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Dynamics of a pair of overlapping polar bright solitons in spin-1 Bose-Einstein condensates
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We analyze the dynamics of both population and spin densities, emerging from the spatial overlap between
two distinct polar bright solitons in spin-1 spinor condensates. The dynamics of overlapping solitons in scalar
condensates exhibits soliton fusion, atomic switching from one soliton to another, and repulsive dynamics
depending on the extent of overlap and the relative phase between the solitons. The scalar case also helps us
understand the dynamics of the vector solitons in which the ratio between spin-dependent and spin-independent
interaction strengths also plays a vital role. In the absence of spin-changing collisions, we observe Josephson-like
oscillations for each spin component leading to the emergence of oscillating domain walls. In the presence of
spin-dependent interactions, the overlapping polar solitons may emerge as ferromagnetic solitons or oscillatons
or a combination of both. In the end, we discuss the experimental procedure to observe the same dynamics using
a rubidium spin-1 Bose-Einstein condensate setup.
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I. INTRODUCTION

Because of spin-dependent interactions, spinor conden-
sates are ideal for exploring coherent spin-mixing dynamics
[1–9]. The resulting oscillations in the populations of the
Zeeman states can be engineered by varying the initial popula-
tions and the relative phases [10]. In a spin-1 condensate, the
oscillatory dynamics arises because of the collisional inter-
conversion of two atoms in the m = 0 state and one atom each
in m = 1 and m = −1 states. Such a spin-changing process
preserves the net magnetization. Further, high controllability
over the spin dynamics can be accessed via external magnetic
or microwave fields utilizing linear and quadratic Zeeman
effects.

Spinor condensates also provide an opportunity to study
vector solitons [11–18] in quasi-one-dimensional (Q1D)
Bose-Einstein condensates (BECs), including the bright soli-
tons [19–24]. Vector solitons are self-trapped wave packets
with multiple components. In spin-1 condensates, the bright
solitons are classified into polar and ferromagnetic based on
the spin state and the expectation value of the time-reversal
operator [24]. Collisional properties of polar-polar, polar-
ferromagnetic, and ferromagnetic-ferromagnetic solitons have
been studied in the past [20,25] and later led to the discovery
of an exotic soliton called the oscillaton [24,26]. Oscillatons
are solitons where the total density profile remains stationary
while the populations of each m component oscillate in time.
It is also possible to observe oscillatory spin dynamics in a
special trapped single soliton which is a high-energy eigen-
state of the system [27].

In this paper we analyze the dynamics of a pair of over-
lapping polar bright solitons in spin-1 spinor condensates.
Note that the scenario differs from the setups used to study
soliton collisions. In the latter case, the solitons are initially
placed very far apart and collide against each other with an

initial velocity. In our case, the solitons are initially at rest
and overlapping. The dynamics of overlapping optical solitons
is studied theoretically [28–31] and experimentally [32–35],
but a detailed analysis of overlapping matter-wave solitons is
lacking. Because of that, we look at the dynamics of over-
lapping bright solitons in scalar condensates, which helps us
understand the unique features emerging from the vectorial
nature of the spinor solitons. The dynamics critically depends
on the initial phase difference and the extent of overlap be-
tween the solitons in the scalar case. The relative phase is
expected to play a vital role since it determines the nature of
the force between solitons [36–39]. In particular, for a zero
phase difference the solitons attract and for a difference of
π , they repel. A nonzero phase difference between colliding
solitons can dynamically break the symmetry between two
solitons [40]. The phase difference also plays a vital role in
the stability of colliding three-dimensional solitons [41,42].
For the overlapping scalar matter-wave solitons, we see that,
depending on the phase difference, the soliton fusion, atomic
flow from one soliton to another, and repulsive dynamics
occur. Similar scenarios are found in the dynamics of overlap-
ping optical solitons in different nonlinear media [29,32–34].
In particular, the flow of atoms from one soliton to another
mimics the phenomenon of optical switching and we term it
atomic switching for the matter-wave solitons.

The vectorial nature of spinor solitons leads to rich dy-
namics in population and spin densities of spin-1 condensates.
Besides the relative phase and the extent of overlap between
the solitons, the ratio between the spin-dependent and spin-
independent interaction strengths also affects the dynamics
significantly. A simplified picture of the dynamics is at-
tained using a rotated frame. In the absence of spin-changing
collisions, we observe Josephson-like oscillations in the pop-
ulation dynamics of each spin component. For atoms in each
Zeeman state, the Josephson-like oscillations are explained
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using an effective potential created by the density of other
components. In this case, the population dynamics is indepen-
dent of the relative phase, but that of the spin-density vector
depends on it. The dynamics of the spin-density vector reveals
the appearance of oscillating domain walls, depending on the
relative phase. When spin-independent and spin-dependent in-
teractions are identical, the collision of a pair of polar solitons
results in four ferromagnetic solitons irrespective of the value
of the initial relative phase. Among the four ferromagnetic
solitons, each pair exhibits dynamics identical to that of scalar
solitons that become more apparent in the new rotated frame.
When the ratio of spin-dependent and spin-independent inter-
actions is half, we see the formation of a pair of oscillatons.
An additional stationary ferromagnetic soliton emerges if
the extent of overlap is sufficiently large, depending on the
relative phase.

The paper is structured as follows. In Sec. II we discuss
the dynamics of overlapping bright solitons in scalar con-
densates. In Sec. III we discuss the dynamics of overlapping
polar solitons in spin-1 condensates. In particular, Sec. III A
explains the model of spinor solitons, especially the governing
Hamiltonian, the initial state, and time-dependent coupled
nonlinear Schrödinger equations in the original and the rotated
frame. In Sec. III B we classify the dynamics based on the
ratio between the spin-dependent and spin-independent inter-
action strengths. In particular, the dynamics in the absence
of spin-changing collisions is discussed in Sec. III B 1. The
dynamics for identical spin-independent and spin-dependent
interactions is discussed in Sec. III B 2 and the case when
the spin-dependent interaction strength is half of the spin-
independent interaction is discussed in Sec. III B 3. Section IV
proposes an experimental procedure to observe the dynamics
studied in previous sections. We summarize in Sec. V.

