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We theoretically investigate in-medium two- and three-body correlations in one-dimensional spinless fermions
with attractive two-body p-wave interaction. By investigating the variational problem of two- and three-body
states above the Fermi sea, we elucidate the fate of the in-medium two- and three-body cluster states. The one-

dimensional system with the strong p-wave interaction is found to be stable against the formation of three-body
clusters even in the presence of the Fermi sea, in contrast to higher-dimensional systems that suffer the strong
three-body loss associated with the trimer formation. Our results indicate that the weak two-body coupling
side is more sensitive to the residual three-body interaction than the strong-coupling side. By including the

dimensionless three-body coupling such that the universality associated with the scattering length is maintained,
we find that an in-medium three-body state similar to a squeezed Cooper triple appears.
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I. INTRODUCTION

The study of unconventional superconductors and superflu-
ids is one of the most exciting issues in modern physics [1]. In
particular, the importance of the p-wave pairing state has been
widely recognized in the field of condensed-matter physics as
well as nuclear physics, such as the *He superfluid [2] and the
3P, neutron superfluid [3].

An ultracold Fermi gas near the p-wave Feshbach reso-
nance is one of the promising candidates to systematically
investigate the role of strong p-wave interaction in unconven-
tional superfluid states [4] due to its tunable interaction [5].
In this regard, the realization of a p-wave superfluid Fermi
gas is a long-standing concern in cold-atom physics. A cold-
atom quantum simulation of p-wave superfluids will make
an important breakthrough in our understanding of topolog-
ical superconductors [6]. However, in three dimensions, the
p-wave Fermi superfluid state is unstable against three-body
clustering [7], which leads to the three-body recombination
accompanying strong particle loss. Such a three-body loss
near the p-wave Feshbach resonance has been measured in
experiments [8,9]. Also, the three-body loss has been theoret-
ically examined in connection with few-body physics in three
dimensions [10-13].

In contrast, the suppression of three-body loss in a one-
dimensional p-wave system has been theoretically predicted
[14]. In this context, the three-body loss in one-dimensional
p-wave fermions was experimentally studied recently [15,16].
The one-dimensional p-wave superfluid is also relevant for the
Majorana edge mode [17]. Moreover, a Bose-Fermi duality
is also of great interest in one-dimensional p-wave Fermi
systems [18-24]. Thanks to such a fascinating property in this
system, the bulk viscosity has attracted attention [25,26]. The
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one-dimensional p-wave contact has also been investigated
by using the thermodynamic Bethe ansatz [27] and virial
expansion [28].

To investigate the stability against three-body clustering
in quantum many-body systems, we need to consider the
in-medium three-body problem. For such a purpose, the gen-
eralized Cooper problem has been applied to cluster states
consisting of more than two particles, such as Cooper triples
[29-32] and even Cooper quartets [33—36]. The investigation
of the fate of such higher-order clustering is also a stimulat-
ing topic in various fields. These approaches are useful for
further understanding the many-body ground state. Indeed,
the Cooper-pair problem has been considered to elucidate
the pairing mechanism in unconventional superconductors
[37-40]. On the other hand, the corresponding study of one-
dimensional spinless p-wave fermionic systems has not been
strictly performed so far.

In this paper, we theoretically study in-medium two- and
three-body states in a one-dimensional Fermi gas with the res-
onant p-wave interaction using the variational method based
on the generalized Cooper problem. We show that a p-wave
Cooper pair appears even in the weak-coupling regime and
undergoes the crossover towards the molecular state like the
BCS-BEC crossover in a three-dimensional Fermi gas with
strong s-wave interaction [41,42]. By solving the in-medium
three-body equation derived from the variational principle, we
show the absence of a stable in-medium three-body cluster
state (such as a Cooper triple and in-medium trimer) in the
present system without any additional interactions such as
three-body attraction. The fermion-dimer repulsion, which
suppresses the in-medium three-body clustering, is found to
be always present, although it is weakened by the in-medium
effect in the crossover regime. Accordingly, we also show the
emergence of the in-medium three-body state is similar to the
squeezed Cooper triple [31,32] in the presence of the residual
three-body interaction proposed in Ref. [24].

