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Stability against three-body clustering in one-dimensional spinless p-wave fermions
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We theoretically investigate in-medium two- and three-body correlations in one-dimensional spinless fermions
with attractive two-body p-wave interaction. By investigating the variational problem of two- and three-body
states above the Fermi sea, we elucidate the fate of the in-medium two- and three-body cluster states. The one-
dimensional system with the strong p-wave interaction is found to be stable against the formation of three-body
clusters even in the presence of the Fermi sea, in contrast to higher-dimensional systems that suffer the strong
three-body loss associated with the trimer formation. Our results indicate that the weak two-body coupling
side is more sensitive to the residual three-body interaction than the strong-coupling side. By including the
dimensionless three-body coupling such that the universality associated with the scattering length is maintained,
we find that an in-medium three-body state similar to a squeezed Cooper triple appears.
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I. INTRODUCTION

The study of unconventional superconductors and superflu-
ids is one of the most exciting issues in modern physics [1]. In
particular, the importance of the p-wave pairing state has been
widely recognized in the field of condensed-matter physics as
well as nuclear physics, such as the 3He superfluid [2] and the
3P2 neutron superfluid [3].

An ultracold Fermi gas near the p-wave Feshbach reso-
nance is one of the promising candidates to systematically
investigate the role of strong p-wave interaction in unconven-
tional superfluid states [4] due to its tunable interaction [5].
In this regard, the realization of a p-wave superfluid Fermi
gas is a long-standing concern in cold-atom physics. A cold-
atom quantum simulation of p-wave superfluids will make
an important breakthrough in our understanding of topolog-
ical superconductors [6]. However, in three dimensions, the
p-wave Fermi superfluid state is unstable against three-body
clustering [7], which leads to the three-body recombination
accompanying strong particle loss. Such a three-body loss
near the p-wave Feshbach resonance has been measured in
experiments [8,9]. Also, the three-body loss has been theoret-
ically examined in connection with few-body physics in three
dimensions [10–13].

In contrast, the suppression of three-body loss in a one-
dimensional p-wave system has been theoretically predicted
[14]. In this context, the three-body loss in one-dimensional
p-wave fermions was experimentally studied recently [15,16].
The one-dimensional p-wave superfluid is also relevant for the
Majorana edge mode [17]. Moreover, a Bose-Fermi duality
is also of great interest in one-dimensional p-wave Fermi
systems [18–24]. Thanks to such a fascinating property in this
system, the bulk viscosity has attracted attention [25,26]. The
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one-dimensional p-wave contact has also been investigated
by using the thermodynamic Bethe ansatz [27] and virial
expansion [28].

To investigate the stability against three-body clustering
in quantum many-body systems, we need to consider the
in-medium three-body problem. For such a purpose, the gen-
eralized Cooper problem has been applied to cluster states
consisting of more than two particles, such as Cooper triples
[29–32] and even Cooper quartets [33–36]. The investigation
of the fate of such higher-order clustering is also a stimulat-
ing topic in various fields. These approaches are useful for
further understanding the many-body ground state. Indeed,
the Cooper-pair problem has been considered to elucidate
the pairing mechanism in unconventional superconductors
[37–40]. On the other hand, the corresponding study of one-
dimensional spinless p-wave fermionic systems has not been
strictly performed so far.

In this paper, we theoretically study in-medium two- and
three-body states in a one-dimensional Fermi gas with the res-
onant p-wave interaction using the variational method based
on the generalized Cooper problem. We show that a p-wave
Cooper pair appears even in the weak-coupling regime and
undergoes the crossover towards the molecular state like the
BCS-BEC crossover in a three-dimensional Fermi gas with
strong s-wave interaction [41,42]. By solving the in-medium
three-body equation derived from the variational principle, we
show the absence of a stable in-medium three-body cluster
state (such as a Cooper triple and in-medium trimer) in the
present system without any additional interactions such as
three-body attraction. The fermion-dimer repulsion, which
suppresses the in-medium three-body clustering, is found to
be always present, although it is weakened by the in-medium
effect in the crossover regime. Accordingly, we also show the
emergence of the in-medium three-body state is similar to the
squeezed Cooper triple [31,32] in the presence of the residual
three-body interaction proposed in Ref. [24].
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This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian for one-dimensional spinless fermions with
attractive p-wave two-body interaction. In Sec. III, we derive
the Cooper-pair problem in the one-dimensional spinless p-
wave fermionic system. In addition, the similarity between
the present Cooper problem and mean-field theory is dis-
cussed in the Appendix. In Sec. IV, we show the in-medium
three-body equation obtained from the variational approach
and the effective fermion-dimer repulsion. The three-body
bound state is found to be absent in one-dimensional spinless
p-wave fermions correspondingly. Finally, a summary and
perspectives are given in Sec. V. In the following, we take
h̄ = c = kB = 1. The system size is taken to be unit.