II. SCALAR CONDENSATES

In the following, we analyze the dynamics of two identical,
overlapping Q1D bright solitons in scalar condensates for
different initial relative phases and the extent of overlaps. The
analytic form of the initial two-soliton wave function is

ψ (z, t = 0) = A

{
sech

[
k

(
z − �

2

)]

+ eiφsech

[
k

(
z + �

2

)]}
, (1)

where φ is the relative phase, k is the wave number, � is
the initial separation between the solitons, which controls the
extent of overlap, and the normalization constant is

A = 1

2

√
k

1 + k� cos φcschk�
.

For large values of �, the solitons do not overlap and remain at
rest, maintaining their size and shape over time. Interestingly,
a tiny spatial overlap between the solitons can trigger non-
trivial dynamics, depending critically on the phase difference.
The nature of soliton interactions, whether attractive or repul-
sive, also depends on their relative phase. The three different
relative phases we consider (φ = 0, π/2, and φ = π rad)
capture the distinct dynamical scenarios of the overlapping

FIG. 1. Population dynamics of two overlapping identical bright
solitons in scalar condensates for a different relative phase between
them for g/2π h̄ω⊥l3

⊥ = −2. The separation is (a)–(c) � = 10l⊥ and
(d)–(f) � = 5l⊥ for (a) and (d) φ = 0, where (a) the overlap leads
to perpetual oscillating dynamics between the soliton fusion and the
initial configuration and (d) the system does not revert completely to
the initial configuration; (b) and (e) φ = π/2, where an initial atomic
flow along the phase gradient leads to asymmetric final solitons;
and (c) and (f) φ = π , where the solitons repel each other, but are
identical in their size and shape.

solitons. For the scalar condensates, the dynamics is governed
by the Q1D Gross-Pitaevskii equation (GPE)

ih̄
∂

∂t
ψ (z, t ) =

[
− h̄2

2M

∂2

∂z2
+ g

2π l2
⊥

|ψ (z, t )|2
]
ψ (z, t ), (2)

where g = 4π h̄2asN/M with the s-wave scattering length as <

0, N is the total number of particles, and l⊥ = √
h̄/mω⊥ is the

width of the transverse harmonic confinement of frequency
ω⊥. The wave number k in Eq. (1) depends on the interaction
strength via k = |g|/8π h̄ω⊥l4

⊥.
When φ = 0, the overlap leads to the attractive interaction

between the solitons, making them fuse into a single soliton
[43]. Not being in its lowest-energy state, the fused soliton dis-
entangles back into the initial two-soliton configuration if the
overlap is sufficiently small [see Fig. 1(a) for � = 10l⊥]. This
process repeats periodically in time, leading to the perpetual
oscillating dynamics between soliton fusion and the initial
configuration as shown in Fig. 1(a). As the initial overlap
between the solitons increases (decreasing �), the period of
oscillation gets shorter [see Fig. 2(a) for the time period T vs
�]. Strikingly, oscillations in Fig. 1(a) arise in the absence
of harmonic confinement, making it in high contrast with
those exhibited by trapped solitons [38,42]. Beyond a certain
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FIG. 2. Soliton properties as a function of � for a different initial
relative phase for the scalar case and g/2π h̄ω⊥l3

⊥ = −2. (a) Time
period of oscillations between soliton fusion and the initial configura-
tion for φ = 0. (b) The solid line depicts the mass difference �M/M
between the final solitons for φ = π/2 rad and the dashed line shows
the speed of the final symmetric solitons for φ = π rad.

overlap or smaller �, the solitons become nonseparable after
the initial fusion as shown in Fig. 1(d) for � = 5l⊥ and the
final soliton exhibits breathing dynamics because of the extra
energy it carries. These results are found to be similar to that
of overlapping optical solitons in plasma [29].

As the initial relative phase between the solitons increases,
they repel each other. For instance, when φ = π/2 [see
Fig. 1(b)], not only do the solitons repel, but also there is
a flow of atoms along the direction of the phase gradient,
i.e., along ∂φ/∂z, at the initial stage of the dynamics. This
atomic flow is identical to the energy transfer observed among
overlapping optical solitons, which leads to the optical switch-
ing [32,33]. In a similar spirit, the atom transfer from one
soliton to another can serve as a control knob to direct the
motion of matter waves. Hence we call it atomic switching. In
Fig. 1(b) the atomic flow occurs from the positive z direction
to the negative one. Such a transient atomic current makes
the final solitons asymmetric in density, size, and speed. The
denser soliton moves faster. The momentum of the lighter
soliton arises from the recoil of the atoms flown out from
the original soliton. To quantify the mass asymmetry of the
final solitons, we introduce the mass difference between the
left and right solitons, i.e., �M = Ml − Mr , where Ml =
M

∫ 0
−∞ |ψ (z, t )|2dz and Mr = M

∫ ∞
0 |ψ (z, t )|2dz. In Fig. 2(b)

the solid line shows �M obtained when the solitons are well
separated after a sufficiently long time. As can be seen, �M
increases with decreasing � because the larger the initial over-
lap the more significant the exchange of atoms. The atomic
switching is evident in Figs. 1(b) and 1(e) for � = 10l⊥ and
5l⊥, respectively.

