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Floquet-engineered pair and single-particle filters in the Fermi-Hubbard model
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We investigate the Fermi-Hubbard model with a Floquet-driven impurity in the form of a local time-oscillating
potential. For strong attractive interactions a stable formation of pairs is observed. These pairs show a completely
different transmission behavior than the transmission that is observed for the single unpaired particles. Whereas
in the high-frequency limit the single particles show a maximum of the transition at low driving amplitudes, the
pairs display a pronounced maximum transmission when the amplitude of the driving is close to the interaction
amplitude U. We use the distinct transmission behavior to design filters for pairs or single particles, respectively.
For example, one can totally block the transmission of single particles through the driven impurity and allow
only for the transmission of pairs. We quantify the quality of the designed filters.
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I. INTRODUCTION

By the extended demand for the miniaturization of techni-
cal devices as transistors, nowadays a large effort is made in
order to engineer quantum devices which work at the few-
particle level. Previous work has been devoted in order to
design filters separating quasiparticles with different proper-
ties. For example, quantum dot setups are commonly used as
energy filters [1] and resonance phenomena in transport con-
sidering the interaction on the quantum dots were investigated
[2-6].

Whereas in earlier studies mainly steady-state working
principles have been investigated, during the past decade
also the dynamic shaping and controlling of such devices
attracted increasing attention. Progress in this field is re-
warding since it opens the path to using the time-dependent
complexity as a resource for novel states and tuning possi-
bilities. For example, a periodic driving of the quantum dots
has been realized [1]. However, the microscopic understand-
ing of nonequilibrium situations of these quantum systems,
in particular, in the presence of interaction remains a huge
challenge.

One interesting and promising research direction in the
past decade is dynamic driving of quantum systems with time-
periodic fields in order to control their characteristic behavior
[7,8]. A periodic drive has been applied in order to obtain
the dynamical localization [9] and artificial magnetic fields
[10-14] to phase transitions [15-20] or to control the bound
pairs [21].

Theoretically, periodically modulated systems can be
described using the so-called Floquet theory [8]. The time-
periodic symmetry allows to solve the time-dependent
Schrodinger equation in terms of an eigenvalue problem with
a conserved quasienergy, analogous to the quasimomentum in
Bloch’s theorem. The Floquet solution corresponds to a stable
steady state of the system and results in an effective Floquet
Hamiltonian for the stroboscopic time evolution.
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The topic of this paper is the interplay of a periodically
driven impurity and interactions in quantum systems. Already
on the single-particle level, some very interesting results for
the transmission of time-periodic local fields have been ob-
tained. One example is a periodically modulated quantum dot
or quantum point contact which has been predicted to control
the transmission of single particles through the dot [22,23]
or through the quantum point contact [24]. Furthermore, a
periodically modulated quantum dot has been proposed to
induce bound states [25] or as a spin filter [26] for which
one spin species is fully blocked whereas the other is fully
transmitted by the dot.

As we show here, the effect of the interaction in com-
bination with a time-periodic impurity field enhances the
complexity considerably. In particular, for effective attrac-
tive interactions between fermionic particles as they occur in
superconductors, we find that the formation of interaction-
induced pairs leads to a highly nontrivial transmission
behavior as a function of driving amplitude and frequency,
which is very distinct from the single-particle behavior. This
is a result of novel terms arising in this inhomogeneous sys-
tem in an effective description by a Floquet-Schrieffer-Wolff
transformation [27], not present in a homogeneous system
by the interplay of the driving and the interaction. We show
that the combination of interaction and nonequilibrium driv-
ing can indeed be used as a resource to construct novel
devices, such as a pair filter or pair blocker.

II. MODEL AND EFFECTIVE DESCRIPTIONS

We consider a Fermi-Hubbard chain with a driven local
potential at site O described by the Hamiltonian,

Ht)=—-J Z(czacnﬂa +H.c)+U annw

n,o n

+ Aw cos(wt)(ngs +Ngy ). (D
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FIG. 1. (a) Sketch of the Fermi-Hubbard chain with a periodi-
cally driven potential at site 0. (b) and (c) Effective high-frequency
models describing the scattering of a (b) single particle and a (c) pair,
respectively. For the single particle and the pair the hopping to and
from the impurity site (dashed line) is reduced by a factor of y; ,
respectively. For the pair, additionally, a triangular potential at sites
—1,0, and 1 arises.

