
PHYSICAL REVIEW A 106, 043311 (2022)

Dipole modes of a trapped bosonic mixture: Fate of the sum-rule approach
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We present a general discussion of the dipole modes of a heteronuclear bosonic mixture in a harmonic trap by
comparing the prediction of the sum-rule approach with full Gross-Pitaevskii (GP) calculations. Yet in the range
of interaction in which the mixture is miscible and stable at the mean-field level, g2

12 < g11g22, we find that there
are regimes where the sum rules display significant deviations from the GP solution. We provide an interpretation
for this behavior in terms of the Ehrenfest approach, which we show to be equivalent to the sum-rule approach
for dipole excitations.
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I. INTRODUCTION

Sum rules are a powerful and widely employed tool for
investigating the collective modes in different many-body
systems, including nuclear collective states [1,2] and giant
resonances in nuclei [3], Fermi liquids at low temperatures
[4], free electrons in metal spheres, and cavities and shells
[5], among others. Since the first experimental realization of
Bose-Einstein condensation in trapped dilute gases (see, e.g.,
[6]) and the subsequent explosion of ultracold-atom physics,
the use of the sum-rule approach has become customary in
this field [7–21]. In particular, it has been broadly used for
describing collective excitations of Bose-Fermi [9,12–15,17]
and Bose-Bose [16,18,19] mixtures. The advantage of this
approach is that the frequency of the collective modes can be
estimated by means of algebraic techniques, without having
to solve the equation of motion, based only on the knowl-
edge of the ground-state solution [22]. At the same time,
this also constitutes a limit of this approximate method since
it cannot account for dynamical effects that may break the
self-similarity of the density distribution.

In order to shed some light on the above point, as a proof
of concept here we consider the case of the dipole mode
of a mixture of Bose-Einstein condensates (BECs) that was
recently considered in a number of experiments [19,23–25].
It is worth noticing that the collective excitation spectrum
of a two-species BEC was originally addressed within the
framework of the Bogoliubov theory [26], but a general dis-
cussion of the sum-rule approach for this case is still lacking,
contrary to the case of Bose-Fermi mixtures. The latter was
first considered in Ref. [9] for the case of symmetric mixtures
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(same mass and trapping frequency) with tunable interac-
tions and then extended to the heteronuclear case (different
masses) in Ref. [15]. Remarkably, in Refs. [12,14] it was also
shown that the sum-rule approach may not always provide
an accurate prediction for the dipole oscillation frequencies
as obtained from the full dynamical equations. This devia-
tion is particularly noticeable in the repulsive case, especially
for the fermionic component. Indeed, the different statistics
of the Bose-Fermi mixture and the large spatial extension
of the Fermi clouds resulting in different regions where the
two clouds are superimposed or not further complicate the
coupled dipole dynamics as the Fermi component may be
characterized by several oscillations modes [14].

In light of the above considerations, it is interesting to ad-
dress to what extent the sum-rule approach can be considered
a suitable approximate method for describing the collective
dipole oscillations of a bosonic mixture. To this end, we
first extend the sum-rule formalism of Refs. [9,15] to the
general case of a Bose-Bose degenerate gas mixture with
different masses, frequencies, and atom numbers. Then, we
show that the sum-rule predictions for the dipole frequencies
can also be obtained from an effective approach based on the
Ehrenfest theorem [27], which also provides the amplitudes of
the modes and turns out to be helpful also for understanding
the limits of validity of these approximations. These results
are compared with the frequency and amplitudes of the dipole
modes extracted from the full Gross-Pitaevskii dynamics as a
function of the interspecies interaction in the whole regime in
which the mixture is miscible and stable against mean-field
collapse.