The asymmetry of final solitons implies that there is a net
momentum in the system for φ = π/2. To quantify that, we
calculate the average momentum of the initial wave function
in Eq. (1),

〈p〉 = 4A2(1 − k� coth k�)cschk� sin φ. (3)

In Fig. 3(a) we show 〈p〉 as a function of φ for � = 10l⊥
and 5l⊥, which oscillates between positive and negative val-
ues as a function of φ. Thus, by tuning the relative phase,
we can control the direction of the transient atomic current

FIG. 3. (a) Average momentum 〈p〉 as a function of φ for � =
5l⊥ (solid line) and � = 10l⊥ (dashed line) and (b) 〈p〉 vs � for
φ = π/2 rad. In both figures g/2π l3

⊥ h̄ω⊥ = −2.

or, equivalently, the direction of the atomic switching. For
φ = 0, 〈p〉 = 0 as expected. For φ = π/2 rad, 〈p〉 exhibits
a nonmonotonic behavior as a function of �, exhibiting a
local maximum, as shown in Fig. 3(b). At � = 0, the solitons
completely overlap and remain at rest; thus 〈p〉 = 0. Also,
as � → ∞, 〈p〉 approaches zero as both solitons become
completely independent.

The solitons also repel each other for φ = π [see Figs. 1(c)
and 1(f)], but there is no transient atomic current due to the
nodal point at z = 0. Hence, the final solitons are identical
and �M = 0. The final solitons propagate with equal and
opposite velocity. The final speed v of the soliton vs � for
φ = π rad is shown as a dashed line in Fig. 2(b). The more
initial overlap the solitons have, the faster they move away
from each other. Summarizing this section, we see that the
initial phase difference and the extent of overlap critically
affect the dynamics of overlapping bright solitons in scalar
condensates. The most interesting feature is the local and
transient atomic current due to an effective repulsion arising
from the phase difference between the solitons. This scenario
is identical to optical switching, offering the possibility of
engineering matter-wave transport via controlling the relative
phase.

III. SPIN-1 SPINOR CONDENSATES

A. Setup, model, initial state, and rotated frame

The systems we consider are overlapping spin-1 conden-
sates, described by the Hamiltonian

Ĥ =
∫

dz

[
− h̄2

2M

∑
m

ψ̂†
m

d2

dz2
ψ̂m + 1

2
c̄0 : n̂2 : +1

2
c̄1 : F̂

2
:

]
,

(4)
where M is the mass of a boson, c̄0,1 = c0,1/2π l2

⊥ are the
interaction parameters, ψ̂m is the field operator which an-
nihilates a boson of the mth Zeeman state, and n̂(z) =∑ f

m=− f ψ̂†
m(z)ψ̂m(z) is the total density operator. The compo-

nents of the spin-density operator are

F̂ν∈x,y,z(z) =
∑
m,m′

( fν )mm′ψ̂†
m(z)ψ̂m′ (z), (5)

with fν the νth component of the spin-1 matrices. The sym-
bol : : denotes the normal ordering that places annihilation
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FIG. 4. Schematic setup of overlapping bright polar solitons in
Q1D spin-1 condensates, along the z axis. A polar soliton with popu-
lation shared among m = ±1 states is shown on the left (red-shaded
area) and a polar soliton with population solely at m = 0 is on the
right side (blue-shaded area). The separation � determines the extent
of overlap between the two solitons.

operators to the right of the creation operators. The spin-
independent and spin-dependent interaction parameters are
c0 = (g0 + 2g2)/3 and c1 = (g2 − g0)/3, respectively, with
gF = 4π h̄2aFN/m related to the scattering length aF=0, 2 of
the total spin-F channel. Here N is the total number of atoms.
To have bright solitons, we keep c0 < 0.

Within the mean-field theory, the dynamics of the system
is described by the Q1D GPEs [19,20,26]

ih̄
∂ψ1

∂t
=

[
− h̄2

2M

∂2

∂z2
+ c̄0n + c̄1Fz

]
ψ1 + c̄1√

2
F−ψ0, (6)

ih̄
∂ψ0

∂t
=

[
− h̄2

2M

∂2

∂z2
+ c̄0n

]
ψ0 + c̄1√

2
F+ψ1 + c̄1√

2
F−ψ−1,

(7)

ih̄
∂ψ−1

∂t
=

[
− h̄2

2M

∂2

∂z2
+ c̄0n − c̄1Fz

]
ψ−1 + c̄1√

2
F+ψ0,

(8)

where n(z, t ) = ∑
m |ψm(z, t )|2 is the total density, Fν (z, t ) =∑

m,m′ ψ∗
m(fν )mm′ψm′ , and F± = Fx ± iFy. We introduce γ =

−c1/|c0| as the ratio of spin-dependent and spin-independent
interactions. A positive (negative) γ implies a negative (pos-
itive) c1. Here we take c1 � 0 (ferromagnetic interactions)
and study the dynamics. The validity of Eqs. (6)–(8) requires
that μ1D � h̄ω⊥, where ω⊥ is the transverse confinement
frequency and μ1D is the chemical potential of the Q1D con-
densates. We solve Eqs. (6)–(8) numerically to analyze the
dynamics [44]. At γ = 1, Eqs. (6)–(8) represent a completely
integrable system and support N-soliton solutions including
two-soliton ones [19].

Initial state. The schematic diagram of the initial state is
shown in Fig. 4, in which two distinct polar solitons overlap

around z = 0. The general solution of a static polar soliton is

ψ (z) =
√

k

2
χsech kz, (9)

where k = |c̄0|/4l⊥ is the inverse width or the wave number
of the soliton wave packet and χ is the spin state, which takes
the general form [24,26]

χ = eiτ

⎛
⎝ − 1√

2
sin θ

cos θ
1√
2
eiφ sin θ

⎞
⎠, (10)

where τ is a global phase. Equation (9) is a stationary solution
of the Q1D GPEs (6)–(8). The initial state of our studies is a
pair of overlapping polar solitons

ψin(z) = A

{
sech

[
k

(
z + �

2

)]
χl + sech

[
k

(
z − �

2

)]
χr

}
,

(11)
where A = √

k/2 is the normalization constant and χr =
(0, eiφ1 , 0)T and χl = (1, 0, eiφ2 )T /

√
2 are the spin states of

the solitons to the right and left of z = 0, respectively. Com-
paring to Eq. (10), θ = π/2 for the left soliton and θ = 0 for
the right. The angle φ1 is the initial phase of the right soliton
and φ2 is the relative phase between the m = 1 and m = −1
components of the left soliton. The extent of the overlap
between the solitons is again controlled by �. Note that, for
Eq. (11), 〈p〉 = 0 irrespective of � and φ1. The experimental
procedure to prepare the initial state in Eq. (11) is discussed
in Sec. IV.

