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Quantum phases of dipolar bosons in a multilayer optical lattice
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We consider a minimal model to investigate the quantum phases of hardcore, polarized dipolar atoms confined
in multilayer optical lattices. The model is a variant of the extended Bose-Hubbard model, which incorporates
intralayer repulsion and interlayer attraction between the atoms in nearest-neighbor sites. We study the phases
of this model emerging from the competition between the attractive interlayer interaction and the interlayer
hopping. Our results from the analytical and cluster-Gutzwiller mean-field theories reveal that multimer forma-
tion occurs in the regime of weak intra- and interlayer hopping due to the attractive interaction. In addition,
intralayer isotropic repulsive interaction results in the checkerboard ordering of the multimers. This leads to
an incompressible checkerboard multimer phase at half-filling. At higher interlayer hopping, the multimers
are destabilized to form resonating valence-bond-like states. Furthermore, we discuss the effects of thermal
fluctuations on the quantum phases of the system.
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I. INTRODUCTION

The experimental demonstration of the superfluid to Mott-
insulator phase transition in the 1D, 2D and 3D optical lattices
with bosonic atoms [1–6] marks a paradigm shift in the ex-
ploration of quantum phase transitions. High tunability of
the system parameters and almost near complete isolation
of ultracold atoms in the optical lattice potentials have thus
opened a new avenue to explore quantum many-body physics
[7–9]. At present, optical lattices are considered as macro-
scopic quantum simulators of condensed matter systems
[10,11]. They have been employed to understand properties
of equilibrium quantum phases [12–20], characteristics of
collective excitations [21–26], nonequilibrium dynamics of
quantum phase transitions [27–33], quantum thermalization
[34,35], the many-body localization transition [36,37], driven
and dissipative dynamics [38,39], etc. Optical lattices, when
loaded with Bose-Einstein condensed atoms, can simulate the
Bose-Hubbard model (BHM) [12,40]. This model is the
bosonic counterpart of the Hubbard model [41]. The latter has
been considered as the prototypical model to understand the
properties of interacting electrons in the tight binding regime.
The BHM considers only nearest-neighbor hopping and onsite
contact interaction. These basic considerations are sufficient
to describe the properties of the superfluid and Mott insulator
phases of neutral atoms. But, BHM can not describe phases
arising from the long-range interatomic interactions.

A minimal extension of the BHM includes nearest-
neighbor (NN) interactions. The model is, then, referred to as
the extended BHM. Several theoretical studies have analyzed

the quantum phases of this model [19,42–47]. This interaction
can induce periodic density modulation, which is a type of
diagonal order. The system can also host a supersolid, which is
characterized by the coexistence of diagonal and off-diagonal
long-range order, and has been a topic of extensive research
[48]. The extended BHM has been experimentally realized
in a 3D optical lattice loaded with magnetic dipolar atoms
[6]. However, to be precise, the interatomic dipole-dipole
interaction is long-range and anisotropic. Consequently, sev-
eral theoretical studies have investigated the effects of these
features on the quantum phases [13–17,49,50], leading to a
further generalization of BHM. In this context, the dimen-
sionality of the lattice plays an important role. For example,
for dipoles polarized perpendicular to the lattice plane, the
intralayer NN interaction is repulsive and isotropic. However,
the interlayer NN interaction is attractive. Such an anisotropy
can stabilize additional quantum phases in a 3D system. A
simplified or minimal 3D lattice system is stacking two layers
of a 2D lattice. While with the increase in number of layers,
3D properties of the system become more prominent.

Recent observations of unconventional superconductivity
[51] and correlated insulating phase [52] in twisted bilayer
graphene have provided an impetus for studies on bilayer
systems [53–58]. There are proposals to simulate the physics
of twisted bilayers using optical lattice setups [56,59]. Further
more, the bilayer continuum and lattice systems with polar-
ized dipolar atoms [60–64], can host a multitude of quantum
phases, which are absent in monolayer. In particular, due to
the attractive interlayer interaction, there can be a pairing
between the atoms in the different layers. Then, lattice sys-
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tems can host phases like the pair superfluid [60,62,63], pair
supersolid [62,63], etc. However, the interlayer hopping can
destabilize the pairs, and lead to the formation of phases like
the valence bond solid and supersolid [64].