Here the operator ¢!/ annihilates (creates) a fermion with spin
o € {1,!} on site n, n,, = czacm, is the density operator,
J is the hopping parameter, U < O is the attractive Hubbard
interaction, and w and A are the frequency and dimensionless
amplitude of the driving, respectively. Here, we set # = 1 and
measure the lengths in units of the lattice spacing. We will
investigate the scattering of a single incoming particle or of
an incoming on-site pair of spin-up and spin-down fermions
at the impurity.

The scattering of a single particle at the periodically driven
impurity has been studied in detail in Ref. [23]. At high driv-
ing frequencies w >> J, an effective time-independent Floquet
Hamiltonian can be derived using the high-frequency expan-
sion [8,28]. Typically, the time evolution can be split into
a so-called kick term and slow terms [7]. For the situation
under consideration, it is specific that the time evolution of
the effective model coincides with the time evolution of the
original model after full periods of the driving [16]. For a sin-
gle particle impinging on the periodically modulated impurity
the effective Hamiltonian is given by

H =—J Y (c] cppry +He)
n#—1,0

—JIo(h) Y (efyeury + He), )
n=-—1,0

where Jj is the Bessel function of the first kind. This effective
model (see Fig. 1) describes a single particle on a chain with
a reduced hopping amplitude from and to the impurity site
0. The effective hopping amplitude is reduced by the factor
ys = Jo(A) which strongly depends on the driving amplitude
A. For a single particle with momentum k (in units of one
over lattice spacing) the transmission through the impurity be-
comes T = [1+ (Vis2 — 1% cot?k]~! [22]. Furthermore, the

momentum-averaged transmission defined as T = ffﬂ 7}(%
one can explicitly compute for a single particle giving Ty =
82 = Jy(A)?. This means that the transmission of a single
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FIG. 2. Transmission in the limit / < w, |[U| as a function of
the driving amplitude A for a single particle (yellow line) and a
pair at |U|/w = 1.46 (blue line), |U|/w = 5.7 (orange line), and
|U|/w — oo (green line). The inset shows the pair transmission
versus A and |U|/w. The vertical lines show the values of A where
the single-particle transmission vanishes. The horizontal lines show
the values of |U|/w which are shown in the main panel. The solid
line shows A = |U|/w which is roughly the position of the first
maximum.

particle (see Fig. 2) has a maximum at A = 0, then strongly
decays to its first zero at A = 2.4. For larger values of A an
oscillating behavior is seen with a decaying amplitude. There-
fore, the transmission of a single particle can be regulated by
the amplitude of the driving. The analysis is not just limited to
high frequencies in the single-particle case. Interesting res-
onances have been found at low driving frequencies in the
momentum-resolved transmission using the full analysis of
the noninteracting problem in Ref. [22]. The integrated trans-
mission can be obtained in the adiabatic 1imit as an expansion
for small Aw to lowest order as 7% ~ 1 — J

Let us now consider the intriguing effect of the interaction
U. For strong attraction —U > J, @ using a Schrieffer-Wolff
transformation the problem maps onto a model of stable
entangled pairs which behave as noninteracting composite
particles,

B = —J, > ",y + Hee)) + 220 cos(wt)ndng

where we deﬁned the pair creation and annihilation operators
nS=c 21 Cn ,, and 11; = ¢, ¢,y and the effective pair hopping
parameter J, = IU\ This effective Hamiltonian H*" clearly
resembles the initial one Eq. (1) besides an effective tunneling
amplitude J,, and driving amplitude 24 of the impurity. There-
fore, the scattering properties in the strong interacting limit
can be derived from the known behavior for single particles.
For example in the large frequency limit the pair transmission
becomes Tp & Jo(21)*. Typically, due to the rescaled values,
the single-particle transmission can still be evaluated in the
low-frequency limit Aw < J and J < @ where T°¥ is valid,
whereas for the pair transmission already the described high-
frequency limit needs to be taken. This implies that if the
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limit of large interaction is taken first, the pair transmission is
typically much smaller than the single-particle transmission.