©2022 American Physical Society
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This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian for one-dimensional spinless fermions with
attractive p-wave two-body interaction. In Sec. III, we derive
the Cooper-pair problem in the one-dimensional spinless p-
wave fermionic system. In addition, the similarity between
the present Cooper problem and mean-field theory is dis-
cussed in the Appendix. In Sec. IV, we show the in-medium
three-body equation obtained from the variational approach
and the effective fermion-dimer repulsion. The three-body
bound state is found to be absent in one-dimensional spinless
p-wave fermions correspondingly. Finally, a summary and
perspectives are given in Sec. V. In the following, we take
h = ¢ = kg = 1. The system size is taken to be unit.

II. HAMILTONIAN

In this paper, we consider one-dimensional spinless
fermions with attractive p-wave interaction. The Hamiltonian
of such a system can be given as

H=K+V. M
K= Zi?kCZCk, 2)
k
U2 kl — k2 k3 — k4
V=-—=
2 2 ( 2 )( 2 )
ki.ko k3, ks
X CZ] CZZCk4Ck3 8k1+’<2,k3+k4’ 3)

where & = k? /(2m) — w in the kinetic term K is the single-
particle energy with momentum k, atomic mass m, and
chemical potential p. In the generalized Cooper problems,
we take u = Ep, where Ef is the Fermi energy. V represents
the short-range p-wave two-body interaction with coupling
constant U,. This interaction corresponds to the zero-range
limit of the two-channel model for the Feshbach resonance
[43,44]. The relation between U, and the p-wave scattering
length a is obtained from the two-body 7" matrix as [22,43]

1 mp? m(l 1 2
— N T T (- CrekPtik), @
U Xp:k2+i8—p2 2<a 2ot +’) @

where rg is the effective range and 6 is an infinitesimally
small number. Correspondingly, we have
1 A 1
——— = )
mU, T 2a
where A is the momentum cutoff. A can also be expressed in

J

!’

terms of the effective range r. as

4

TCTeff

A= (6)

For convenience, the pair-creation and -annihilation operators
are introduced as
LR -
BliQ - cklckz’ Bkg,k4 = CkyCls» (7)

respectively. In a similar way, the corresponding operators for
the three-body sector read

i _ LT —
F ok = S Ci0Chsr Fpipaps = CpsCpaCpy- ()

III. COOPER-PAIR PROBLEM

In this section, we first solve the Cooper-pair problem in
the one-dimensional p-wave system as described in Sec. II.
Correspondingly, the trial wave function is adopted as

W2) = Y 0(1k| — ke)DB]_,[FS), ©)
k

where |FS) denotes the Fermi sea. By minimizing the ground-
state energy based on the variational principle, the variational
parameter ®; in Eq. (9) can be determined. In what follows,
we introduce the momentum summation restricted by the
Fermi surface as

!/

Y. Flkik,--+)

ki ko,

= Z O(lki] — kp)O(lka| — kg) - - - F(ki, ko, ...) (10)
ki,ka,...

for an arbitrary function F (ki, kp, - - - ), where kp = /2mEF is
the Fermi momentum.

The expectation values for the kinetic and interaction parts
are obtained as

/
(Wo|K|Wy) = Y &,®; D, (FS|B. _iche,B) _,IFS)
k.p.q

=2 (& +E 0| Pl (1)
k

and

U, ki —ka\ (K =K\ ' i
(W |V|¥) = = > ( ! >< ! 2><I>pd>q(FS|Bk,_kB};’szki,kéB;,_q|FS)8kl+k2,k;+ké =20, pq®®,. (12)

2 2

D.q.ki ko kg ks

respectively.
Furthermore, from the variational principle, we obtain

§(Wa|(H — E»)| W)
5P

=0, (13)

p.q

(

where E) is the ground-state energy of a pairing state. Conse-
quently, the variational equation reads

26 +&,— E))®,+2Uap Y qPy=0.  (14)
q
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In order to simplify the further derivations, we introduce
4
A=) q0, (15)
q

Substituting Eq. (15) into Eq. (14), we obtain

—Usz

b, = —" .
’ 2€p_E2

(16)

I / dp mp?
U, ke<ipl<a 27 p* —m(2Ep + Ey)

Equation (15) can be then rewritten as

/ / 2
)%
P P

Consequently, we get the bound-state equation for the Cooper
pair:

4 2
p
1+0,)Y ———=o0. (18)
>l

By taking the momentum cutoff A, the two-body equation is
then given as

_ m(A — kg) n my/mQ2Eg + E») [ln <A — m(2EF +E2)) I <kF — vmQ2Eg + Ez))i|

T 2
=bL(p, =0, E; — Ef),

where we introduced

m
L(py, E) = E/d

By taking the momentum cutoff A = 10kg, the ground
state of the Cooper-pair problem can be solved from Eq. (19).
The two-body ground-state energy E, as a function of 1/(kga)
is shown in Fig. 1. It can be seen that the p-wave Cooper
pair exists even on the weak-coupling side and undergoes
the crossover towards the molecular state like the BCS-BEC
crossover in a three-dimensional Fermi gas [41,42]. Note that
the result is qualitatively unchanged by the difference of A.

Here we can further see the asymptotic behavior of the
two-body ground-state energy in the Cooper-pair problem. On
the one hand, in the weak-coupling limit where |E;| < EF,

-8 R 1 R 1 R 1 R 1 R
-1.0 -0.5 0.0 0.5 1.0 1.5

1/(k a)

FIG. 1. In-medium two-body energy E, as a function of 1/(kra)
by solving the Cooper-pair problem (19). The momentum cutoff A
is taken to be 10kg.

P1
pr+ p3+ pip2 — m(3Ep + E»)

A+ VmQEr + E») kg + o/mQEr + E»)
(19)
0 — kp)O —k
(Ip1 + p2l — kp)O(|p1| — k) (01 + pa/2). 20)

[
Eq. (19) further reduces to

1 m(A — kg) N ma/2mQEg + E>) 1 |Ex|
—~ nl—],
U, T 2m 8EF

20
which indicates that
|E| ~ 8Epes. (22)

This expression is identical to the three-dimensional s-wave
case after replacing the p-wave scattering length a with the
s-wave one [42], indicating the similarity between the one-
dimensional p-wave pairing and the three-dimensional s-wave
one [44]. On the other hand, in the strong-coupling limit
|E>| > Ep, we obtain

1 m(A —kg) n m«/m(|E;| — 2EF)

U, T T
x tan”! <—m(|E21|\— 2EF)), (23)

leading to |E;| ~ 2Ef + # in the limit of A /kgp — oo. This
is equivalent to the two-body binding energy except for the
shift 2Ef associated with the Fermi sea.

In addition, we can define the pair-correlation length

[45,46] as
2 _ Z;) |apq>p|2

St = ~— a5 (24)
p Zp |¢)p|2
where in detail, the summations read
’ A P
|D,|? =2m2U2A2/ dp (25)
21 e T =K+ mlEy|R

p
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FIG. 2. Pair-correlation length &, as a function of 1/(kga). The
momentum cutoff A is taken to be 10kg.

and

2
>+ k2 —m|E
Z|a ®,2 _2mU22A2/ dp[(p kg —m] 2'4 .

ke p* — I+ m|Es|)
(26)

The pair-correlation length &, given by Eq. (24), which
describes the size of the pair, is shown in Fig. 2 as a func-
tion of 1/(kga). The momentum cutoff A is taken to be
10kg. The large pair-correlation length &, on the weak-
coupling side indicates the huge overlaps among pairs when
a macroscopic number of Cooper pairs are formed. Qual-

J

The expectation value of the kinetic part is then obtained as

/
(W3|K|W¥3) =

P1:D2:D3: P> D) P

*
Z $2p1 o S0, (5,,1 +&p, + gps)epn,pz,psfpl P Opt — i~

itatively, the mean interparticle distance is given by kz',
and hence, &pckp 2 1 represents such an overlap of pairs.
With the increase of coupling strength, the pair-correlation
length &, decreases quickly. Finally, &, becomes very
small on the strong-coupling side, which indicates the for-
mation of a molecule-like bound state. Such behavior of
the pair-correlation length is similar to the s-wave case in
Refs. [45,46].

Incidentally, although the Cooper problem is investigated
here, the pairing energy E, is qualitatively similar to the
reduction of the chemical potential n with the pairing gap D
in the mean-field theory, which can be expressed as AE =
2(u — mD?) — 2Eg, as discussed in the Appendix. We note
that the Cooper problem gives an approximated two-body
ground state in the medium, which differs from an exact
many-body ground state. Therefore, generally, the Cooper
problem does not satisfy the Bose-Fermi duality. However, it
is still useful to understand the pairing effect in this system.
Indeed, this approach can describe both the Cooper-pair for-
mation in the weak-coupling limit and the molecule formation
in the strong-coupling limit.