In this work, we investigate the quantum phases of po-
larized dipolar atoms confined to a multilayer optical lattice.
In particular, we focus on bi- and trilayer lattices. We study
the ground state quantum phases of the system using the
cluster Gutzwiller mean-field theory [65–69]. Our study re-
veals the existence of exotic quantum phases arising from the
competitions of the intra- and interlayer interactions and hop-
pings. This study encapsulates one of the important aspects
of the multilayer systems by varying the interlayer hopping
from the weak to the strong domain. We supplement the
numerical phase boundaries between the incompressible and
compressible phases through an analytical approach based on
mean-field perturbation theory. Unlike earlier studies based
on the site-decoupling scheme [17,70–72], here we include
the interlayer hopping in the unperturbed Hamiltonian and
apply the method with respect to multiple sites. This approach
can be thought of as a cluster generalization of the site-
decoupling method. Furthermore, we extend our study to the
finite temperature domain in order to understand the stability
of quantum phases against thermal fluctuations. Probing the
novel quantum phases of quintessential models in condensed
matter and quantum many-body systems has been one of the
key motivation of quantum simulation [7–11]. One recent
development which has a direct bearing on this is the ex-
perimental achievement of 3D optical lattice with long-range
interactions using Erbium atoms [6] to probe MI and SF
phases. Other related developments are the experimental stud-
ies on multilayer optical lattice systems with ultracold atoms
[73–75]. The structured incompressible quantum phases re-
ported in this work are in the strongly interacting regime
and require temperatures below 1 nK to observe them. Al-
though reaching such temperatures with dipolar atomic gases
is challenging at present, we expect that with novel cooling
techniques, it would be possible in the future experiments.
Therefore the results presented in this manuscript shall be
valuable to the future experiments in providing detailed in-
formation about the parameter domains of the novel quantum
phases of dipolar atoms in multilayer optical lattices.

We have organized the remainder of this paper as follows.
In Sec. II, we discuss the extended BHM apt for a description
of polarized dipolar atoms in multilayers of 2D square optical
lattice. In Secs. III A–III C, we give a brief account of the clus-
ter Gutzwiller mean-field theory, adapted numerical procedure
to solve the model, and the quantum phases of the system.
In Sec. III D, we discuss the mean-field perturbation analysis
to obtain analytical phase boundaries between incompressible
and compressible phases. In Sec. IV, we present and elaborate
the phase diagrams of the bi- and trilayer lattice systems and
then discuss the effects of finite temperature on the quantum
phases. In Sec. V, we summarize our key results and conclude.

II. THEORETICAL MODEL

We consider polarized dipolar atoms confined to bi- and
trilayers of a two-dimensional (2D) square optical lattice [6,
13–17] with in-plane lattice constant a. The x and y coor-

FIG. 1. Schematic representation of the dipolar bosonic atoms
in a bilayer optical lattice. The lattice spacing within a layer is a,
and interlayer spacing is az. The red spheres represent atoms, and
the arrows indicate the orientation of the dipole. The dotted arrows
indicate possible extension to multilayered optical lattice.

dinates of the lattice sites with index i ≡ (p, q) in layers 1,
and 2 (and 3) coincide, but, these lattice sites are separated
by a distance az along the z direction as shown in Fig. 1. So,
in general, the unit cell of the multilayer lattice system is a
cuboid and cube for the special case of az = a. For the polar-
ized dipolar atoms, the dipole-dipole interaction potential is

Udd = Cdd
(1 − 3cos2α)

| �R − �R′|3 , (1)

where, Cdd is the dipolar interaction strength, α is the angle
between the polarization axis and the separation vector ( �R −
�R′). In the square lattice, the position vector of a site is �R ≡
a(pêx + qêy) + azrêz, where p, q, r ∈ Z.

The dipolar interaction strength between two lattice sites
is determined by the overlap between the lowest Bloch-
band Wannier functions and it decreases exponentially as the
intersite separation is increased. Hence, approximating the
long-range dipolar interaction with NN interaction provides a
good qualitative description of the quantum phases supported
by the system [6,76]. So in the present study, we limit the
range of the dipole-dipole interaction to the NN sites [17,19],
and consider the dipole moments of the atoms to be ori-
ented along the z axis. Then, from Eq. (1) it is evident that
the intralayer NN dipole-dipole interaction is repulsive and
isotropic. The interlayer NN interaction is, however, attrac-
tive. For compact notations, let us denote the strengths of the
intralayer and interlayer NN interactions by V ∝ d2/a3 and
V ′ ∝ 2d2/a3

z , respectively, where d is the magnitude of the
induced dipole moment.