II. HAMILTONIAN

In this paper, we consider one-dimensional spinless
fermions with attractive p-wave interaction. The Hamiltonian
of such a system can be given as

H = K + V, (1)

K =
∑

k

ξkc†
kck, (2)

V = U2

2

∑
k1,k2,k3,k4

(
k1 − k2

2

)(
k3 − k4

2

)

× c†
k1

c†
k2

ck4 ck3δk1+k2,k3+k4 , (3)

where ξk = k2/(2m) − μ in the kinetic term K is the single-
particle energy with momentum k, atomic mass m, and
chemical potential μ. In the generalized Cooper problems,
we take μ = EF, where EF is the Fermi energy. V represents
the short-range p-wave two-body interaction with coupling
constant U2. This interaction corresponds to the zero-range
limit of the two-channel model for the Feshbach resonance
[43,44]. The relation between U2 and the p-wave scattering
length a is obtained from the two-body T matrix as [22,43]

1

U2
−

∑
p

mp2

k2 + iδ − p2
= m

2

(
1

a
− 1

2
reffk

2 + ik

)
, (4)

where reff is the effective range and δ is an infinitesimally
small number. Correspondingly, we have

− 1

mU2
= �

π
− 1

2a
, (5)

where � is the momentum cutoff. � can also be expressed in

terms of the effective range reff as

� = 4

πreff
. (6)

For convenience, the pair-creation and -annihilation operators
are introduced as

B†
k1,k2

= c†
k1

c†
k2
, Bk3,k4 = ck4 ck3 , (7)

respectively. In a similar way, the corresponding operators for
the three-body sector read

F †
k1,k2,k3

= c†
k1

c†
k2

c†
k3
, Fp1,p2,p3 = cp3 cp2 cp1 . (8)

III. COOPER-PAIR PROBLEM

In this section, we first solve the Cooper-pair problem in
the one-dimensional p-wave system as described in Sec. II.
Correspondingly, the trial wave function is adopted as

|�2〉 =
∑

k

θ (|k| − kF)�kB†
k,−k|FS〉, (9)

where |FS〉 denotes the Fermi sea. By minimizing the ground-
state energy based on the variational principle, the variational
parameter �k in Eq. (9) can be determined. In what follows,
we introduce the momentum summation restricted by the
Fermi surface as

′∑
k1,k2,···

F (k1, k2, · · · )

=
∑

k1,k2,...

θ (|k1| − kF)θ (|k2| − kF) · · · F (k1, k2, . . . ) (10)

for an arbitrary function F (k1, k2, · · · ), where kF = √
2mEF is

the Fermi momentum.
The expectation values for the kinetic and interaction parts

are obtained as

〈�2|K|�2〉 =
′∑

k,p,q

ξp�
∗
k�q〈FS|Bk,−kc†

pcpB†
q,−q|FS〉

= 2
′∑
k

(ξk + ξ−k )|�k|2 (11)

and

〈�2|V |�2〉 = U2

2

′∑
p,q,k1,k2,k′

1,k
′
2

(
k1 − k2

2

)(
k′

1 − k′
2

2

)
�∗

p�q〈FS|Bk,−kB†
k1,k2

Bk′
1,k

′
2
B†

q,−q|FS〉δk1+k2,k′
1+k′

2
= 2U2

′∑
p,q

pq�∗
p�q, (12)

respectively.
Furthermore, from the variational principle, we obtain

δ〈�2|(H − E2)|�2〉
δ�∗

p

= 0, (13)

where E2 is the ground-state energy of a pairing state. Conse-
quently, the variational equation reads

2(ξp + ξ−p − E2)�p + 2U2 p
′∑
q

q�q = 0. (14)
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In order to simplify the further derivations, we introduce

A =
′∑
q

q�q. (15)

Substituting Eq. (15) into Eq. (14), we obtain

�p = −U2 pA

2ξp − E2
. (16)

Equation (15) can be then rewritten as

A =
′∑
p

p�p = −U2A
′∑
p

p2

2ξp − E2
. (17)

Consequently, we get the bound-state equation for the Cooper
pair:

1 + U2

′∑
p

p2

2ξp − E2
= 0. (18)

By taking the momentum cutoff �, the two-body equation is
then given as

− 1

U2
=

∫
kF�|p|��

d p

2π

mp2

p2 − m(2EF + E2)

= m(� − kF)

π
+ m

√
m(2EF + E2)