Motivated by a recent experiment by L. Cavicchioli et al.
[25], we consider in particular the case of a 41K − 87Rb
mixture, discussing also the effect of the atom-number imbal-
ance. We find that, for a balanced mixture, the sum-rule and
Ehrenfest approaches provide an accurate prediction for the
low-lying dipole mode, from the strongly attractive regime
up to weakly repulsive interactions. Instead, the high-lying
mode is well reproduced in the opposite regime, from weak

2469-9926/2022/106(4)/043311(8) 043311-1 Published by the American Physical Society

https://orcid.org/0000-0001-8817-3077
https://orcid.org/0000-0002-0532-1423
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.043311&domain=pdf&date_stamp=2022-10-13
https://doi.org/10.1103/PhysRevA.106.043311
https://creativecommons.org/licenses/by/4.0/


CHIARA FORT AND MICHELE MODUGNO PHYSICAL REVIEW A 106, 043311 (2022)

attraction up to the repulsive regime, provided the system does
not enter (local) phase separation. This sort of specularity
stems from the fact that the two oscillation modes exchange
their character from in-phase to out-of-phase behavior when
crossing the noninteracting point at a12 = 0. For imbalanced
mixtures, we find that the accuracy of the sum-rule and
Ehrenfest approaches gets reduced depending on the degree
of superposition of the two clouds, similar to the case of a
Bose-Fermi mixture [14].

This paper is organized as follows. In Sec. II we present the
general formalism, namely, we review the sum-rule approach
(Sec. II A), we introduce the GP formalism, and we discuss
the effective description of the dipole dynamics based on the
Ehrenfest approach (Sec. II B). In Sec. III we work out a
thorough comparison between the exact GP results and the
predictions of the sum-rule and Ehrenfest approaches for the
case of a heteronuclear Rb-K mixture. Final remarks are given
in the conclusions.

II. GENERAL FORMALISM

Let us consider a binary mixture of degenerate gases, each
consisting of Ni atoms with masses mi (i = 1, 2), confined
in harmonic potentials V ho

i with frequencies ωki (k = x, y, z).
The total Hamiltonian of the system can be written as

H =
2∑

i=1

Hi0 + Hint, (1)

with

Hi0 =
Ni∑

�=1

[
p2

i�

2mi
+ V ho

i (ri�) + gii

∑
�′<�

δ(ri� − ri�′ )

]
, (2)

Hint = g12

N1∑
�=1

N2∑
�′=1

δ(r1� − r2�′ ). (3)

The coupling constants are gii = 4π h̄2aii/mi and g12 =
2π h̄2a12/μ, with μ = m1m2/(m1 + m2) being the reduced
mass of the system and a12 being the interparticle scattering
lengths.

The dipole operator along a certain direction, let us say x,
can be defined as

D[α1, α2] ≡
2∑

i=1

αi

Ni∑
�=1

xi� ≡
2∑

i=1

αiDi, (4)

where αi parametrize the mixing between the two species.

A. Sum-rule approach

An estimate of the oscillation frequencies corresponding
to the above dipole operator can be obtained by means of the
sum-rule approach in terms of the energy-weighted moments
μ1 and μ3 [2–4,9],

ω2 = 1

h̄2

μ3

μ1
, (5)

which can be evaluated in terms of the commutators

μ1 = 1
2 〈[D, [H, D]]〉, (6)

μ3 = 1
2 〈[[D, H, ], [H, [H, D]]]〉, (7)

yielding

ω2 =
∑2

i=1
α2

i Ni

mi

(
ω2

i − g12I
miNi

) + 2α1α2
g12I

m1m2∑2
i=1 α2

i Ni/mi

, (8)

where ωi ≡ ωxi (the result is independent of the trapping fre-
quencies along the directions orthogonal to that of the dipole
operator D) and the volume integral I ≡ ∫

∂xn01∂xn02d3r is
determined by the ground-state configuration of the system
characterized by the densities n0i. This clearly highlights the
pros and cons of the sum-rule approach: On the one hand, it
provides an estimate of the dipole mode frequencies on the
basis of only static properties; on the other hand, it may fail
if the system configuration substantially changes during the
dynamical evolution (see below).

Following Ref. [9], the weights αi can be conveniently
parametrized as α1 = (cos θ + sin θ )/

√
2, α2 = (cos θ −

sin θ )
√

2, so that the total dipole operator D can be written as
a linear combination of in-phase and out-of-phase oscillations
of the two species, with θ playing the role of the mixing angle

D = 1√
2

(D1 + D2) cos θ + 1√
2

(D1 − D2) sin θ. (9)

Then, Eq. (8) becomes

ω2(θ ) = B+ + B− sin 2θ + 2γ12 cos 2θ

A+ + A− sin 2θ
, (10)

with γ12 = g12I/m1m2 and

A± = N1

m1
± N2

m2
, (11)

B± =
(

ω2
1N1

m1
± ω2

2N2

m2

)
− g12I

(
1

m2
1

± 1

m2
2

)
. (12)

The above set of equations (10)–(12) constitutes the analog
of the Bose-Fermi results of Refs. [9,15], here for the case
of a bosonic mixture trapped in a generic harmonic potential
(with the two species having different masses, frequencies,
and atom numbers) [28].