IV. THREE-BODY PROBLEM IN THE MEDIUM

In a way similar to the two-body case, the trial wave func-
tion for the three-body sector is taken to be [30,31]

|LIJ3 Z 8P1+p2 -p3 171 p2 p] D2, p3|FS) (27)

P1,P2,P3

where €2, ,, is the variational parameter and the three-body
state with zero center-of-mass momentum (p; + p> + p3 =
0) is considered here.

8173 »—P1—D2

=2 Z (Eﬂl + Sﬂz + S—PI—PZ)Q;I,[:Z [QPIxPZ + sz,—m—ﬁz + Q—Pl—ﬂzml]‘ (28)

P1:p2

In addition, the expectation value of the interaction part can also be derived as

W =233 Y Y <k‘_

ki,ka k{.ky P1,P2:P3 Pl ps. D

x (FS|Fy, p,. P‘Bkl szk K, F, 2
=2v; + vy,
where in detail,
/
v = % 2, ,(p1 = p2)2q — pi
P1p2.q
and

/

= PR p—prg + 2p2 + p1)2q + p1)2p, 4 + (—2p1

ko ki — k) N
) Qpl szp’,,p’zspHrpzﬁpz‘Sp’, +ph,—p5

/IFS)
P3

(29)

— P2)(29 + p2)2p, 4] (30a)

Uz
Dl = P24 = pr— PR —grpips + P2+ PG+ PR,

P1,P2.9

+ (=2p1 — p3)2p1 + Pz)ququz]'

(30b)
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From the variational principle, we obtain
S(W3|(H — E)[W3)  §(W3[(K+V — E)|¥3)

SQZIsPZ SQlePZ

=0. (31)

The resulting variational equation reads

2(5171 + g[’z + gpz - E)[QPI,PZ + szqu + Qm,pu]
Us
- _7 Z [(pl - p2)(2q + p3)(29p3,q + Qq,qupg) + (Pz - P3)(2q + pl)(ZQpl,q + Qq,qupl)
q

+(p3 = PG + P2) (22, + —g-p2) | (32)
By further introducing

A(pi, p2) = Z(Pl = P2)(2q + p3)(282p, 4 + Qg —g—py) = (p1 — p2)B(p3), (33)
q

Eq. (32) can be recast into

(p1 + p2/2)(p1 + 2p2)
B , 34
Em + %-Pz + S_pl_PZ —E (pl) ( )

Bp)=U,)

P1

2 2
11U, (p1+ p2/2)
pi El’l + %-Pz + E—pl—pz —FE
which actually corresponds to the in-medium Skorniakov-Ter-Martirosian (STM) equation [29,31,47]. If we remove the

constraint on the momentum summation associated with the Fermi sea as Z;l -y - We recover the usual STM equation for
the three-body problem. Equation (34) can be further rewritten in terms of the in-medium two- and three-body 7" matrices as

[47]

T, (p2. E)B(p2) = Ts(p2, E), (35)
where we introduce
1 -1
L(p:, E) = [U + L(p2, E)} (36)
2

and

/

(p1+ p2/2)(p1 +2p2)0(Ip1 + p2| — kg)

T3(p2, E) =)

P

B(p1)

sI’l + E_Pl + S—m—l’z —E
m ] (p1 + p2/2)(p1 + 2p2)0(Ip1]| — kp)0(Ip1 + p2| — kF)B

=—|d
2 P

In the last line of Eq. (37), following Ref. [24], we have
defined
2pi +2p5 +5pip>
Py + 3+ pipr —mQ3Er +E)
3 +2mQGEr +E
= Pip (2 =2 )2 @3y
mQ3Er + E) — (pl +p;+ Plpz)
We find that Eq. (37) exhibits an ultraviolet divergence due to
the second term of 1r(py, p2) (i-e., —2) in Eq. (38). To avoid
this ultraviolet divergence and keep the universal Bose-Fermi
duality in the sense that the interaction is characterized by
only a while taking the large-A limit, a dimensionless three-
body coupling vs = 2 was introduced in Ref. [24]. Because
we are interested in in-medium three-body properties with
the two-body p-wave interaction rather than such universal
properties, we do not go into details about vs and use the

tr(p1, p2) = —

Pt + p3+ pipr — mBEg + E)