In addition, we consider the atoms to be hardcore, that is,
not more than one atom can occupy each site of the lattice.
This is the case when the onsite repulsive interatomic interac-
tion energy is much larger than other energy scales: hopping
and dipole-dipole interaction energies. This, then, energeti-
cally favors single occupancy and atoms can be treated as hard
core bosons. So, the local Fock space has dimension Nb = 2
with basis states |0〉 and |1〉 corresponding to zero and single
occupation at a site, respectively. Then, the grand-canonical
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Hamiltonian describing the bilayer system is

Ĥbi = − J
∑
〈i j〉,r

(b̂†
i,r b̂ j,r + H.c.) − J ′ ∑

i

(b̂†
i,1b̂i,2 + H.c.)

+ V
∑
〈i j〉,r

n̂i,r n̂ j,r + V ′ ∑
i

n̂i,1n̂i,2 − μ
∑
i,r

n̂i,r, (2)

where r ∈ {1, 2} is the layer index; b̂†
i,r , b̂i,r and n̂i,r are the

local bosonic creation, annihilation and occupation number
operators. Here, J is the strength of intralayer hopping con-
sidered identical for all the layers, J ′ is the interlayer hopping
strength, and μ the chemical potential which fixes the total
number of atoms in the system. It is important to note that
the interlayer hopping strength can be varied by changing the
depth of the optical lattice along z direction. In experiments,
this is done by tuning the intensity of counterpropagating laser
beams along the z direction [6]. To extend the model to a
larger number of layers, define the Hamiltonian for one lattice
plane as

Ĥr =
∑
〈i j〉

[−J (b̂†
i,r b̂ j,r + H.c.) + V n̂i,r n̂ j,r] − μ

∑
i

n̂i,r, (3)

then, the bilayer Hamiltonian in Eq. (2) assumes the form

Ĥbi =
2∑

r=1

Ĥr − J ′ ∑
i

(b̂†
i,1b̂i,2 + H.c.) + V ′ ∑

i

n̂i,1n̂i,2. (4)

The Hamiltonian can be generalized to the case of M layers as

ĤM =
M∑

r=1

Ĥr − J ′ ∑
i

M−1∑
r=1

(b̂†
i,r b̂i,r+1 + H.c.)

+ V ′ ∑
i

M−1∑
r=1

n̂i,r n̂i,r+1. (5)

The bilayer system with attractive interlayer NN interac-
tion and suppressed interlayer hopping can exhibit the PSF
phase [60,62,63]. In this case, the pair formation is between
the atoms in two different layers, and the pairs hop around
the lattice. In addition, the intralayer repulsive and isotropic
NN interaction can induce checkerboard order in the system.
Then, a bilayer optical lattice system of polarized dipo-
lar bosons can simultaneously exhibit superfluidity of pairs
and crystalline order, which corresponds to pair supersolid
(PSS) phase [62,63]. With the increase in interlayer hopping,
the enhanced interlayer kinetic energy destabilizes the pairs.
However, the resonating particle pair states can be stabilized
when the interlayer hopping is large [64]. So, the hardcore
dipolar atoms in bilayer system can exhibit a triplet state of
the form

|t0〉p,q = 1√
2

(|10〉p,q + |01〉p,q ), (6)

where |m1m2〉p,q denotes a dimer state with m1 and m2 atoms
at lattice site (p, q) of first and second layers, respectively.
This triplet state is the bosonic counterpart of the familiar
valence bond antisymmetric singlet state of electrons. Such
a state has been studied in the extended BHM for 1D lattice
systems [77–81]. Like in the case of PSS, the attractive and

repulsive inter- and intralayer interactions can induce checker-
board order to the valence-bond-like states as well. Then,
the ground state of the system is referred to as the valence
bond checkerboard solid (VCBS). In addition, the ground
state of the system can exhibit superfluidity and valence bond
checkerboard order simultaneously, which is referred to as
valence bond supersolid (VSS) phase. It is worth noting that
the pair expectation calculated with respect to the triplet state
in Eq. (6) is

p,q〈t0|n̂p,q,1n̂p,q,2|t0〉p,q = 0. (7)

An important symmetry of the Hamiltonian in Eq. (2) is
manifested through the particle-hole transformation of the
creation and annihilation operators. This transformation leads
to replacing the particle creation operator b̂†

i,r by hole annihi-
lation operator âi,r , and particle annihilation operator b̂i,r by
hole creation operator â†

i,r in the Hamiltonian. Then, by em-
ploying canonical anticommutation relations between these
operators (details are in Appendix A), we obtain the particle-
hole symmetry point along the μ axis of the phase diagram as
μ = [4V + V ′]/2 for a bilayer system.