Finally, one has to choose a criterion for determining the
possible mixing angles and the corresponding frequencies.
First of all, since we have two components, two different
modes are expected, one “in phase” and the other one “out
of phase”; (see also the discussion in the next section). Then,
considering that sum rules provide an upper bound for the
mode frequencies (see, e.g., Ref. [22]), it is natural to identify
the mixing angle of the low-lying mode with the one that
minimizes ω2(θ ), for which ∂ω2/∂θ = 0. In Ref. [9] the other
mode was taken to be orthogonal to the former, but this is not
necessarily so because in general they are eigenmodes of a
nonsymmetric, but diagonalizable, matrix. This will be clear
from the discussion in Sec. II B. Therefore, here we conjecture
that both frequencies of the dipole modes can be obtained with
the stationary condition

∂ω2

∂θ
= (A+B− − A−B+) cos 2θ

− 2γ12(A− + A+ sin 2θ ) = 0, (13)

whose solution will be denoted as ω± (with mixing angles
θ±). Notice that in the noninteracting limit (g12 = 0) we get
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ω− = ω1 (θ = π/4) and ω+ = ω2 (θ = 3π/4), which fixes
the hierarchy of the two frequencies. Therefore, it is conve-
nient to set ω1 � ω2 in order to identify ω− and ω+ with the
frequencies of low-lying and high-lying modes, respectively.

B. Gross-Pitaevskii equation and the Ehrenfest theorem

Let us now contextualize the above results within the
framework of the Gross-Pitaevskii (GP) theory, namely,
the case in which the binary mixture is composed of two
Bose-Einstein condensates. Their trapped evolution is de-
scribed by a set of (three-dimensional) GP equations of the
form

ih̄∂tψi(r, t ) =
[

− h̄2

2mi
∇2 + V tot

i (r, t )

]
ψi(r, t ), (14)

where V tot
i represents the total mean-field potential acting on

species i ( �= j),

V tot
i (r, t ) = V ho

i (r) + giini(r, t ) + gi jn j (r, t ), (15)

with ni(r, t ) ≡ |ψi(r, t )|2 and
∫

nid3r = Ni. For simplicity
here we consider the harmonic potentials acting on the two
species to be concentric.

It is interesting to note that the sum-rule approach dis-
cussed in the previous section is equivalent to the prediction
provided by the Ehrenfest theorem, namely,

d2

dt2
〈x〉i = − 1

mi

〈
∂xV

tot
i

〉
. (16)

This goes as follows. By defining δxi(t ) ≡ 〈x〉i(t ) it is straight-
forward to get [29]

¨δxi(t ) = −ω2
i δxi(t ) − gi j

miNi

∫
ni∂xn jd

3r. (17)

The integral in the last term can be evaluated explicitly by
assuming that the densities translate rigidly, ni(x, t ) = n0i[x −
δxi(t )] (for ease of notation we omit the dependence on the
“transverse” coordinates y and z). This assumption is consis-
tent with the sum-rule approach in the sense that it relies on
the information encoded in only the ground state. Then, in the
limit of small oscillations, we have

ni(x, t ) 	 n0i(x) − ∂xn0i(x)δxi(t ). (18)

Within these approximations, by defining ηi ≡ g12I/(miNi ),
Eq. (17) can be recast in the following form [30]:

¨δxi = −(
ω2

i − ηi
)
δxi − ηiδx j, (19)

or, equivalently, in matrix form as

δ̈x = −Mδx, δx ≡
(

δx1

δx2

)
(20)

and

M =
(

ω2
1 − η1 η1

η2 ω2
2 − η2

)
. (21)

The frequencies ω± of the two dipole modes are obtained
as solutions of

det(M − ω2I2) = 0, (22)

namely,

ω2
± = 1

2

∑
i

(
ω2

i − ηi
)

± 1

2

√√√√[∑
i

(
ω2

i − ηi
)]2

+ 4
(
ω2

1η2 + ω2
2η1

) − 4ω2
1ω

2
2.