The spin-density vector is a null vector for each of the
polar solitons in Eq. (11) [19,20,24]. When two distinct polar
solitons overlap, the spin density may become nonzero in the
overlapping region. For the initial state in Eq. (11), the local
spin-density vector is

F(z, t = 0) = 4A2 cos
(
φ1 − φ2

2

)
cosh 2kz + cosh k�

(
x̂ cos

φ2

2
+ ŷ sin

φ2

2

)
.

(12)
The vector F(z, t = 0) lies in the xy plane and forms an angle
φ2 with the x axis. The orientation of F(z, t = 0) is the same
at every point along the z axis and depends only on φ2. The
relative angle φ1 − φ2

2 determines the magnitude of F(z, t =
0) and the net magnetization. Integrating over z, we obtain the
net spin-density vector

FT = 4A2� cos

(
φ1 − φ2

2

)
cschk�

(
x̂ cos

φ2

2
+ ŷ sin

φ2

2

)
,

(13)
which is a conserved quantity. Without loss of generality,
we set φ2 = 0, which fixes the direction of FT along the x
axis. We analyze the dynamics for φ1 = 0, π/2, and π rad.
For φ1 = 0 and π rad, the initial spin-density vector is along
the positive and negative x axes, respectively, whereas for
φ1 = π/2 rad, F(z, t = 0) vanishes. The spin mixing takes
place in the overlapping region and leads to interesting dy-
namical scenarios, which we classify based on the values of γ

and φ1.
Rotated frame. Since FT is a conserved quantity, it is more

favorable to work using a frame in which the quantization axis
is parallel to FT [27], which may provide a simplified picture
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for the dynamics. A similar rotated frame is used in [24,26]
to describe oscillatons formed by the collision between a fer-
romagnetic and a polar soliton. In our case, the new frame is
obtained by a rotation of π/2 about the y axis (χ ′ = eiπ fy/2χ ).
The relations between the new and old spinor components are

ψ ′
1(z) = 1

2
ψ1(z) + 1√

2
ψ0(z) + 1

2
ψ−1(z), (14)

ψ ′
0(z) = − 1√

2
ψ1(z) + 1√

2
ψ−1(z), (15)

ψ ′
−1(z) =

(
1

2
ψ1(z) − 1√

2
ψ0(z) + 1

2
ψ−1(z)

)
. (16)

In our case, at any instant, ψ1 and ψ−1 are identical, making
ψ ′

0(z) vanish completely. The system effectively reduces to a
two-component condensate in the new frame [45]. The corre-
sponding GPEs are

ih̄
∂ψ ′

±1

∂t
=

[
− h̄2

2M

∂2

∂z2
+ c̄+|ψ ′

±1|2 + c̄−|ψ ′
∓1|2

]
ψ ′

±1, (17)

where c̄± = c̄0 ± c̄1. The exchange coupling between ψ ′
1 and

ψ ′
−1 is provided by c̄0 − c̄1. When γ = 1, c̄0 − c̄1 vanishes,

indicating that the system effectively reduces to two indepen-
dent scalar condensates in the rotated frame.

B. Dynamics

A comprehensive study of the dynamics of overlapping po-
lar solitons as a function of �, γ , and φ1 is a tedious task. We
restrict the analysis to φ1 ∈ {0, π/2, π} rad, � ∈ {5l⊥, 10l⊥},
and 0 � γ � 1, in particular, (i) γ = 0, (ii) γ = 1, and (iii)
γ = 0.5, which capture the most exciting scenarios. Since
γ � 0, we have c1 � 0.

1. Case γ = 0

First, we discuss the case for which there are no spin-
changing collisions, i.e., γ = 0. In this case, the total
population in each Zeeman component remains constant and
the population dynamics is independent of φ1. We also find
that changing � does not affect the dynamics qualitatively.
The dynamics for γ = 0 and � = 10l⊥ is shown in Fig. 5.
In particular, Figs. 5(a)–5(c) show the dynamics of |ψ1|2 +
|ψ−1|2, |ψ0|2, and the total density n(z, t ), respectively. Effec-
tively, we observe Josephson-like oscillations of populations
in each component [see Figs. 5(a) and 5(b)] between the
two regions (to the left and right of z = 0) where the soli-
tons are initially placed. The oscillations are nonsinusoidal.
The density oscillations may give a false impression that
spin-changing collisions are taking place. To demonstrate the
Josephson-like oscillations, for each Zeeman state, we intro-
duce the population imbalance between the left and right sides
of z = 0, i.e.,

Zm(t ) = 1

Nm

(∫ 0

−∞
dz|ψm|2 −

∫ ∞

0
dz|ψm|2

)
, (18)

where Nm is the total number of atoms in the mth state, which
is a constant.