2π

[
ln

(
� − √

m(2EF + E2)

� + √
m(2EF + E2)

)
− ln

(
kF − √

m(2EF + E2)

kF + √
m(2EF + E2)

)]

= I2(p2 = 0, E2 − EF), (19)

where we introduced

I2(p2, E ) = m

2π

∫
d p1

θ (|p1 + p2| − kF)θ (|p1| − kF)

p2
1 + p2

2 + p1 p2 − m(3EF + E2)
(p1 + p2/2)2. (20)

By taking the momentum cutoff � = 10kF, the ground
state of the Cooper-pair problem can be solved from Eq. (19).
The two-body ground-state energy E2 as a function of 1/(kFa)
is shown in Fig. 1. It can be seen that the p-wave Cooper
pair exists even on the weak-coupling side and undergoes
the crossover towards the molecular state like the BCS-BEC
crossover in a three-dimensional Fermi gas [41,42]. Note that
the result is qualitatively unchanged by the difference of �.

Here we can further see the asymptotic behavior of the
two-body ground-state energy in the Cooper-pair problem. On
the one hand, in the weak-coupling limit where |E2| � EF,

-1.0 -0.5 0.0 0.5 1.0 1.5
-8

-6

-4

-2

0

E 2/E
F

1/(kFa)

FIG. 1. In-medium two-body energy E2 as a function of 1/(kFa)
by solving the Cooper-pair problem (19). The momentum cutoff �

is taken to be 10kF.

Eq. (19) further reduces to

− 1

U2
� m(� − kF)

π
+ m

√
2m(2EF + E2)

2π
ln

( |E2|
8EF

)
,

(21)

which indicates that

|E2| � 8EFe
π

kFa . (22)

This expression is identical to the three-dimensional s-wave
case after replacing the p-wave scattering length a with the
s-wave one [42], indicating the similarity between the one-
dimensional p-wave pairing and the three-dimensional s-wave
one [44]. On the other hand, in the strong-coupling limit
|E2| 	 EF, we obtain

− 1

U2
� m(� − kF)

π
+ m

√
m(|E2| − 2EF)

π

× tan−1

(√
m(|E2| − 2EF)

�

)
, (23)

leading to |E2| � 2EF + 1
ma2 in the limit of �/kF → ∞. This

is equivalent to the two-body binding energy except for the
shift 2EF associated with the Fermi sea.

In addition, we can define the pair-correlation length
[45,46] as

ξ 2
pair =

∑′
p |∂p�p|2∑′

p |�p|2
, (24)

where in detail, the summations read
′∑
p

|�p|2 = 2m2U 2
2 A2

∫ �

kF

d p
p2

(p2 − k2
F + m|E2|)2

(25)
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FIG. 2. Pair-correlation length ξpair as a function of 1/(kFa). The
momentum cutoff � is taken to be 10kF.

and
′∑
p

|∂p�p|2 = 2mU 2
2 A2

∫ �

kF

d p

[
p2 + k2

F − m|E2|(
p2 − k2

F + m|E2|
)2

]2

.

(26)

The pair-correlation length ξpair given by Eq. (24), which
describes the size of the pair, is shown in Fig. 2 as a func-
tion of 1/(kFa). The momentum cutoff � is taken to be
10kF. The large pair-correlation length ξpair on the weak-
coupling side indicates the huge overlaps among pairs when
a macroscopic number of Cooper pairs are formed. Qual-

itatively, the mean interparticle distance is given by k−1
F ,

and hence, ξpairkF � 1 represents such an overlap of pairs.
With the increase of coupling strength, the pair-correlation
length ξpair decreases quickly. Finally, ξpair becomes very
small on the strong-coupling side, which indicates the for-
mation of a molecule-like bound state. Such behavior of
the pair-correlation length is similar to the s-wave case in
Refs. [45,46].

Incidentally, although the Cooper problem is investigated
here, the pairing energy E2 is qualitatively similar to the
reduction of the chemical potential μ with the pairing gap D
in the mean-field theory, which can be expressed as 
E =
2(μ − mD2) − 2EF, as discussed in the Appendix. We note
that the Cooper problem gives an approximated two-body
ground state in the medium, which differs from an exact
many-body ground state. Therefore, generally, the Cooper
problem does not satisfy the Bose-Fermi duality. However, it
is still useful to understand the pairing effect in this system.
Indeed, this approach can describe both the Cooper-pair for-
mation in the weak-coupling limit and the molecule formation
in the strong-coupling limit.