(23)

At this point we are able to prove the equivalence of the
sum-rule approach in Sec. II A and the Ehrenfest approach
discussed above. Indeed, by plugging Eq. (8) into Eq. (22), it
is not difficult to verify that the resulting equation corresponds
to Eq. (13) of the sum-rule approach. Namely, the solutions
of the latter equation are also solutions of Eq. (22), as well
as those in Eq. (23), and therefore, the two must coincide.
Owing to this, all the results that we shall discuss in the fol-
lowing apply to both the Ehrenfest and sum-rule approaches.
As a matter of fact, in the case of the dipole mode, the two
approaches are completely equivalent.

In order to analyze the amplitude of the two modes con-
tributing to the dipole oscillation of the mixture, let us now
consider the solutions of Eq. (20). First of all, we recall that
the components of the eigenvectors of the matrix M, which
we shall denote as v1 = (v11, v12) and v2 = (v21, v22), define
the transformation matrix P that diagonalizes M, P−1MP =
diag(ω2

−, ω2
+), as

P =
[
v11 v21

v12 v22

]
. (24)

In the following, we shall take the vectors v1 and v2 both with
the norm equal to 1. Notice that in general the matrix M is
not symmetric, so that the eigenvectors are not necessarily
orthogonal. Then, by left multiplying Eq. (20) by P−1 and
introducing the “diagonal” coordinates ξ = P−1δx, we can
write the corresponding solutions as [we restrict the analysis
to the case of initial vanishing velocity, ξ̇ (0) = 0]

ξ1(t ) = A cos(ω−t )

ξ2(t ) = B cos(ω+t ), (25)
yielding

x1(t ) = v11A cos(ω−t ) + v21B cos(ω+t ),

x2(t ) = v12A cos(ω−t ) + v22B cos(ω+t ). (26)

From the above equations, we can express the relative weights
of each of the two eigenmodes in the center-of-mass motion
of the two condensates in terms of the ratios r− = v12/v11 and
r+ = v21/v22, respectively. By construction, these quantities
are vanishing in the noninteracting limit, r± = 0/1 for g12 =
0. It is also worth noticing that they do not depend on the
amplitude of the oscillations (namely, they are independent
of A and B). By explicitly calculating the eigenvectors of the
matrix M, we can express the two ratios as

r±1
± = 1

2

[
(1 − β ) + ω2

1 − ω2
2

η2

]

±
√

1

4
(1 + β )2 + (1 − β )

ω2
1 − ω2

2

2η2
+

(
ω2

1 − ω2
2

2η2

)2

,

(27)
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FIG. 1. Top: Ground-state linear density profile n0i(x, 0, 0) (in arbitrary units) for the two components (|1〉: red dashed line, |2〉: blue solid
line) as a function of the intraspecies interaction a12. As a reference we plot the dotted line corresponding to the maximum density of |1〉 for
a12 = 0. Middle and bottom: Center-of-mass evolution of the two condensates performing dipole oscillations for the same values of a12 as
indicated in the top panels. The dotted horizontal lines correspond to the initial shift of each component (see text), which we consider either in
the same direction (middle panel) or in opposite directions (bottom panel).

where β ≡ m2N2/(m1N1) represents the ratio between the
total masses of the two components.

III. A TUNABLE BOSONIC MIXTURE

In order to compare these analytical predictions with GP
simulations, we consider an experimentally feasible system.
In particular, we choose a mixture of 87Rb (species |1〉) and
41K (species |2〉) both in the F = 1, mF = 1 state, where
Feshbach resonances can be used to tune the interspecies
interactions [31,32]. Then, we have m1 = mRb, m2 = mK ,
a11 = 100.4a0, and a22 = 62a0, with a0 being the Bohr radius.
As for the values of interspecies scattering length a12, here
we restrict the analysis to the regime in which the mixture
is miscible and stable against mean-field collapse, such that
g2

12 < g11g22 [33]. The corresponding critical value of the
scattering length is |ac

12| 	 73.6a0. The mixture is trapped in
a spherical optical potential where the frequencies are ω1 =
2π × 100 Hz and ω2 = 2π × 136 Hz 	 ω1

√
γ m1/m2 and

γ 	 0.87 correspond to the relative polarizability of the two
components for a trapping laser wavelength λ = 1.064 μm.

