded curve is the range of
calculated total interaction phase shift, accounting for uncertainty in
the pulse area and the trapping frequencies.
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FIG. 7. Variation of the interaction phase shift with the vertical
trapping frequency νz. Parameters are TF = 3 ms, TR = 6 ms, and
θ = 0.35 π . The shaded orange curve is the range of calculated
total interaction phase shift, accounting for uncertainty in the number
of atoms and the trapping frequencies. The experimental data set
satisfies the Thomas-Fermi approximation.

this is also the case for the total phase shift that accounts for
both the mutual and self-interactions, even if the population
imbalance between the two branches of the interferometer is
significant (see Fig. 6). We measure a total interaction phase
shift of 0.49 ± 0.03 rad for an atomic density in an initial BEC
of 4.3 × 1014 atoms/cm3 when TF = 4 ms and θ = 0.3 π .

Finally, we looked at the behavior of the phase shift due
to atomic interactions when varying the vertical trapping
frequency νz. As shown in Fig. 7, the phase first increases
with the trapping frequency, passes a maximum, and then
decreases. This behavior results from the dependence of the
chemical potential, BEC size, and expansion rate on trapping
frequencies.

The mean field scales as ω̄6/5; it increases faster than the
size of the condensate, which varies almost linearly with
the trapping frequency. Therefore, considering the overlap
duration of the two condensates, the contribution of the self-
interaction is larger than the mutual interaction.

For a low trapping frequency, the expansion of the atomic
cloud is slow, and the two BECs rapidly separate after the
first Raman pulse (with relative velocity 2vr). The main
contribution to the total phase shift �φ comes from the self-
interaction, which increases rapidly as the trapping frequency
increases. At a high trapping frequency, the expansion of the
cloud dominates due to the repulsive potential, and therefore,
the self-interaction decreases since both BECs are diluted.

IV. CONCLUSION

In this paper, we have investigated in detail both theo-
retically and experimentally the phase shift due to atomic
interactions in an atom interferometer. Our theoretical model
relies on the Feynman integral approach, which is used
to derive general formulas for phase shifts related to self-
interaction and mutual interaction. Our model is general and
accounts for the effect of a population imbalance between the
two arms of the interferometer as well as of the difference
in scattering lengths of the hyperfine states. It allows us to
evaluate precisely the interaction phase shifts knowing the
time evolution of the spatial density of the Bose-Einstein
condensate. Relying on the Castin-Dum model, which de-
scribes the temporal evolution of the BEC spatial density
in the Thomas-Fermi regime, we calculated the phase shift
induced by the atomic interactions and, in particular, the phase
gradient resulting from the mutual interaction. We experi-
mentally measured the phase gradient and the total phase
shift (accounting for mutual and self-interactions) by vary-
ing the experimental parameters (BEC release time, trapping
frequencies, and Raman coupling). The theoretical curves
reproduce well the experimental data without any adjust-
ment of the parameters. In particular, the work presented
in this paper has enabled us to evaluate the phase gradient
due to the mutual interactions between the two interfer-
ing condensates. It also provides theoretical tools, validated
by the experiment, to evaluate the phase shifts induced by
atomic interactions. The treatment of the interaction effect
by the Feynman path-integral approach can be generalized
to other atom-interferometer configurations and offers a sim-
ple way to accurately evaluate the related systematic effect
that could affect high-precision measurements with atom
interferometry.
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