The most interesting and most complicated physical behav-
ior occurs when the frequency is comparable to the interaction
strength [29]. In order to tackle this case, we consider the
limit J < w, |U]|. It is indeed possible to have two leading
energy scales and make a single rotation by using a Floquet-
Schrieffer-Wolff transformation as described in Ref. [27] for
homogeneous systems. In this inhomogeneous system this
transformation leads to

H = —Jp|: Z (nm,,, +He.)

n#—1,0

+y Y (i, +He)
n=-—1,0

+up(mt T, + 2050y + m*m)}- 3)

The periodic modulation of the impurity leads to the effective
hopping amplitude and potential for the pair,

> U1yl > Uy
Vp:z oy and “P:Z [

I=—00 w I=—00

respectively. Thus, within the effective Floquet description,
the pair is subjected to a scattering at a region of three sites
with scaled tunneling amplitude and a triangular potential (see
Fig. 1). Let us comment that the effective potentials are only
present in inhomogeneous systems.

III. TRANSMISSION

Using the effective model (3) we calculate in Appendix B
that the momentum-dependent pair transmission through the
impurity becomes

4
Vp 1
= ;”(k) 2 5 “4)
1+ (smk) [8p(k) ] + &P (k)2 sin? Kk

with &P(k) = cos k — u,. We numerically integrate this
expression in order to obtain the momentum-averaged trans-
mission 7, shown in Fig. 2. Its behavior is much more
intriguing than the single-particle transmission, and the over-
all shape shows several pronounced features. (i) First, similar
to the single-particle transmission for low driving amplitude
the pair transmission is one (i.e., the system is fully trans-
parent) at A = 0 and decays quickly with increasing A. (ii)
Second, a remarkable feature is a pronounced maximumly
close to A « U/w. Note that these maxima are a result of
the interplay of all effective terms, in particular, the effective
local potentials not present for the homogeneous system. (iii)
For A > |U|/w the averaged transmission shows oscillations
with decaying amplitude, giving alternating regions of high
and low transmission. These features are crucial in order to
design quantum filters, and we give a more detailed analysis of
the origin of these features in the following. Let us comment
that the nonanalytic behavior, which is not rare in scattering
problems, seen in Fig. 2 is caused in this system by the
contribution of the momenta around k = 0, . Excluding the

surrounding area of these momenta in the integral leads to a
smoothening of the cusps.

(1) The regime of small A <« |U|/@ can be understood
by taking the limit |U|/w — oo for which we obtain (see
Ref. [30], Sec. 10.23) which gives y, — > ,(=1)'J;(A)* =
Jo(21) and up, — > Ji(AM)? — 1 =0. This agrees with the
results obtained from the large interaction limit described by
He™ if additionally the large frequency limit is taken. We
plot this result for |U|/w — oo in Fig. 2 in red. It well ap-
proximates the initial decay of the transmission versus A and
provides a good approximation for A < |U|/w.

(ii) For A =~ |U|/w, a maximum occurs in the pair trans-
mission. The maxima in the transmission occur if the relation
*y, + cos k ~ 1, is approximately fulfilled. Due to the pref-
actor 7 — W‘ the expression for ¥, and u, are dominated by the

Bessel functlon Ji. (1) with [ being the two integers closest to

'U‘ . Both Bessel functions have their first maximum roughly
around AR L. At A = |U|/w they can, therefore, fulfill the
relation which leads to the maxima of the pair transmission.
Since we can tune the position of the maximum by tuning the
value of the interaction, we will use it in order to design pair
filters.

(iii) For A > |U|/w the transmission exhibits alternating
regions of high and low transmission. The oscillations of
the alternating regions roughly correspond to the oscillations
of Ji.(A). The detailed description of the amplitude of the
transmission, however, requires taking into account more con-
tributions. As A increases the averaged pair transmission also
decreases and vanishes in the limit A — oo since y, — 0.

IV. PAIR FILTER

In the following we will use our gained understanding on
the features of the single particle and pair transmissions in
order to design filters. Here we concentrate on the momentum
integrated transmission.

We start to design a pair filter, which should mainly trans-
mit pairs through the impurity. We consider the quantity » =
Tp(l — T,). This measures the product of the transmission of
pairs and the reflection of single particles at the impurity.
Therefore, r gives the probability that the pair is transmitted
whereas the single particle is reflected. The maximum value of
r is r = 1 which corresponds to a perfect pair filter, i.e., only
pairs can cross the impurity and these are transmitted with a
probability equal one. The quantity r is plotted in Fig. 3 using
the same values of |U|/w as in Fig. 2.