The density oscillations of each component can be intu-
itively understood via an effective potential created by other
components. First consider the population dynamics of the

FIG. 5. Population dynamics of two overlapping polar bright
solitons for γ = 0, � = 10l⊥, and c̄0/h̄ω⊥l⊥ = −2: (a) |ψ1|2 +
|ψ−1|2, (b) |ψ0|2, and (c) total density n(z, t ). The results are inde-
pendent of the value of φ1.

m = 1 state, which is shown in Fig. 5(a) (identical for the
m = −1 state). Since most of the population in m = 1 is
initially to the left of z = 0, we have Z1(t = 0) ∼ 1. For
c̄0 < 0, the terms c̄0|ψ−1|2 and c̄0|ψ0|2 in Eq. (6) form a
double-well potential for atoms occupying the m = 1 state
[see Fig. 6(a) for V m=1

eff (z, t ) = c̄0(|ψ0|2 + |ψ−1|2) at different
times]. A nonzero fraction of m = 1 atoms in the right region
triggers the tunneling from left to right, leading eventually to
oscillatory dynamics shown in Fig. 5(a). At t = 0, V m=1

eff is
asymmetric in z since the m = 0 population on the right side
is twice that of the m = −1 state on the left. As time evolves,
V m=1

eff gets modified and the two minima get closer to each

(a)

(b)

FIG. 6. Effective potential V m
eff generated for the mth component

by other components for γ = 0, � = 10l⊥, and c̄0/h̄ω⊥l⊥ = −2.
(a) Here V m=1

eff exhibits a double-well potential with its local minima
and separation between them varying in time. (b) Here V m=0

eff oscil-
lates in time between a single minimum and double minima. The
results are independent of the value of φ1.
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(a)

(b)

FIG. 7. Dynamics of (a) the population imbalance Zm and (b) the
separation δ(t ) between the two peaks in the total density γ = 0,
� = 10l⊥, and c̄0/h̄ω⊥l⊥ = −2. The results are independent of the
value of φ1.

other [see the dashed line in Fig. 6(a)], which amplifies the
tunneling rate. Eventually, the potential gets inverted, with
a shorter separation between the minima, as shown by the
dotted line in Fig. 6(a). The potential gets inverted because
of the swapping of population in m = 0 (m = −1) from left
(right) to right (left). By this time, most of the population in
the m = 1 state has already tunneled to the right. Then the re-
verse dynamics happens and the system recovers to the initial
configuration. The whole process repeats periodically in time.

The population in m = 0, initially placed on the right side,
experiences a different dynamical potential [V m=0

eff (z, t ) =
c̄0(|ψ1|2 + |ψ−1|2)] because of the m = ±1 densities, as
shown in Fig. 6(b). As time evolves, the potential minimum,
initially on the left (solid line), moves to the right via a tran-
sient double-well potential and then reverts. The m = 0 atoms
always move towards the potential minimum in the opposite
region, leading to the oscillatory dynamics shown in Fig. 5(b).
Also, note that the m = ±1 populations remain immiscible
with the m = 0 component for the entire time, except in
the overlapping region. The total density is characterized by
the out-of-phase oscillatory dynamics of the two peaks [see
Fig. 5(c)].

The Josephson-like dynamics is more apparent in the pop-
ulation imbalance Zm shown in Fig. 7(a), which exhibits an
oscillatory behavior for each component. Figure 7(b) shows
the separation δ between the two peaks in the total density
or equivalently the distance between the two minima in the
effective potential V m=1

eff (z, t ) [see Fig. 5(c)]. At t = 0, δ = �

and over time it varies periodically. The population dynamics
becomes faster as δ gets smaller and vice versa. It can be
seen in Fig. 7(a) that the population of each component in
the initial region never vanishes. Therefore, some atoms are
always in the m = ±1 states in the left region and m = 0 in
the right region, which helps the system periodically recover
to the initial density configurations.

FIG. 8. Dynamics of spin density Fx (z, t ) for (a) φ1 = 0, (b) φ1 =
π/2 rad, and (c) φ1 = π rad. The other parameters are γ = 0, � =
10l⊥, and c̄0/h̄ω⊥l⊥ = −2.

Even though the population dynamics shown in Fig. 5
is independent of φ1, it affects the spin-density vector
F(z, t = 0) = Fx(z, t )x̂ via Eq. (12) and hence its dynam-
ics. In Figs. 8(a)–8(c) we show the dynamics of Fx(z, t )
for φ1 = 0, π/2, and π rad, respectively. Having Fx(z, t ) ∝
(ψ1 + ψ−1)ψ∗

0 + (ψ∗
1 + ψ∗

−1)ψ0, the spin-density vector is
significant only in the overlapping regions. For φ1 = 0, FT =∫ ∞
−∞ Fx(z, t )dz is positive, i.e., the effective spin is pointing

in the positive x direction. At t = 0, the spin-density vector
is along the x axis at every point in the overlapping region.
As time progresses, we observe the formation of domains
with positive and negative Fx. In particular, regions of nega-
tive values of Fx emerge from the edges of the overlapping
region, separated by a region of positive Fx [see Fig. 8(a)].
The domain walls, which separate the positive and negative
Fx regions, move towards the center, squeezing the region of
positive Fx in the middle. The latter results in an increase
in spin density at the center. Because of the conservation
of FT and energy, they cannot reach beyond a separation.
Eventually, the domain walls move back to the edges,and their
position oscillates in time. For φ1 = π rad, the dynamics of
Fx(z, t ) is identical to that of φ1 = 0 except that positive and
negative regions are swapped [see Fig. 8(c)].