IV. THREE-BODY PROBLEM IN THE MEDIUM

In a way similar to the two-body case, the trial wave func-
tion for the three-body sector is taken to be [30,31]

|�3〉 =
′∑

p1,p2,p3

δp1+p2,−p3�p1,p2 F †
p1,p2,p3

|FS〉, (27)

where �p1,p2 is the variational parameter and the three-body
state with zero center-of-mass momentum (p1 + p2 + p3 =
0) is considered here.

The expectation value of the kinetic part is then obtained as

〈�3|K|�3〉 =
′∑

p1,p2,p3,p′
1,p′

2.p
′
3

�∗
p1,p2

�p′
1,p′

2

(
ξp1 + ξp2 + ξp3

)
εp1,p2,p3εp′

1,p′
2,p′

3
δp′

3,−p′
1−p′

2
δp3,−p1−p2

= 2
′∑

p1,p2

(
ξp1 + ξp2 + ξ−p1−p2

)
�∗

p1,p2

[
�p1,p2 + �p2,−p1−p2 + �−p1−p2,p1

]
. (28)

In addition, the expectation value of the interaction part can also be derived as

〈�3|V |�3〉 = U2

2

′∑
k1,k2

′∑
k′

1,k
′
2

′∑
p1,p2,p3

′∑
p′

1,p′
2,p′

3

(
k1 − k2

2

)(
k′

1 − k′
2

2

)
�∗

p1,p2
�p′

1,p′
2
δp1+p2,−p3δp′

1+p′
2,−p′

3

× 〈FS|Fp1,p2,p3 B†
k1,k2

Bk′
1,k

′
2
F †

p′
1,p′

2,p′
3
|FS〉

≡ 2v1 + v2, (29)

where in detail,

v1 = U2

2

′∑
p1,p2,q

�∗
p1,p2

[(p1 − p2)(2q − p1 − p2)�−p1−p2,q + (2p2 + p1)(2q + p1)�p1,q + (−2p1 − p2)(2q + p2)�p2,q] (30a)

and

v2 = U2

2

′∑
p1,p2,q

�∗
p1,p2

[
(p1 − p2)(2q − p1 − p2)�q,−q+p1+p2 + (2p2 + p1)(2q + p1)�q,−q−p1

+ (−2p1 − p3)(2p1 + p2)�q,−q−p2

]
. (30b)

043310-4



STABILITY AGAINST THREE-BODY CLUSTERING IN … PHYSICAL REVIEW A 106, 043310 (2022)

From the variational principle, we obtain

δ〈�3|(H − E )|�3〉
δ�∗

p1,p2

= δ〈�3|(K + V − E )|�3〉
δ�∗

p1,p2

= 0. (31)

The resulting variational equation reads

2(ξp1 + ξp2 + ξp3 − E )
[
�p1,p2 + �p2,p3 + �p3,p1

]
= −U2

2

′∑
q

[
(p1 − p2)(2q + p3)

(
2�p3,q + �q,−q−p3

) + (p2 − p3)(2q + p1)
(
2�p1,q + �q,−q−p1

)
+ (p3 − p1)(2q + p2)

(
2�p2,q + �q,−q−p2

)]
. (32)

By further introducing

A(p1, p2) =
′∑
q

(p1 − p2)(2q + p3)(2�p3,q + �q,−q−p3 ) ≡ (p1 − p2)B(p3), (33)

Eq. (32) can be recast into[
1 + U2

′∑
p1

(p1 + p2/2)2

ξp1 + ξp2 + ξ−p1−p2 − E

]
B(p2) = U2

′∑
p1

(p1 + p2/2)(p1 + 2p2)

ξp1 + ξp2 + ξ−p1−p2 − E
B(p1), (34)

which actually corresponds to the in-medium Skorniakov-Ter-Martirosian (STM) equation [29,31,47]. If we remove the
constraint on the momentum summation associated with the Fermi sea as

∑′
p1

→ ∑
p1

, we recover the usual STM equation for
the three-body problem. Equation (34) can be further rewritten in terms of the in-medium two- and three-body T matrices as
[47]

T −1
2 (p2, E )B(p2) = T3(p2, E ), (35)

where we introduce

T2(p2, E ) =
[

1

U2
+ I2(p2, E )

]−1

(36)

and

T3(p2, E ) =
′∑

p1

(p1 + p2/2)(p1 + 2p2)θ (|p1 + p2| − kF)

ξp1 + ξ−p1 + ξ−p1−p2 − E
B(p1)

= m

2π

∫
d p1

(p1 + p2/2)(p1 + 2p2)θ (|p1| − kF)θ (|p1 + p2| − kF)

p2
1 + p2

2 + p1 p2 − m(3EF + E )
B(p1)