For A 2 2, r shows similarities to the pair transmission
T,,. In particular, the maxima for A ~ U/w and the oscillating
structure of the additional local maxima persist. This behavior
has its origin in the fact that for A > 2 the single-particle
transmission is small such that one can approximate r ~ Tj,.
However, for A < 2 the single-particle transmission typically
gives an important contribution and reduces drastically the
value of r. Therefore, the maxima of r for A ~ U/w for A 2 2
are typically the optimal values for a pair filter. They often
reach above the value of » = 0.8 which constitutes already
a good pair filter. If one requires additionally that the single
particle is fully blocked, the most prominent values of A for
a pair filter are those were the single-particle transmission
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FIG. 3. Product of the transmission of pairs and the reflection
of single particles at the impurity, r = T,(1 — T;) versus the driving
amplitude A for |U|/w = 1.46 (blue), |U|/w = 5.7 (orange), and
|U|/w — oo (green). The inset shows r as function of A and |U|/w.
The vertical lines show the values of A where the single-particle
transmission vanishes. The horizontal lines show the values of |U|/w
which are shown in the main panel.

vanishes. This happens at the zeros of the Bessel function
Jo(A), e.g., A~ 2.4,5.52,8.65,.... We mark these values
in the insets of Figs. 2 and 3 as vertical lines. The values
|U|/w which we chose for the plots are optimal values for the
first two zeros A &~ 2.4 and A &~ 5.52. For |U|/w = 1.46 the
averaged pair transmission at A = 2.4 is 7, = 0.79 whereas
for |U|/w=35.7 at A =5.52 is T, = 0.81. This means that
whereas the single particles are fully blocked also the pairs
sometimes can get reflected, but with a low probability of
about <0.2. To summarize, we can design using the driven
impurity good quality pair filters which mainly leave through
pairs of particles.

In a similar fashion one can find configurations where the
impurity acts as a single-particle filter, i.e., blocks most pairs
and only transmits single particles. This can, in particular, be
realized in the limit of large interaction (cf. H"), a broad pa-
rameter regime exists where the single-particle transmission
is described by the low-frequency expansion Tsk’w, whereas
the pair transmission needs to be covered already in the high-
frequency limit and takes the form of the squared Bessel
function. Thus, in this parameter regime the single-particle
transmission is always much larger than the pair transmission.
Using even a driving value 2A ~ 1.2 leads to an almost van-
ishing pair transmission.

Tuning the amplitude of the driving A and the ratio of U/w
further situations can be realized as, for example, a blocking
of both single particles and pairs. We summarize the discussed
configurations in Table I.

The effective model for the pair (3) is only applicable in
the nonresonant case, where U is not an integer multiple of w
because both y, and u, diverge.

Let us point out that one of us also studied the resonant
case [31], 1.e., U/w is an integer which goes beyond the scope
of the current paper. A careful treatment of the pair breaking

TABLE 1. Tunable impurity: A summary of parameter configu-
rations yielding different filters.

U|/w A T. T, Description

1.46 0.9 0.652 <1073 Single-particle filter
2.4 <1073 0.794 Pair filter

5.7 1.2 0.45 <1073 Single-particle filter
2.64 0.013 0.006 Both blocked
5.52 <1073 0.81 Pair filter

) 1.2 0.45 <1073 Single-particle filter
2.64 0.013 0.007 Both blocked

using the Lippmann-Schwinger equation shows that, as long
as J < w, the resulting transmission is exactly given by the
limiting expression of (4) [31]. In that sense Eq. (4) is valid
for all parameters U /w.

V. EFFECTS OF A BACKGROUND
ON SINGLE-PARTICLE TRANSMISSION

Up to now we have focused on the situation of an incom-
ing single particle or of an incoming pair of two particles
in an otherwise empty system. In order to verify the sta-
bility of our results, we now consider an incoming particle
on top of a noninteracting background. In Fig. 4 we show
the density evolution in time for two different frequencies,
o = J which is within the bandwidth and v = 40J which is
much larger than the other energy scales of the system. The
results are obtained using a time-dependent exact diagonal-
ization method for a system of L = 400 sites. We find that
the periodic driving of the impurity can induce considerable
density oscillations, in particular, at low and intermediate driv-
ing frequencies. However, even though these oscillations are
present, the transmission can be extracted by subtracting the
densities of a system with and without incoming excitation.
For very large frequencies the effect of driving on the back-
ground is mainly localized close to the impurity. As shown
in Fig. 4 the extracted transmission from the nonperturbed
background agrees well with the expected transmission for a
single-particle 7;’. This means that the transmission through
the driven impurity seems stable also in the presence of a
noninteracting background.