(p1)

_%/dple(“’” — kp)0(|p1 + p2| — ke)te(p1, p2)B(p1). 37

(

present interaction with finite A in this paper. Such a scheme
is also related to the finite-range two-body interaction as given
by Feff = %

By solving Eq. (35), we numerically find that there is only
the trivial solution for B(p), i.e., B(p) = 0, except for E =
E,, corresponding to the continuum of in-medium pairing
states and an additional fermion on the Fermi sea. Such a
result demonstrates that the three-body bound state is absent
in one-dimensional spinless p-wave fermionic systems with
attractive two-body interaction. As we will show below, the
fermion-dimer repulsion always exists at the solution of the
in-medium three-body equation E = E. It is equivalent to
the solution of the following equation:

T, ' (p=kp, E = Eq) = 0 (39)
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FIG. 3. Top: The solution Ej of the in-medium three-body equa-
tion (35) and the Cooper-pair energy E, as functions of 1/(kra) at
A /kr = 10. The results are shown by the red dotted and blue dashed
lines, respectively. E,,, shown by the olive solid line, is the solution
of the in-medium three-body bound state where we replace 5 (p;, p2)
with 7 (p1, p2) + v3 = tr(p1, p2) + 2 in Eq. (37) based on Ref. [24].
Bottom: The cutoff dependence of E,, at 1/(kpa) = 1.

because the divergence of T;(p, E) in the range of krp < p <
A should be avoided in the in-medium three-body equation.

In order to investigate the physics deeper, we calculate
E; numerically. In Eq. (39), Ey, can also be regarded as the
energy of the pairing state with center-of-mass momentum kg.
This configuration also appears in the in-medium three-body
equation (35) within the zero-center-of-mass frame of three
particles above the Fermi sea. In this regard, the solution of
Eq. (39) can also be that of the in-medium three-body equa-
tion with B(p) # 0. Otherwise, the in-medium three-body
equation exhibits a singularity associated with the divergent
two-body T-matrix at an arbitrary momentum p > kp. In
Fig. 3, the two-body ground-state energy E, obtained with the
Cooper-pair problem and E, are shown as functions of inter-
action strength 1/(kga). The results are shown by blue dashed
and red solid lines, respectively. The difference between Ej
and two-body state energy E; in the three-body problem can
be estimated as

k2
Eé + £ + EF = Esol + 3EF, (40)
4m

ie.,
E — E} = 3Ep, (41)

where we assume that two of the three particles on the Fermi
sea have formed a Cooper pair with energy E; and nonzero

center-of-mass momentum kg, such that the total momentum
with the unpaired fermion is zero.

Here the two-body state energy E, obtained with the
Cooper-pair problem as shown in Fig. 1 should be slightly
different from E; because E, is obtained with the in-medium
two-body problem without concern for correlations with the
additional third particle. However, it can be seen that the
difference between E, and Eg is still around %EF in Fig. 3,
as found in Eq. (41). This result indirectly shows that E; is
close to E; in this regime.

As pointed out in Ref. [24], Eq. (37) explicitly depends
on A because of the dimensional transmutation, and the
dimensionless three-body coupling v3 = 2 is introduced by
replacing fr(p1, p2) with tg(p1, p2) + v3 in Ref. [24]. In
Fig. 3, we also plot the in-medium three-body binding energy
E,, by using this procedure. This three-body solution at E,, 2>
—3Ep is similar to the squeezed Cooper triple discussed in
Refs. [31,32]. While E,, is close to E, on the strong-coupling
side, E,, gradually deviates from E,, at weaker coupling,
indicating the sensitivity to the residual three-body interac-
tion on the weak-coupling side. E,, shows a strong cutoff
dependence, as shown in the bottom panel of Fig. 3, where
1/(kpa) = 1is adopted, while the in-vacuum three-body bind-
ing energy 4/(ma*) at A — oo was reported in Ref. [24].
Although we specifically focus on the case with only two-
body interaction and finite A, the properties of the in-medium
three-body state induced by the three-body interaction require
further detailed investigation, which is out of the scope of this
paper.