≡ − m

4π

∫
d p1θ (|p1| − kF)θ (|p1 + p2| − kF)tF (p1, p2)B(p1). (37)

In the last line of Eq. (37), following Ref. [24], we have
defined

tF (p1, p2) = − 2p2
1 + 2p2

2 + 5p1 p2

p2
1 + p2

2 + p1 p2 − m(3EF + E )

≡ 3p1 p2 + 2m(3EF + E )

m(3EF + E ) − (
p2

1 + p2
2 + p1 p2

) − 2. (38)

We find that Eq. (37) exhibits an ultraviolet divergence due to
the second term of tF (p1, p2) (i.e., −2) in Eq. (38). To avoid
this ultraviolet divergence and keep the universal Bose-Fermi
duality in the sense that the interaction is characterized by
only a while taking the large-� limit, a dimensionless three-
body coupling v3 = 2 was introduced in Ref. [24]. Because
we are interested in in-medium three-body properties with
the two-body p-wave interaction rather than such universal
properties, we do not go into details about v3 and use the

present interaction with finite � in this paper. Such a scheme
is also related to the finite-range two-body interaction as given
by reff = 4

π�
.

By solving Eq. (35), we numerically find that there is only
the trivial solution for B(p), i.e., B(p) = 0, except for E =
Esol corresponding to the continuum of in-medium pairing
states and an additional fermion on the Fermi sea. Such a
result demonstrates that the three-body bound state is absent
in one-dimensional spinless p-wave fermionic systems with
attractive two-body interaction. As we will show below, the
fermion-dimer repulsion always exists at the solution of the
in-medium three-body equation E = Esol. It is equivalent to
the solution of the following equation:

T −1
2 (p = kF, E = Esol ) = 0 (39)
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FIG. 3. Top: The solution Esol of the in-medium three-body equa-
tion (35) and the Cooper-pair energy E2 as functions of 1/(kF a) at
�/kF = 10. The results are shown by the red dotted and blue dashed
lines, respectively. Ev3 , shown by the olive solid line, is the solution
of the in-medium three-body bound state where we replace tF (p1, p2)
with tF (p1, p2) + v3 ≡ tF (p1, p2) + 2 in Eq. (37) based on Ref. [24].
Bottom: The cutoff dependence of Ev3 at 1/(kFa) = 1.

because the divergence of T2(p, E ) in the range of kF � p �
� should be avoided in the in-medium three-body equation.

In order to investigate the physics deeper, we calculate
Esol numerically. In Eq. (39), Esol can also be regarded as the
energy of the pairing state with center-of-mass momentum kF.
This configuration also appears in the in-medium three-body
equation (35) within the zero-center-of-mass frame of three
particles above the Fermi sea. In this regard, the solution of
Eq. (39) can also be that of the in-medium three-body equa-
tion with B(p) 
= 0. Otherwise, the in-medium three-body
equation exhibits a singularity associated with the divergent
two-body T -matrix at an arbitrary momentum p > kF. In
Fig. 3, the two-body ground-state energy E2 obtained with the
Cooper-pair problem and Esol are shown as functions of inter-
action strength 1/(kFa). The results are shown by blue dashed
and red solid lines, respectively. The difference between Esol

and two-body state energy E ′
2 in the three-body problem can

be estimated as

E ′
2 + k2

F

4m
+ EF = Esol + 3EF, (40)

i.e.,

Esol − E ′
2 = 3

2 EF, (41)

where we assume that two of the three particles on the Fermi
sea have formed a Cooper pair with energy E ′

2 and nonzero

center-of-mass momentum kF, such that the total momentum
with the unpaired fermion is zero.

Here the two-body state energy E2 obtained with the
Cooper-pair problem as shown in Fig. 1 should be slightly
different from E ′

2 because E2 is obtained with the in-medium
two-body problem without concern for correlations with the
additional third particle. However, it can be seen that the
difference between E2 and Esol is still around 3

2 EF in Fig. 3,
as found in Eq. (41). This result indirectly shows that E ′

2 is
close to E2 in this regime.

As pointed out in Ref. [24], Eq. (37) explicitly depends
on � because of the dimensional transmutation, and the
dimensionless three-body coupling v3 = 2 is introduced by
replacing tF(p1, p2) with tF(p1, p2) + v3 in Ref. [24]. In
Fig. 3, we also plot the in-medium three-body binding energy
Ev3 by using this procedure. This three-body solution at Ev3 �
−3EF is similar to the squeezed Cooper triple discussed in
Refs. [31,32]. While Ev3 is close to Esol on the strong-coupling
side, Ev3 gradually deviates from Esol at weaker coupling,
indicating the sensitivity to the residual three-body interac-
tion on the weak-coupling side. Ev3 shows a strong cutoff
dependence, as shown in the bottom panel of Fig. 3, where
1/(kFa) = 1 is adopted, while the in-vacuum three-body bind-
ing energy 4/(ma2) at � → ∞ was reported in Ref. [24].
Although we specifically focus on the case with only two-
body interaction and finite �, the properties of the in-medium
three-body state induced by the three-body interaction require
further detailed investigation, which is out of the scope of this
paper.