III. THEORETICAL METHODS

A. Cluster Gutzwiller mean-field theory

We solve the model using the cluster mean-field theory
with Gutzwiller ansatz [17–19,40,82–85]. For this, we sub-
divide the K × L × M lattice system (K and L are the number
of lattice sites along x and y directions) into W small clusters
of k × l × m lattice sites, that is, W = (K × L × M )/(k × l ×
m). Then, like in the site-decoupled mean-field theory, we can
define a local Hamiltonian of the clusters [18,19,69,84], and
the total Hamiltonian is the sum of the cluster Hamiltonians.

In the present work, we limit ourselves to the case of bi-
layer (M = 2) and trilayer (M = 3) systems. The Hamiltonian
of a cluster in the bilayer system is

ĤC =
∑

r

{ ′∑
p,q∈C

[−J (b̂†
p+1,q,r b̂p,q,r + b̂†

p,q+1,r b̂p,q,r

+ H.c.) + V (n̂p+1,q,r n̂p,q,r + n̂p,q+1,r n̂p,q,r )]

+
∑

p,q∈δC

[−J (φ∗
p+1,q,r b̂p,q,r + φ∗

p,q+1,r b̂p,q,r + H.c.)

+ V (〈n̂p+1,q,r〉n̂p,q,r + 〈n̂p,q+1,r〉n̂p,q,r )]

− μ
∑

p,q∈C

n̂p,q,r

}
−

∑
p,q∈C

[−J ′(b̂†
p,q,1b̂p,q,2 + H.c.)

+ V ′n̂p,q,1n̂p,q,2], (8)

where the prime in the summation denotes sum over lattice
sites (p, q) ∈ C, such that, (p + 1, q) and (p, q + 1) ∈ C, and
(p, q) ∈ δC denote the lattice sites at the boundary of the
cluster C. The mean-field φ∗

p+1,q,r = 〈b̂†
p+1,q,r〉 and average

occupancy 〈n̂p+1,q,r〉 with (p + 1, q) /∈ C are computed at the
boundary of the neighboring cluster along x-direction, and
are required to describe the intercluster hopping and NN
interaction, respectively. Similarly, φ∗

p,q+1,r = 〈b̂†
p,q+1,r〉 and

〈n̂p,q+1,r〉 with (p, q + 1) /∈ C are required to describe the
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intercluster hopping and NN interaction along y direction be-
tween adjacent clusters. Thus, within a cluster the hopping and
NN interaction terms are exact, and the intercluster hopping
and NN interactions are accounted through the mean-fields
and average occupancies, respectively. It is important to note
that the interlayer hopping and NN interaction terms are exact
in the cluster Hamiltonian. Now, like in the site-decoupled
mean-field theory, the cluster Hamiltonian matrix can be cal-
culated using the Fock basis states of the cluster {|n0n1...nm′ 〉},
where m′ = (k × l × m) − 1. So, these basis states are the
direct products of the local Fock states of the (k × l × m)
lattice sites within the cluster. By diagonalizing the Hamilto-
nian matrix, the ground state of the cluster can be obtained in
the form ∣∣ψC

α

〉 =
∑

n0n1...nm′

c(α)
n0n1...nm′ |n0n1...nm′ 〉, (9)

where α is the cluster index, and c(α)
n0n1...nm′ are the complex

coefficients of the ground state |ψC
α 〉. Then, employing the

Gutzwiller ansatz, the ground state of the entire lattice is

|�GW〉 =
W∏

α=1

∣∣ψC
α

〉 =
W∏

α=1

∑
n0n1...nm′

c(α)
n0n1...nm′ |n0n1...nm′ 〉. (10)

The local superfluid order parameter and average occupancy
at the (p, q) lattice site of the rth layer are

φp,q,r = 〈�GW|b̂p,q,r |�GW〉,
np,q,r = 〈�GW|n̂p,q,r |�GW〉. (11)

A relevant parameter of a quantum phase is the average
occupancy per lattice site,

ρ = 1

(K × L × M )

K,L,M∑
p=1,q=1,r=1

np,q,r . (12)

In this work, we study quantum phases with the hard-core
approximation. So, we have ρ � 1. To probe the emergence
of valence bond order in the bilayer system, we use the pair
occupancy

ρ̃p,q = 〈�GW|n̂p,q,1n̂p,q,2|�GW〉. (13)