To investigate the physics behind the absence of in-medium
trimers and Cooper triples in this system without the three-
body interaction, we calculate the in-medium three-body T
matrix T3(p = kg, E = Eg)) at p = kg and E = E, repre-
senting the interaction between a bound dimer and a fermion
on the Fermi surface. While our calculation does not in-
clude the lowest-order inhomogeneous term compared to the
exact diagrammatic approach [48], the effective repulsive
interaction given by T3(p = kg, E = Eq)) is sufficient for a
qualitative description of in-medium fermion-dimer correla-
tions in the strongly interacting regime. For comparison, we
calculate the in-vacuum counterpart without a Fermi sea.
Correspondingly, the energy E in the two- and three-body
T -matrices is directly fixed as the two-body binding energy,
which reads

E=—By=——s “2)
ma
in the large-A limit. In this paper, we employ the numerical
value of Ey, with A = 10kg. Moreover, for convenience, we
introduce the notation of the three-body 7' matrix as T; (p, E)
with i = vac (med) for the in-vacuum (in-medium) case.

In Fig. 4, we plot the ratio T3med(p =kp, E = Eq1)/
" (p =0, E = —E;) (blue solid line) at A/kg = 10. Al-
though it can be seen that after introducing the in-medium
effect, the three-body 7' matrix becomes smaller with the
decrease of coupling strength, the interaction between the
fermion and dimer is always repulsive. To see the finite-
momentum effect (p = kg) due to the presence of the
Fermi sea [note that p > kg in T;“ed(p,E )], we also plot
the in-vacuum counterpart 7;*(p = kg, E = —Ey,) /T3 (p =

043310-6
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FIG. 4. T;(p =kp, E = Ey)/T,(p =0, E = —E,) as a func-
tion of 1/(kra) (where i = med or vac). The results for T;“e“(p =
ke, E = Ey) and T;"°(p = kg, E = —E;) are shown by the blue
solid and red dashed lines, respectively. Here, A /kg = 10.

0,E = —E,) with p = kp (red dashed line). Since this in-
vacuum ratio is close to 1 in Fig. 4, the momentum
dependence of the fermion-dimer scattering in vacuum is
found to be weak in this parameter regime. In this regard,
the suppressed fermion-dimer repulsion in the medium is
regarded as an aspect of the Fermi-surface effect. Conse-
quently, the three-body bound state cannot be formed due
to the fermion-dimer repulsion in the present system even
with the Fermi sea. Physically, while the zero-center-of-mass
three-body state with C3 symmetry in the momentum space
near the Fermi surface (i.e., Cooper triple) can be realized
in two and three dimensions [29-31,49], that is not the case
in the one-dimensional geometry, where at least one of three
fermions should have a momentum away from kg. However,
it is interesting to see such a decrease of the fermion-dimer
repulsion in the intermediate-coupling regime, implying the
possibility of an in-medium three-body bound state with zero
or nonzero center-of-mass momenta in the presence of even
a small three-body attraction [32,50]. Indeed, such a decrease
in the repulsion is consistent with the qualitative behavior of
E,, in Fig. 4.

We note that the calculation of E is stopped at 1/(kga) =~
0.65, where E,, becomes zero because the Cooper-pair en-
ergy and the kinetic energies of the Cooper pair and the
unpaired fermion are equal to each other. This implies that
the in-medium three-body state with the zero center-of-mass
momentum is not stable against the state with three nonin-
teracting fermions on the Fermi sea, as shown in Eq. (41). On
the other hand, as shown in the Appendix, the strong-coupling
region shown in Figs. 3 and 4 covers the critical value of
the topological phase transition [1/(kra) >~ 1.27] predicted by
the mean-field theory [51]. Although the present variational
approach cannot directly address the topological phase transi-
tion, our result indicates the validity of the BCS-type Cooper
pairing without considering the three-body clustering in such
aregime.

ed., __ ed.
T; (p_kF’ E =0) / T:’;n,ref

003 b v 0,
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

1/(k.a)

FIG. 5. T;“ed(p =kg, E = 0)/7";';2? as a function of 1/(kga) on
the BCS side (a < 0). T = T™(p = kg, E = E)) at 1/(kpa) =
1 is used for a reference. A /kg is also taken to be 10.