The dynamics of Fx(z, t ) for φ1 = π/2 rad is drastically
different from that of φ1 = 0 and π rad [see Fig. 8(b)]. For
φ1 = π/2 rad, Fx(z, 0) vanishes and hence FT vanished too.
As time progresses, we see simultaneous growth of equal
regions of positive and negative Fx. The growth happens from
the edges of the overlapping region, separated by a region
with Fx = 0. As time progresses, the size of the Fx = 0 region
shrinks and that of Fx �= 0 grows. After some time, surpris-
ingly, Fx(z, t ) vanishes quite rapidly at all z and reemerges
with opposite polarity. Then the central region with Fx = 0
grows until the regions of Fx �= 0 on either side diminish.
The whole process repeats periodically in time, leading to
the butterfly pattern in space-time shown in Fig. 8(b). The
above results indicate that, in the absence of spin-independent
interactions, we can engineer the spin dynamics in spinor con-
densates, while the population dynamics remains unaffected
by varying the relative phase φ1.
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FIG. 9. Population dynamics of two overlapping polar bright
solitons for γ = 1, � = 10l⊥, c̄0/h̄ω⊥l⊥ = −2, and φ1 = 0:
(a) |ψ1|2 + |ψ−1|2, (b) |ψ0|2, (c) total density n(z, t ), (d) |ψ ′

1|2,
(e) |ψ ′

−1|2, and (f) total density n′(z, t ) = |ψ ′
1|2 + |ψ ′

−1|2. Note that
n(z, t ) = n′(z, t ).

2. Case γ = 1

The presence of spin-changing collisions affects the
dynamics drastically. For γ = 1, spin-dependent and spin-
independent interactions are of equal strength and the system
is integrable [19]. In Figs. 9(a)–9(c) we show the dynamics
of |ψ1|2 + |ψ−1|2, |ψ0|2, and the total density n(z, t ), respec-
tively, for γ = 1, � = 10l⊥, and φ1 = 0. The first visible
effect of the spin-changing collision is that all Zeeman compo-
nents become spatially miscible, leading to identical density
patterns for all Zeeman components at longer times. After a
sufficiently long time, the initial overlapping polar solitons
convert into four solitons via spin-changing collisions, two
each on either side of z = 0. Each soliton is characterized by a
population ratio of 1:2:1 among the Zeeman states (m = −1,
0, and 1) with a spin state χ = (1,±√

2, 1)T /2. The latter is a
ferromagnetic soliton [24,26]. The spin-density vector shown
in Fig. 10(a) confirms that the final solitons are ferromagnetic
and have opposite polarity for the inner and outer solitons.
The inner solitons have Fx(z, t ) > 0, i.e., the polarization axis
is along the positive x axis, whereas that of outer solitons is
along the negative x axis. Thus, we have a scenario where
two overlapping polar solitons dynamically convert into four
ferromagnetic solitons.

In the rotated frame [Eqs. (14)–(16)], the dynamics looks
relatively simple and also provides more insights. Recall that
for γ = 1, the wave functions ψ ′

1(z) and ψ ′
−1(z) are decoupled

and effectively we have two independent scalar condensates.

FIG. 10. Dynamics of spin density Fx (z, t ) for (a) φ1 = 0,
(b) φ1 = π/2 rad, and (c) φ1 = π rad. The other parameters are
γ = 1, � = 10l⊥, and c̄0/h̄ω⊥l⊥ = −2.

At t = 0, the initial states in the rotated frame with φ1 = 0 are

ψ ′
±1(z) =

√
k

2

[
sech [k(z − �/2)]√

2
± sech [k(z + �/2)]√

2

]
.

(19)

Equation (19) represents scalar two-soliton states, identical
to Eq. (1), with relative phases φ = 0 and π rad between the
solitons. Comparing the results of the original and the rotated
frames in Fig. 9, we see that |ψ ′

1(z, t )|2 provides the dynamics
of the two inner solitons [see Fig. 9(d)] and |ψ ′

−1(z, t )|2 gives
that of the two outer solitons [see Fig. 9(e)]. They both match
with the dynamics of scalar solitons shown in Figs. 1(a) and
1(c), respectively, for the inner and outer solitons. Depending
on the extent of the initial overlap, the inner and outer soli-
tons have different masses. The ratio of masses between the
inner and outer solitons can be easily obtained via the wave
functions in the rotated frame as∫ ∞

−∞ |ψ ′
1|2dz∫ ∞

−∞ |ψ ′
−1|2dz

= 1 + k�cschk�

1 − k�cschk�
.

Thus, the extent of overlap provides a knob to control the size
of the inner and outer ferromagnetic solitons.

The population dynamics for φ1 = π rad is identical to
that of φ1 = 0 as discussed above, but the spin densities of
inner and outer solitons are now flipped [compare Figs. 10(a)
and 10(c)]. For φ1 = π/2 rad, the population and spin-density
dynamics are qualitatively different from the φ1 = 0 case. The
population dynamics for φ1 = π/2 rad is shown in Fig. 11
and the corresponding spin-density dynamics is shown in
Fig. 10(b). After the initial spin-mixing dynamics, again we
have four ferromagnetic solitons. Unlike the φ1 = 0 case, all
of them move away from the center. Due to the initial phase
difference of π/2, it takes more time to reach a miscible state,
as seen in Figs. 11(a)–11(c), via transient oscillatory dynam-
ics. The initial states in the rotated frame for φ1 = π/2 rad
are

ψ ′
±1(z) =

√
k

2

[
sech [k(z + �/2)]√

2
± isech [k(z − �/2)]√

2

]
,

(20)
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FIG. 11. Population dynamics of two overlapping polar bright
solitons for γ = 1, � = 10l⊥, c̄0/h̄ω⊥l⊥ = −2, and φ1 = π/2 rad:
(a) |ψ1|2 + |ψ−1|2, (b) |ψ0|2, (c) total density n(z, t ), (d) |ψ ′

1|2,
(e) |ψ ′

−1|2, and (f) total density n′(z, t ) = |ψ ′
1|2 + |ψ ′

−1|2. Note that
n(z, t ) = n′(z, t ).

representing two independent two-soliton solutions but with
opposite phase gradients. As we know from the scalar case
for φ = π/2 rad [see Figs. 1(b) and 1(e)], there is a tran-
sient atomic current along the direction of the phase gradient.
Therefore, in ψ ′

1(z), the current is from left to right and in
ψ ′

−1(z) it is from right to left. That results in a pair of asym-
metric solitons in both ψ ′

1(z) and ψ ′
−1(z). Since the denser

solitons move faster, the inner solitons are lighter, in contrast
to the φ1 = 0 case where all solitons are identical. As seen in
Fig. 10(b), the spin vectors point in opposite directions among
the inner and the outer solitons. Again, by tuning �, we can
control the mass ratio between the inner and outer solitons and
also the frequency of transient oscillation seen in the initial
stage of the dynamics in Figs. 11(a) and 11(b).