To investigate the physics behind the absence of in-medium
trimers and Cooper triples in this system without the three-
body interaction, we calculate the in-medium three-body T
matrix T3(p = kF, E = Esol ) at p = kF and E = Esol, repre-
senting the interaction between a bound dimer and a fermion
on the Fermi surface. While our calculation does not in-
clude the lowest-order inhomogeneous term compared to the
exact diagrammatic approach [48], the effective repulsive
interaction given by T3(p = kF, E = Esol ) is sufficient for a
qualitative description of in-medium fermion-dimer correla-
tions in the strongly interacting regime. For comparison, we
calculate the in-vacuum counterpart without a Fermi sea.
Correspondingly, the energy E in the two- and three-body
T -matrices is directly fixed as the two-body binding energy,
which reads

E = −Eb = − 1

ma2
(42)

in the large-� limit. In this paper, we employ the numerical
value of Eb with � = 10kF. Moreover, for convenience, we
introduce the notation of the three-body T matrix as T i

3 (p, E )
with i = vac (med) for the in-vacuum (in-medium) case.

In Fig. 4, we plot the ratio T med
3 (p = kF, E = Esol )/

T vac
3 (p = 0, E = −Eb) (blue solid line) at �/kF = 10. Al-

though it can be seen that after introducing the in-medium
effect, the three-body T matrix becomes smaller with the
decrease of coupling strength, the interaction between the
fermion and dimer is always repulsive. To see the finite-
momentum effect (p = kF) due to the presence of the
Fermi sea [note that p � kF in T med

3 (p, E )], we also plot
the in-vacuum counterpart T vac

3 (p = kF, E = −Eb)/T vac
3 (p =
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FIG. 4. T i
3 (p = kF, E = Esol )/T vac

3 (p = 0, E = −Eb) as a func-
tion of 1/(kFa) (where i = med or vac). The results for T med

3 (p =
kF, E = Esol ) and T vac

3 (p = kF, E = −Eb) are shown by the blue
solid and red dashed lines, respectively. Here, �/kF = 10.

0, E = −Eb) with p = kF (red dashed line). Since this in-
vacuum ratio is close to 1 in Fig. 4, the momentum
dependence of the fermion-dimer scattering in vacuum is
found to be weak in this parameter regime. In this regard,
the suppressed fermion-dimer repulsion in the medium is
regarded as an aspect of the Fermi-surface effect. Conse-
quently, the three-body bound state cannot be formed due
to the fermion-dimer repulsion in the present system even
with the Fermi sea. Physically, while the zero-center-of-mass
three-body state with C3 symmetry in the momentum space
near the Fermi surface (i.e., Cooper triple) can be realized
in two and three dimensions [29–31,49], that is not the case
in the one-dimensional geometry, where at least one of three
fermions should have a momentum away from kF. However,
it is interesting to see such a decrease of the fermion-dimer
repulsion in the intermediate-coupling regime, implying the
possibility of an in-medium three-body bound state with zero
or nonzero center-of-mass momenta in the presence of even
a small three-body attraction [32,50]. Indeed, such a decrease
in the repulsion is consistent with the qualitative behavior of
Ev3 in Fig. 4.

We note that the calculation of Esol is stopped at 1/(kFa) �
0.65, where Esol becomes zero because the Cooper-pair en-
ergy and the kinetic energies of the Cooper pair and the
unpaired fermion are equal to each other. This implies that
the in-medium three-body state with the zero center-of-mass
momentum is not stable against the state with three nonin-
teracting fermions on the Fermi sea, as shown in Eq. (41). On
the other hand, as shown in the Appendix, the strong-coupling
region shown in Figs. 3 and 4 covers the critical value of
the topological phase transition [1/(kFa) � 1.27] predicted by
the mean-field theory [51]. Although the present variational
approach cannot directly address the topological phase transi-
tion, our result indicates the validity of the BCS-type Cooper
pairing without considering the three-body clustering in such
a regime.

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
0.03

0.04

0.05

0.06

0.07

0.08

 T
m

ed
.

3
(p

=k
F, E

=0
) /

 T
m

ed
.