Figure 5 shows the in-medium three-body 7 ma-
trix T3med(p = kg, E =0) on the BCS side (a < 0) with
A/kg = 10, where we used Ty%f = T (p = kg, E = Egq1)
at 1/(kpa) =1 as the unit instead of 73*(p = kg, E = 0)
because this in-vacuum counterpart is extremely small in this
region. We can find that the fermion-Cooper-pair repulsion
is small compared to the fermion-dimer one on the Bose-
Einstein condensation (BEC) side (@ > 0) shown in Fig. 4.
This result indicates again that the BCS side may be more
sensitive to the residual three-body interaction than the BEC
side.

While we have shown the numerical results with mainly
A /kpg = 10, our results for the fermion-dimer repulsion are
qualitatively unchanged for the different cutoffs. However, if
one were to try to figure out the competition between two-
and three-body clusters in the presence of the additional three-
body interaction, the cutoff dependence would play a crucial
role in the entire crossover region.

V. SUMMARY AND PERSPECTIVES

In this paper, we have investigated in-medium two- and
three-body clusters in one-dimensional spinless fermions with
p-wave interaction. We first solved the p-wave Cooper-pair
problem in one-dimensional spinless fermions and calculated
the two-body bound-state energy in the medium as a function
of coupling strength. The p-wave Cooper pair was found to
be present even in the weak-coupling limit and undergoes
the crossover towards the molecular state like the BCS-
BEC crossover in a three-dimensional Fermi gas with s-wave
interaction. In addition, the pair-correlation length, which de-
scribes the size of the p-wave Cooper pair, was also calculated
as a function of coupling strength. While we found a large
pair-correlation length implying overlapping among pairs on
the weak-coupling side, the pair-correlation length decreases
with the increase of coupling strength and finally indicates the
formation of tightly bound molecules on the strong-coupling
side. Furthermore, the similarity between the present Cooper
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problem and the results of the mean-field theory are discussed
in the Appendix.

As a step further, we also investigated the corresponding
in-medium three-body problem. It can be seen that only the
trivial solution can be found for the in-medium three-body
equation, except for the point E = E,,, where the p-wave
Cooper pair with a nonzero center-of-mass momentum ap-
pears. This result is due to the existence of the fermion-dimer
repulsion associated with the one-dimensional geometry. By
making a comparison with the in-vacuum three-body 7" ma-
trix, we have found that although such a repulsion is weakened
by the medium effect in the crossover regime, the in-medium
three-body 7' matrix is always positive. In other words, the
fermion-dimer repulsion, which suppresses in-medium three-
body clustering, is found to always present. Consequently,
such a one-dimensional p-wave fermionic system is stable
against three-body clustering even in the presence of the
Fermi sea.

While we showed the absence of in-medium and in-
vacuum three-body bound states in the present system with
two-body interaction (without three-body interaction) at zero
temperature, our conclusion may not drastically change with
finite-temperature effects because the finite-temperature effect
basically suppresses the medium corrections. If some addi-
tional factors such as a three-body force exist, the three-body
bound state can be induced as pointed out in Ref. [24]. Indeed,
following Ref. [24] for the inclusion of the dimensionless
three-body coupling, we found the solution of the in-medium
bound state with the binding energy E,,. In such a case, the
finite-temperature effect may become important in addition to
the Fermi-surface effect when the temperature T exceeds E

Our results would be useful for further investigation
of unconventional superconductors and superfluids. More-
over, the decrease in the fermion-dimer repulsion in the
intermediate-coupling regime, which implies the possibility
of an in-medium three-body bound state with the existence of
a non-negligible three-body attraction, also paves a promising
way for the study of higher-order corresponding Cooper clus-
ter states. Also, the emergent s-wave interaction due to the
quasi-one-dimensional geometries may play a crucial role in
the formation of Cooper cluster states [52]. Furthermore, the
medium effect on bound trimers in higher dimensions such as
the super Efimov state [53] would be an interesting issue to
study.
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APPENDIX A: MEAN-FIELD THEORY

Based on BCS-Leggett theory [2], we introduce the p-wave
superfluid order parameter as

—Urk Z K (c_pcw) = kD.
k/

Ak) = (AL)