A. Balanced case

Let us start by considering the case of a balanced mix-
ture, with N1 = N2 = 5 × 104 (the effect of an imbalance in
the population of the two components will be discussed in
the following section). The equilibrium (ground-state) density
profiles of the two components are shown in the top panel
of Fig. 1 for different intraspecies interactions, ranging from
a12 = −60a0 to a12 = +60a0 [34]. The corresponding center-
of-mass (c.m.) oscillations, obtained by solving the time-
dependent GP equations (14) [35] are shown in the middle

and bottom panels. In particular, dipole oscillations are in-
duced by shifting the centers of mass of the two components
by the same amount either in the same direction (middle
panel) or in opposite directions (bottom panel). In all cases,
the dynamics takes place in the configuration in which the two
traps are concentric (to which the ground-state calculations
refer), and the initial shift is small enough to be in the linear
regime of small-amplitude oscillations.

Then, by fitting the c.m. dynamics with a double sinusoidal
function, f (t ) = a cos(ω−t ) + b cos(ω+t ), we extract the fre-
quencies ω± of the two modes and their relative amplitudes
r± defined in the previous section. These quantities, obtained
from the GP simulations, are plotted in Fig. 2 (solid lines) as
a function of the interspecies scattering length a12 [36], along
with the predictions of the sum-rule and Ehrenfest approach
(dashed lines).

As one can see from the inset in Fig. 2(a), the sum-rule and
Ehrenfest approach provides an excellent result for the low-
frequency mode, in the whole attractive regime, up to weakly
repulsive interactions (	 30a0). It is worth noticing that in the
limit of large attractive interactions [for g12 < 0 and |ηi| 

ω2

i , see Eq. (23)], ω− tends to the value

ωb ≡
√

N1m1ω
2
1 + N2m2ω

2
2

N1m1 + N2m2
, (28)

which corresponds to the center-of-mass frequency of the
two condensates oscillating as a whole [thin dashed yellow
(light gray) line in Fig. 2(a)]. As for the high-frequency mode,
the sum-rule and Ehrenfest approach well reproduces the GP
results for −30a0 � a12 � 50a0.

Instead, outside those regimes significant deviations are
clearly visible. This has the following explanation. The

043311-4



DIPOLE MODES OF A TRAPPED BOSONIC MIXTURE: … PHYSICAL REVIEW A 106, 043311 (2022)

(a)

(b)

FIG. 2. Behavior of the high-lying and low-lying modes [in
green (dark gray) and yellow (light gray), respectively] as a function
of the interspecies scattering length a12 for |a12| � |ac

12|. (a) The
frequencies ω± extracted from the GP simulations (solid lines) are
compared to the prediction of the sum-rule and Ehrenfest approach
in Eq. (23) (dashed lines). Their relative difference �ω ≡ (ωEhr

± −
ωGP

± )/ωGP
± is shown in the inset. In the main panel we also show as

a reference the trap frequencies ω1 (lower dotted red line) and ω2

(upper dotted blue line). Notice that all the frequencies are expressed
in units of ω1. (b) Relative weights of the two modes, r− [yellow
(light gray)] and r+ [green (dark gray)]. In both panels, the thin
dashed lines represent the analytical limits of the Ehrenfest approach
(see text).

sum-rule and Ehrenfest approach is based on only the knowl-
edge of the ground-state density distribution, and therefore,
it cannot account for effects stemming from modifications of
the condensate shape during the dynamics. This is particu-
larly clear in the derivation based on the Ehrenfest theorem,
which follows from the assumption that the density profiles of
the two condensates perform only a rigid translation during
their motion. Clearly, this condition is violated for out-of-
phase oscillations [corresponding to negative values of r; see
Fig. 2(b)] in the regime where the two components interact
strongly (for both attractive and repulsive interactions). In
addition, one should also consider that when the two compo-
nents are trapped by different frequencies and interact with
each other, as in the present case, the Kohn theorem [37]
does not hold. This implies not only that even the frequency
of the in-phase mode becomes interaction dependent but also
that when the two components approach the phase-separation
regime (for repulsive interactions), the sum-rule and Ehrenfest
approach may fail again for the same reason as before. Indeed,
significant modification of the density may be expected for
sufficiently strong interactions, whenever the two components
do not move as a whole.