3. Case γ = 0.5

In the following, we analyze the dynamics for γ = 0.5 and
observe the emergence of a pair of nonidentical oscillatons
propagating in opposite directions. Oscillatons are solitons
in which the total density profile remains stationary while
the populations of different spin components oscillate with
a constant frequency [24,26]. In Figs. 12(a)–12(c) we show
the dynamics of |ψ1|2 + |ψ−1|2, |ψ0|2, and the total density
n(z, t ), respectively, for γ = 0.5, � = 10l⊥, and φ1 = 0. In
the initial stage, spin mixing leads to oscillatory dynamics.
Later, the condensates transform into a pair of nonidentical
oscillatons moving in opposite directions. Unlike the case
of γ = 1 where we see four final solitons, for γ = 0.5 we

FIG. 12. Population dynamics of two overlapping polar bright
solitons for γ = 0.5, � = 10l⊥, c̄0/h̄ω⊥l⊥ = −2, and φ1 = 0:
(a) |ψ1|2 + |ψ−1|2, (b) |ψ0|2, (c) total density n(z, t ), (d) |ψ ′

1|2,
(e) |ψ ′

−1|2, and (f) total density n′(z, t ) = |ψ ′
1|2 + |ψ ′

−1|2. Note that
n(z, t ) = n′(z, t ).

see only two final solitons. It is explained later using the
wave functions in the rotated frame. The initial oscillatory
dynamics takes place between the two configurations shown
in Figs. 13(a) and 13(b). Figure 13(b) is a completely miscible
state with peaks of |ψ±1|2 that coincide with that of |ψ0|2.
During the oscillatory dynamics, each spin component leaves
a small trail of atoms on the opposite sides, i.e., m = ±1 in
the right region and m = 0 in the left region. Eventually, they
cause the formation of a pair of oscillatons. Figures 13(c) and
13(d) show densities at two different instants after the oscil-
latons are formed. The total density n(z, t ) of each oscillaton
is identical at both instants, as expected, whereas the density
of each component varies in time due to the spin mixing. It is
observed that the frequency of internal oscillations of the two
oscillatons can be controlled by the extent of overlap �. Since
〈p〉 = 0, the denser oscillaton travels slower than the other.

Before the oscillatons are formed, the whole system
reaches a miscible state. The density pattern of this miscible
state is susceptible to the initial noise in the system, if any
is present. The latter can affect the properties of the final
oscillatons, such as the mass asymmetry, velocities, and the
frequency of the internal oscillations, but general qualitative
features of the dynamics remain the same.

For φ1 = 0, the initial states in the rotated frame are given
by the two-soliton solutions in Eq. (19). For γ = 0.5, in the
rotated frame, we have a binary condensate with attractive
intra- and intercomponent interactions governed by Eq. (17).
Therefore, both ψ ′

1(z) and ψ ′
−1(z) have the tendency to stick
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FIG. 13. (a) Snapshot of the initial state of two polar solitons.
(b) Snapshot of densities at ω⊥t = 220. (c) Density profile of the left
oscillaton at ω⊥t = 420. (d) Density profile of the right oscillaton at
ω⊥t = 445. For all plots γ = 0.5, � = 10l⊥, c̄0/h̄ω⊥l⊥ = −2, and
φ1 = 0. The solid lines shows |ψ1|2 + |ψ−1|2, the dashed lines show
|ψ0|2, and the dash-dotted lines show the total density n(z).

together in the same spatial regions, leading to two final
oscillatons or solitons. Note that, unlike in the laboratory
frame, an oscillaton is characterized by stationary density
profile for each component in the rotated frame, as seen in
Figs. 12(d) and 12(e). The wave functions for a stationary
oscillation in the rotated frame can be written as ψ ′

±1(z) =
η± exp[i(μ±t + φ±)] [24,26], where η± satisfy two coupled
ordinary differential equations

(
− h̄2

2m

d2

dz2
+ (c̄0 + c̄1)η2

± + (c̄0 − c̄1)η2
∓

)
η± = μ±η±.

(21)
Once we take the two parameters μ± and φ± from the original
dynamics at an instant, finding the corresponding stationary
solutions of the oscillaton is reduced to just solving the ordi-
nary differential equations (21). The latter is done by Euler’s
method from an initial condition η± ≈ 0 on the left edge
and are compared with the original dynamical solutions in
Fig. 14. The excellent agreement shown in Fig. 14 confirms
that the final solitons formed in the dynamics are oscillatons.
In Figs. 14(a) and 14(b) we show the density profiles of
ψ ′

±1(z) for the oscillaton from numerics (dotted lines) and the
solution of Eq. (21) (solid and dashed lines) at two different
instants. Figure 14(a) is for the left oscillaton and Fig. 14(b)
is for the right oscillaton.

Interestingly, for φ1 = 0, increasing the extent of over-
lap (decreasing �) leads to the emergence of an additional
stationary ferromagnetic soliton at z = 0 (see Fig. 15). The
ferromagnetic soliton exhibits a strong breathing character
due to its dynamical formation. Comparing Figs. 15 and 12,

FIG. 14. Density profiles of the oscillaton in the rotated frame
at two different instants for the same parameters as in Fig. 13:
(a) the left oscillaton and (b) the right oscillaton. The solid [|ψ ′

1(z)|2]
and dashed [|ψ ′

−1(z)|2] lines show the stationary solution obtained
by solving Eq. (21). The dotted line shows the solutions from the
dynamics at that particular instant. Both snapshots are taken at
ω⊥t = 1000.

we see that decreasing � reduces the frequency of the internal
oscillations and increases the velocity of the final oscillatons.
Unlike that of φ1 = 0, the two final oscillatons for φ1 =
π/2 rad are symmetric (see Fig. 16). There is no transient os-
cillatory dynamics at the initial stage of the dynamics because
of repulsion emerging from the initial phase difference of π/2.
Also, spin mixing happens independently in the left and right
regions due to the initial repulsion. Consequently, we have a
pair of identical oscillatons moving away from each other.