By taking an appropriate gauge transformation, D can be
taken as a positive real value without loss of generality, and
A(k) becomes real valued correspondingly. The mean-field
Hamiltonian reads

A(k)

HMF—_Z (A(k) _—Ek> k——+ Z&k,

(AZ)

where W, = (¢ cik)T is the Nambu spinor. The Bogoli-
ubov transformation is introduced here as

s
1873 UpC — VpC_
() w
o U_kCp + VpCi
where u = 1(1 + &/E;) and v} = 1(1 — &/E}) are the BCS
coherence factors. Using this transformation, we obtain
1
Hvr = 3 ; Eyof oy + Egs, (A4)
with the dispersion of the Bogoliubov quasiparticle
E, = \/s,f + A2(k) = \/5,3 + k2D? (A5)
and the ground-state energy
Eos = =5+ 3 Z (& — Ex). (A6)

For the given scattering length a and particle number N, D
and p can be determined by self-consistently solving the
following two equations [54]: the gap equation,

m 1 1 1 1

—4+ )Y B ———|=—+)) K — =0, (A7

2a Xk: [2Ek 28k:| U2 Xk: 2Ek ( )
with &, = k?/(2m), and the particle number equation,

N

By further introducing the dimensionless variable x = k/kg,
we can rewrite them, respectively, as

(A8)

- 1] =0 (A9)

T /A [ x2
+ dx —
2kF(l 0 /(xz _ ,&,)2 +D2)C2

00 ~

1=1f dx|:1— r R }
where we introduced ji = u/Ep, D = Dkg/Eg, and A =
A /kg. The solutions of Egs. (A9) and (A10) are identical
to the case of spin-1/2 fermions with the interspin p-wave
interaction in Refs. [44,51], noting that the spin degrees
of fregdom (s = 2) are absorbed into the number density
p=srk.

Figure 6 shows the numerical results Dkg/Er and pu/Er of
the mean-field theory. It is found that the cutoff dependence
is not significant in the crossover regime. In particular, u/Eg
is less sensitive than Dkg/Ep because A /kg is explicitly in-
cluded in the gap equation (A9) but not in the number-density

and

(A10)

043310-8



STABILITY AGAINST THREE-BODY CLUSTERING IN ...

PHYSICAL REVIEW A 106, 043310 (2022)
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FIG. 6. (a) Pairing-gap parameter Dkg/Er and (b) chemical po-
tential u/FEg with different cutoffs A/kg = 10, 100, and 1000 in
the mean-field theory. The inset in (b) shows the effective two-body
energy AE = 2(u — mD?) — 2Eg measured from 2Eg.

equation (A10). In this regard, the location of the topological
phase transition (u = 0) [51] is relatively robust against the

change in A. Itis also associated with the fact that at © = 0 the
low-energy gapless mode E; = Dk + O(k?) plays a crucial
role in system’s properties. To compare the mean-field result
with that in the Cooper problem in the main text, we introduce
a quantity characterizing the reduction of u from Ep due to the
pairing effect as

AE = 2(u — mD?) — 2Eg, (Al1)

where the factor 2 is multiplied for the comparison with
the two-body energy E; in the Cooper problem. The pairing
shift mD? is explicitly included in this definition because
A(k) = Dk is not negligible even in such a relatively strong
coupling regime [e.g., 1/(kra) ~ 1], in contrast to the three-
dimensional s-wave case with the momentum-independent
pairing gap [42]. This fact can be found from the quasiparticle
dispersion

k2\*  w—mD?
Ek:\/<_) D
2m m

where the term proportional to k? involves i — mD?. Indeed,
AE shown in the inset of Fig. (6) is similar to E, shown
in Fig. 1, although Ej; does not exhibit the usual quadratic
dispersion ~k? /(2m) + |u|. In this sense, E; and AE do not
coincide with each other quantitatively. However, we can see
that the Cooper problem and the mean-field theory give a sim-
ilar result for the p-wave pairing in this model. Also, we note
that the mean-field theory does not satisfy the Bose-Fermi
duality [18-24] and the Mermin-Wagner-Hohenberg theorem
[55,56] due to the approximation. Nevertheless, the mean-
field theory is still useful for discussing several interesting
features of spinless p-wave fermions such as the Majorana
low-energy mode [17].
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