VI. CONCLUSION

To summarize we have designed a quantum device which
can act as a filter for pairs and single particles. It consists
of a periodically driven impurity in the chain of interact-
ing fermions. Setting suitable driving parameters the driven
impurity can be used to block incoming single particles or
pairs. This, in particular, required taking carefully the limit
of high frequency and interaction at the same time since
otherwise the complex structure of Eq. (3) which leads to
the interesting features does not occur. We identified optimal
points of these filters. We further investigated the stability
of the single-particle transmission against a noninteracting
background. The study of the stability of the pair transmission
to an interacting background is an open question which is not
easy to tackle theoretically.
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FIG. 4. Time evolution of the density for a chain of L = 400
sites with half-filled noninteracting fermions with the driven impurity
at the central site with frequency (a) @ = J and (b) @ = 40J. The
driving amplitude is ramped up linearly up to the maximum value
of A =2.4 in the ramp time fyyp, = 20/J. (c) The dependence of
the single-particle transmission 7; on the driving amplitude A. The
driving frequency is w = 40J and the incoming wave is a wave
packet of a single hole with unitless momentum k£ = 1.5 and width
o = 50 sites in position space. The analytical result 7;° (solid line)
agrees well with the full numerical simulation (symbols).

One of the advantages of the Floquet-engineered impu-
rity is that it does not only provide possible configurations
for single-particle and pair filters but would also allow to
quickly change between them in experiments by tuning, for
example, the driving amplitude. Within this paper, we fo-
cused on the momentum-integrated transmission. Using the
given equations, it can be easily used in order to design also
momentum-dependent filters.
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APPENDIX A: GAUGE TRANSFORMATION

In this Appendix we would like to explain how one de-
rives a Fermi-Hubbard-like Hamiltonian with time-periodic
hopping from (1) using the gauge transformation U(z) =
e~mop+noy)sin of " FBor quch a time-dependent gauge transfor-
mation the resulting Hamiltonian is given by

He(r) = U()'H@U@) — idvtU@) U®). (A1)

The gauge transformation is defined as such that the last
term exactly cancels the driving term in (1). It remains to
compute the first part. To this end observe that
e*l‘)» sin wtcoa n=>0

Cuo s else. (A2)

Ut)'¢,, Ult) = {

By inserting 1 = U(z)U(¢)" into Hamiltonian (1) one can use
this result to compute the gauge transformation of all other
quantities. For example,

e—i)\ sin wlcj;qcn-&-loa n= _1’
L
U 'el, eu1,U) = { ¢} cpi1p,  n=0, (A3)
¢ Citlos else,

whereas any ¢/ _c¢,, is unaffected by the gauge transformation.
We denote the prefactors in front of the hopping terms as
gn(wt). Collecting all terms finally leads to

Hé(t) = —J Z[gn(wt)cloanG +Hc]+U ZnnTnnl,

no n

(A4)

where g,(¢) = 1 except for g_(¢p) = e~ 5"® and go(¢) =
i sin(@)

APPENDIX B: CALCULATION OF THE TRANSMISSION
IN THE EFFECTIVE MODEL

Consider a pair coming from the left with momentum k
and energy €, = —2J, cos k. We would like to calculate the
transmission amplitude. The wave function has the general
form

e 4 e n <0,
Yn =\ Yo, n=0, (B1)
tpen n> 0.
The Schrodinger equation evaluated at sitesn = —1, 0, and 1
gives the following set of equations:
V2 + »¥o+ up¥—1 =2 cos(k)y_i, (B2)
Yo¥—1 + vo¥1 + 2upo = 2 cos(k)vo, (B3)
YoWo + V2 + upy = 2 cos(k)y. (B4)
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Inserting the wave-function (B1) and solving the equations gives

13

—2i sin k (B5)

Ik

1= fpe® (2, cos k —2pp)(1 — ppe®) — 2y2etk”

In order to obtain the transmission probability we have to square this expression T; = |t|> which gives (4).
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