Let us now turn to the discussion of the amplitudes of the
two modes. In particular, we consider the relative weights r±
defined in the previous section, which are shown in Fig. 2(b)
as a function of a12. Several comments are in order. First
of all, it is evident that the character of the two modes is
fixed by the sign of a12. Namely, for attractive interactions
the low-lying mode is associated with in-phase oscillations
(r− > 0), whereas the high-lying mode determines an out-of-
phase dynamics (r+ < 0). On the repulsive side, the situation
is reversed. Then, we notice that the Ehrenfest prediction
for r± well reproduces the GP results in a wide range of
interactions for ac

12 � a12 � 20a0. In addition, we can also
derive an analytic estimate for the asymptotic values in the
strongly attractive regime (for a12 → ac

12). Indeed, in the limit
η−1

2 (ω2
1 − ω2

2 ) � 1 − β, from Eq. (27) we obtain

r+ = −β, r− = 1, (29)

which are shown as thin dashed lines in Fig. 2. Remarkably,
the fact that the low-lying mode contributes with equal weight
to the center-of-mass oscillation of the two condensates (r− =
1) is consistent with the result in Eq. (28), namely, the fact that
the two condensates oscillate as a whole.

B. Effect of the population imbalance

We now turn to a discussion of the role of the population
imbalance of the two components. To this end, as illustrative
cases, we consider a weakly attractive mixture at a12 = −30a0

and the corresponding repulsive case at a12 = +30a0 (as in
Fig. 1 for the balanced mixture). We keep the total number
fixed to N1 + N2 = 105, as in Sec. III A, and we vary the
ratio N1/N2 in the range [10−4, 104]. In analogy with the
previous discussion, in Fig. 3 we compare the frequencies ω±
of the two modes computed from the GP simulations with the
predictions of the sum-rule and Ehrenfest approach, this time
as a function of N1/N2.

Let us first discuss the attractive case at a12 = −30a0,
in Fig. 3(a). The plot clearly shows that when the mixture
becomes strongly imbalanced, N1/N2 � 1 or N1/N2 
 1, the
frequencies of the two eigenmodes match the expected values
for the impurity limit discussed in Refs. [24,38]: The majority
component oscillates at its own (bare) trap frequency, whereas
the frequency of the minority component i is shifted to the
following value:

ω̃i = ωi

√
1 − g12mjω

2
j

g j jmiω
2
i

(i �= j). (30)

The latter expression, which is valid when the majority
component j can be accurately described within the Thomas-
Fermi (TF) approximation, can be obtained either from the
GP equation—by considering the effective harmonic poten-
tial acting on the minority component due to the mean-field
interaction with the other species (neglecting the back-action
of the former on the latter) [24,38]—or, equivalently, from the
sum-rule and Ehrenfest approach. Indeed, in the TF limit for
the majority species, the integral I entering Eq. (8) and the
definition of ηi can be expressed as

I = −mjω
2
j

g j j

∫
x∂xn0id

3r = mjω
2
j Ni

g j j
, (31)
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(a)

(b)

FIG. 3. Behavior of the dipole frequencies ω± [in green (dark
gray) and yellow (light gray), respectively] obtained from the GP
simulations (solid lines) and from the sum-rule and Ehrenfest ap-
proach (dashed lines) as a function of N1/N2 (in log scale, with N1 +
N2 = 105) for (a) a12 = −30a0 and (b) a12 = +30a0. For comparison
we also show the two trapping frequencies ωi as dotted horizontal
lines and the two limiting values ω̃i for the minority component in
Eq. (30) as horizontal lines (|1〉: red dashed line, |2〉: blue solid). All
the frequencies are expressed in units of ω1.

so that one can easily recover the two asymptotic values from
Eq. (23) by taking the limit Ni/Nj � 1. In this regard, it is
worth noticing (see Fig. 3) that the sum-rule and Ehrenfest
prediction reaches those values much later than the GP case.
Indeed, a close inspection reveals that the assumption of
neglecting the effect of the interspecies interactions on the
density profile of the majority component is justified only
for Ni/Nj � 10−3, where the integral I gets close to the
noninteracting value [notice that the expression in Eq. (31)
does not depend on g12]. As a matter of fact, the minority
component is still able to produce local-density modifications
on the majority component (which, in turn, produce a back-
action on the former) in the regime of intermediate imbalances
(Ni/Nj ∼ 10−2), where its effect on the dipole motion of the
majority component can already be safely neglected. This
suggests that the GP results converge earlier to the asymptotic
limit of Eq. (30) as a consequence of additional contributions
to the mean-field renormalization of the harmonic potential,
beyond the simple ansatz discussed above.