3,
re

f

1/(kFa)

FIG. 5. T med
3 (p = kF, E = 0)/T med

3,ref as a function of 1/(kFa) on
the BCS side (a < 0). T med

3,ref ≡ T med
3 (p = kF, E = Esol ) at 1/(kFa) =

1 is used for a reference. �/kF is also taken to be 10.

Figure 5 shows the in-medium three-body T ma-
trix T med

3 (p = kF, E = 0) on the BCS side (a < 0) with
�/kF = 10, where we used T med

3,ref ≡ T med
3 (p = kF, E = Esol )

at 1/(kFa) = 1 as the unit instead of T vac
3 (p = kF, E = 0)

because this in-vacuum counterpart is extremely small in this
region. We can find that the fermion-Cooper-pair repulsion
is small compared to the fermion-dimer one on the Bose-
Einstein condensation (BEC) side (a > 0) shown in Fig. 4.
This result indicates again that the BCS side may be more
sensitive to the residual three-body interaction than the BEC
side.

While we have shown the numerical results with mainly
�/kF = 10, our results for the fermion-dimer repulsion are
qualitatively unchanged for the different cutoffs. However, if
one were to try to figure out the competition between two-
and three-body clusters in the presence of the additional three-
body interaction, the cutoff dependence would play a crucial
role in the entire crossover region.

V. SUMMARY AND PERSPECTIVES

In this paper, we have investigated in-medium two- and
three-body clusters in one-dimensional spinless fermions with
p-wave interaction. We first solved the p-wave Cooper-pair
problem in one-dimensional spinless fermions and calculated
the two-body bound-state energy in the medium as a function
of coupling strength. The p-wave Cooper pair was found to
be present even in the weak-coupling limit and undergoes
the crossover towards the molecular state like the BCS-
BEC crossover in a three-dimensional Fermi gas with s-wave
interaction. In addition, the pair-correlation length, which de-
scribes the size of the p-wave Cooper pair, was also calculated
as a function of coupling strength. While we found a large
pair-correlation length implying overlapping among pairs on
the weak-coupling side, the pair-correlation length decreases
with the increase of coupling strength and finally indicates the
formation of tightly bound molecules on the strong-coupling
side. Furthermore, the similarity between the present Cooper
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problem and the results of the mean-field theory are discussed
in the Appendix.

As a step further, we also investigated the corresponding
in-medium three-body problem. It can be seen that only the
trivial solution can be found for the in-medium three-body
equation, except for the point E = Esol, where the p-wave
Cooper pair with a nonzero center-of-mass momentum ap-
pears. This result is due to the existence of the fermion-dimer
repulsion associated with the one-dimensional geometry. By
making a comparison with the in-vacuum three-body T ma-
trix, we have found that although such a repulsion is weakened
by the medium effect in the crossover regime, the in-medium
three-body T matrix is always positive. In other words, the
fermion-dimer repulsion, which suppresses in-medium three-
body clustering, is found to always present. Consequently,
such a one-dimensional p-wave fermionic system is stable
against three-body clustering even in the presence of the
Fermi sea.

While we showed the absence of in-medium and in-
vacuum three-body bound states in the present system with
two-body interaction (without three-body interaction) at zero
temperature, our conclusion may not drastically change with
finite-temperature effects because the finite-temperature effect
basically suppresses the medium corrections. If some addi-
tional factors such as a three-body force exist, the three-body
bound state can be induced as pointed out in Ref. [24]. Indeed,
following Ref. [24] for the inclusion of the dimensionless
three-body coupling, we found the solution of the in-medium
bound state with the binding energy Ev3 . In such a case, the
finite-temperature effect may become important in addition to
the Fermi-surface effect when the temperature T exceeds Ev3 .

Our results would be useful for further investigation
of unconventional superconductors and superfluids. More-
over, the decrease in the fermion-dimer repulsion in the
intermediate-coupling regime, which implies the possibility
of an in-medium three-body bound state with the existence of
a non-negligible three-body attraction, also paves a promising
way for the study of higher-order corresponding Cooper clus-
ter states. Also, the emergent s-wave interaction due to the
quasi-one-dimensional geometries may play a crucial role in
the formation of Cooper cluster states [52]. Furthermore, the
medium effect on bound trimers in higher dimensions such as
the super Efimov state [53] would be an interesting issue to
study.
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APPENDIX A: MEAN-FIELD THEORY

Based on BCS-Leggett theory [2], we introduce the p-wave
superfluid order parameter as


(k) = −U2k
∑

k′
k′〈c−k′ck′ 〉 = kD. (A1)

By taking an appropriate gauge transformation, D can be
taken as a positive real value without loss of generality, and