4. Case γ � 1

We briefly comment on the dynamics when γ slightly de-
viates from the integrable point γ = 1. For γ � 1 and φ1 = 0
we see an explicit dependence of � on the dynamics. In partic-
ular, for � > �c we see the formation of oscillatons, whereas
for � < �c ferromagnetic solitons emerge. The critical �c

becomes larger and larger as γ approaches unity and diverges
at γ = 1. For φ1 = π/2 rad, irrespective of �, we observe the
formation of oscillatons when γ becomes slightly less than
1. In any case, for nonzero spin-dependent interactions, the
overlapping polar solitons convert always to either ferromag-
netic solitons or oscillatons.

FIG. 15. Population dynamics of two overlapping polar bright
solitons for γ = 0.5, � = 5l⊥, c̄0/h̄ω⊥l⊥ = −2, and φ1 = 0 rad:
(a) |ψ1|2 + |ψ−1|2, (b) |ψ0|2, and (c) total density n(z, t ).
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FIG. 16. Population dynamics of two overlapping polar bright
solitons for γ = 0.5, � = 10l⊥, c̄0/h̄ω⊥l⊥ = −2, and φ1 = π/2 rad:
(a) |ψ1|2 + |ψ−1|2, (b) |ψ0|2, and (c) total density n(z, t ).

IV. EXPERIMENTAL PROCEDURE

Here we discuss the experimental possibilities of our stud-
ies using a rubidium BEC setup in the F = 1 state. The
necessary steps are shown in Fig. 17. Two state-dependent
Q1D harmonic potentials are required [46] in which one
confines only m = ±1 [left one in Fig. 17(a)] atoms and
the second traps only m = 0 atoms [right one in Fig. 17(a)]
and are well separated initially such that the two condensates
are physically not connected [see Fig. 17(a)]. A similar trap
setup of the spin-1 condensate has been proposed to realize
a domain wall between the spin components [47] but not
in the bright-soliton regime. In general, the condensates are
initially prepared with c0 > 0. One can drive the system to
the soliton regime (c0 < 0) using either Feshbach resonance
or confinement-induced resonance [48]. In the latter case, the
coupling constant becomes

gF = 4h̄2aFN

ml2
⊥

(
1 − C

aF
l⊥

)−1
, (22)

where C ≈ 1.46 [49]. The same can be used to tune γ

to a desired value. Then, providing a hold time will equi-
librate the condensates into two separate stationary polar
bright solitons [Fig. 17(b)]. The next step is to bring the
two traps closer to an appropriate separation � such that
they overlap [Fig. 17(c)]. The final step is to imprint the
phase difference using additional fields [12,50,51] and remove
the traps along the condensate axis to study the dynamics
[Fig. 17(d)]. Alternatively, one can implement the method
discussed in [42], in which a single bright soliton is split
into two solitons with a controlled relative phase and then
selectively removing the atoms from other states in each
well.

Effect of noise. The nature of noise present in the initial
state also depends on the method by which it is prepared.
Here we comment on the noise based on the experimen-
tal realization discussed above (Sec. IV). Since in the left
trap only m = ±1 atoms are confined, we consider lo-
cal, tiny random-phase fluctuations (less than 10−3π ) on
the m = ±1 components. Similarly, in the right trap, we

FIG. 17. Experimental procedure for studying the dynamics of
overlapping polar bright solitons in a spin-1 condensate. (a) Primary
setup, which requires two state-dependent traps in which the left one
confines only m = ±1 atoms and the right one confines only m =
0 atoms. (b) In the second step, interaction strength c0 is varied to
c0 < 0 to create the bright solitons. (c) In the third step the traps are
closer and thus have an overlap between the solitons. (d) Finally, after
imprinting the phase difference, the harmonic trap is released.

consider the phase fluctuations only in the m = 0 state. We
see that such phase fluctuations do not affect the dynam-
ics except in the case of γ = 0.5 and φ1 = 0 or π rad and
that only quantitatively the qualitative features remain the
same.

V. SUMMARY AND OUTLOOK

We have analyzed the dynamics of two overlapping polar
bright solitons in spin-1 condensates, which depends critically
on the relative phase, the extent of overlap, and the ratio be-
tween spin-independent and spin-dependent interactions. The
same dynamics of scalar solitons revealed interesting scenar-
ios, particularly the possibility of observing atomic switching.
Atomic switching can find applications in implementing
atom-based networks, identical to optical networks. Overlap-
ping polar solitons resulted in nontrivial dynamics in spatial
and spin degrees of freedom. For vanishing spin-dependent
interactions, we observed Josephson-like oscillations in the
densities of each magnetic component. This was explained
using an effective double-well potential created by the
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density of other components. We observed the formation
of four ferromagnetic solitons for identical spin-dependent
and spin-independent interactions. When the spin-dependent
interaction strength is half the spin-independent one, the
dynamics lead to the formation of two oscillatons or a combi-
nation of oscillatons and a ferromagnetic soliton. Strikingly,
the properties of the final bright solitons can be easily tuned
by the initial state and the interaction parameters. Our studies
offer a possibility for engineering matter waves. Extending
the above analysis to a pair of overlapping ferromagnetic and
ferromagnetic-polar solitons, we anticipate exciting dynamics
completely different from than those reported here. We also
expect complex dynamics to emerge from overlapping more
than two solitons.
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