Figure 3(a) also shows that, for attractive interactions, the
low-lying mode is mostly dominated by species |1〉 (whose
characteristic frequency is represented by the horizontal red
dashed line) and the high-lying one by |2〉 (horizontal blue
solid line). For the low-lying mode, significant deviations be-
tween the GP result and the sum-rule and Ehrenfest prediction
(up to ∼10%) are visible in the regime with a slight minority
of the dominant species (|1〉), whereas for the high-lying mode

they are present in the whole intermediate regime (although
at different degrees). The reason for this behavior possibly
lies in the fact that when the two components have different
spatial extensions, the system is characterized by different
regions where the two clouds are superimposed or not, fur-
ther complicating their coupled dipole dynamics, as suggested
for the case of Bose-Fermi mixtures [14]. As discussed in
the previous section, this effect is amplified in the case of
out-of-phase oscillations, namely, for the high-lying mode (at
a12 = −30a0).

As for the repulsive case at a12 = +30a0, in Fig. 3(b),
the most relevant difference from the previous case is the
fact that the high-lying mode is always associated with the
majority species, and the low-lying mode is associated with
the minority one. This is signaled by the two asymptotic
values of each frequency: The limits of ω+ are the bare trap
frequencies of the two species, whereas ω− tends to the values
fixed by Eq. (30) (for i = 1, 2). This behavior also provides
an explanation of the different degrees of accuracy of the
sum-rule and Ehrenfest approach in this interaction regime.
Indeed, the high-lying mode, being associated with the ma-
jority component (less affected by the presence of the other)
and also having an in-phase character (see Fig. 2), is very well
reproduced. Conversely, significant deviations are appreciable
for the low-lying frequency for the same reasons mentioned
above for the corresponding case in Fig. 3(a).

IV. CONCLUSIONS

We have presented a systematic discussion of the sum-rule
approach for the dipole collective modes of a harmonically
trapped bosonic degenerate mixture. We have shown that the
sum-rule prediction for the dipole frequency can be alterna-
tively obtained from a mean-field effective approach based of
the Gross-Pitaevskii (GP) equation and the Ehrenfest theorem.
Remarkably, the latter also provides an estimate for the am-
plitude of the collective modes. Then, by direct comparison
with full GP calculations, we have analyzed the accuracy
of the sum-rule and Ehrenfest predictions as a function of
the interspecies interaction in the whole regime in which the
mixture is miscible and stable against mean-field collapse.

For a balanced mixture, namely, with the same popula-
tion in each species, we have found that the sum-rule and
Ehrenfest approach is quite accurate for not too strong inter-
species interactions, whereas some deviation from the exact
GP result becomes significant for the low-lying dipole mode
in the repulsive regime, especially for the high-lying mode for
strongly attractive interspecies interactions. This behavior is
associated with the out-of-phase character of the two oscil-
lation modes, and it can be explained in terms of a breaking
of the self-similarity assumption in the dynamical evolution
of the density distributions, on which the effective Ehrenfest
approach is based.

We have also analyzed the effect of a population imbal-
ance for both moderately attractive and repulsive mixtures,
finding that the sum-rule and Ehrenfest approach well repro-
duces the frequency of the modes dominated by the majority
component, and it is especially accurate in reproducing the
high-lying frequency in the repulsive case. Explanations
for the discrepancies observed in other regimes have been
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provided, along with a comparison with the analytic predic-
tion in the limit of strongly imbalance mixtures.

Our analysis provides a framework for further theoretical
studies aimed at benchmarking the accuracy of sum-rule or
related approaches in multicomponent systems, and it may
prove valuable for future experimental studies of dipole ex-
citations in bosonic mixtures.
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