(k) becomes real valued correspondingly. The mean-field
Hamiltonian reads

HMF = 1

2

∑
k

�
†
k

(
ξk −
(k)

−
(k) −ξk

)
�k − D2

2U2
+ 1

2

∑
k

ξk,

(A2)

where �k = (ck c†
−k )T is the Nambu spinor. The Bogoli-

ubov transformation is introduced here as(
αk

α
†
k

)
=

(
ukck − vkc†

−k

u−kc†
k + v−kc−k

)
, (A3)

where u2
k = 1

2 (1 + ξk/Ek ) and v2
k = 1

2 (1 − ξk/Ek ) are the BCS
coherence factors. Using this transformation, we obtain

HMF = 1

2

∑
k

Ekα
†
k αk + EGS, (A4)

with the dispersion of the Bogoliubov quasiparticle

Ek =
√

ξ 2
k + 
2(k) =

√
ξ 2

k + k2D2 (A5)

and the ground-state energy

EGS = − D2

2U2
+ 1

2

∑
k

(ξk − Ek ). (A6)

For the given scattering length a and particle number N , D
and μ can be determined by self-consistently solving the
following two equations [54]: the gap equation,

m

2a
+

∑
k

k2

[
1

2Ek
− 1

2εk

]
≡ 1

U2
+

∑
k

k2 1

2Ek
= 0, (A7)

with εk = k2/(2m), and the particle number equation,

N = −∂EGS

∂μ
= 1

2

∑
k

[
1 − ξk

Ek

]
. (A8)

By further introducing the dimensionless variable x = k/kF,
we can rewrite them, respectively, as

π

2kFa
+

∫ �̃

0
dx

[
x2√

(x2 − μ̃)2 + D̃2x2
− 1

]
= 0 (A9)

and

1 = 1

2

∫ ∞

0
dx

[
1 − x2 − μ̃√

(x2 − μ̃)2 + D̃2x2

]
, (A10)

where we introduced μ̃ = μ/EF, D̃ = DkF/EF, and �̃ =
�/kF. The solutions of Eqs. (A9) and (A10) are identical
to the case of spin-1/2 fermions with the interspin p-wave
interaction in Refs. [44,51], noting that the spin degrees
of freedom (s = 2) are absorbed into the number density
ρ = s kF

π
.

Figure 6 shows the numerical results DkF/EF and μ/EF of
the mean-field theory. It is found that the cutoff dependence
is not significant in the crossover regime. In particular, μ/EE

is less sensitive than DkF/EF because �/kF is explicitly in-
cluded in the gap equation (A9) but not in the number-density
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FIG. 6. (a) Pairing-gap parameter DkF/EF and (b) chemical po-
tential μ/EF with different cutoffs �/kF = 10, 100, and 1000 in
the mean-field theory. The inset in (b) shows the effective two-body
energy 
E = 2(μ − mD2) − 2EF measured from 2EF.

equation (A10). In this regard, the location of the topological
phase transition (μ = 0) [51] is relatively robust against the

change in �. It is also associated with the fact that at μ = 0 the
low-energy gapless mode Ek = Dk + O(k3) plays a crucial
role in system’s properties. To compare the mean-field result
with that in the Cooper problem in the main text, we introduce
a quantity characterizing the reduction of μ from EF due to the
pairing effect as


E = 2(μ − mD2) − 2EF, (A11)

where the factor 2 is multiplied for the comparison with
the two-body energy E2 in the Cooper problem. The pairing
shift mD2 is explicitly included in this definition because

(k) = Dk is not negligible even in such a relatively strong
coupling regime [e.g., 1/(kFa) ∼ 1], in contrast to the three-
dimensional s-wave case with the momentum-independent
pairing gap [42]. This fact can be found from the quasiparticle
dispersion

Ek =
√(

k2

2m

)2

− μ − mD2

m
k2 + μ2, (A12)

where the term proportional to k2 involves μ − mD2. Indeed,

E shown in the inset of Fig. (6) is similar to E2 shown
in Fig. 1, although Ek does not exhibit the usual quadratic
dispersion ∼k2/(2m) + |μ|. In this sense, E2 and 
E do not
coincide with each other quantitatively. However, we can see
that the Cooper problem and the mean-field theory give a sim-
ilar result for the p-wave pairing in this model. Also, we note
that the mean-field theory does not satisfy the Bose-Fermi
duality [18–24] and the Mermin-Wagner-Hohenberg theorem
[55,56] due to the approximation. Nevertheless, the mean-
field theory is still useful for discussing several interesting
features of spinless p-wave fermions such as the Majorana
low-energy mode [17].
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