This quantity is zero when the triplet state, given in Eq. (6),
is stabilized at the (p, q, 1) and (p, q, 2) sites of the bilayer
system. It is also zero when atleast one of these sites is
empty. It is nonzero only when both the sites are occupied,
thereby exhibiting a pair. Thus, ρ̃p,q along with np,q,1 and
np,q,2 can identify the valance bond order in the system. And,
the signatures of the triplet state are zero ρ̃p,q, and finite np,q,1

and np,q,2. The zero superfluid order parameter indicates the
incompressibility of these solid phases and the checkerboard
order in each layer is identified by the structure factor

Sr (π, π ) = 1

K × L

∑
p′,q′
p,q

eiπ{(p−p′ )+(q−q′ )}〈n̂p,q,r n̂p′,q′,r〉. (14)

In the phases with checkerboard order Sr (π, π ) is finite, while
it is zero in the phases with uniform density distribution.

B. Numerical methods

The starting point of our cluster mean field, hereafter,
referred to as cluster Gutzwiller mean-field (CGMF) theory, is
to choose an appropriate initial guess state |�GW〉. From this,
we compute the initial φp,q,r and np,q,r . In general, we choose
the same initial guess state |�C

α 〉 for all the W clusters and
consider c(α)

n0n1...nm′ = 1/
√

2m′+1. Then, using corresponding
φp,q,r and np,q,r , we calculate the Hamiltonian matrix of a
cluster given in Eq. (8), which we diagonalize [18,19,84].
We update the state |�GW〉 using the new ground state of
the cluster obtained from the diagonalization. Afterwards,
we compute φp,q,r and np,q,r using this updated |�GW〉, and
advance to the next cluster to repeat the same steps. We sweep
the entire lattice system by continuing the procedure, and one
such sweep constitutes an iteration. We continue the iterations
until desired convergence of 10−12 in the φp,q,r and np,q,r is
obtained. The convergence parameter of quantity is defined as
the difference between the values in the present and previous
iterations. In our computations, we consider clusters ranging
in size from 1 × 1 × 2 to 2 × 2 × 2 to tile lattice systems
ranging in size from 8 × 8 × 2 to 16 × 16 × 2. To model an
uniform infinite lattice system, we employ periodic boundary
conditions in φp,q,r and np,q,r along x and y-directions. We also
corroborate the stability of the obtained ground states with
respect to different initial guess states having inhomogeneous
distribution in np,q,r and φp,q,r . The initial guess states
considered have checkerboard and random density patterns.
For faster computation, we compute the numerical phase
boundaries using the bisection method. To identify a phase
boundary separating an incompressible and compressible
phase, we implement bisection with the SF order parameter φ

[69]. For a particular μ/V , the location of the phase boundary
is bracketed within an interval by choosing two values of
J/V . One value lies in the incompressible phase domain and
the other in the compressible phase. At each bisection step
the interval is halved and the interval which brackets the
phase boundary is chosen as the current one. Thus, with n
bisection steps we can determine the phase boundary with
an accuracy of 1/2n. In the present work we use n = 14 and
this translates to the accuracy of the phase boundary Jc/V
as ≈ 6 × 10−5J/V . To further optimize the computation, we
limit the number of iterations of the mean-field equation to a
few and identify the phase based on the trend of the SF order
parameter φ from an initial guess value. For a chosen initial
value of φ, it tends to decrease in the incompressible domain
during iteration. Whereas it increases in the compressible
domain. These considerations make the computation of phase
boundary efficient and allows us to select small step size of
δμ = 0.02V . Thus, the accuracy in the determination of Jc/V
and small δμ translates to smooth phase boundaries in the
phase diagrams. The phase boundary between the structured
supersolid and the uniform superfluid phase is obtained
similarly by the bisection for the structure factor Sr (π, π ).

C. Quantum phases

The system admits particle and hole vacuum states.
And, these states correspond to ρ = 0 and ρ = 1, re-
spectively. Using the dimer notation these states can be
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represented as

|�〉ρ=0
VAC =

∏
(p,q)

|00〉p,q, (15)

and

|�〉ρ=1
VAC =

∏
(p,q)

|11〉p,q. (16)

Thus, in these states, the system either has no atoms or has
uniform distribution of one atom per lattice site through-
out the system, respectively. The interlayer attractive NN
interaction energetically favors the dimer state |11〉p,q. In
addition, the intralayer repulsive NN interaction can induce
checkerboard density order. This interaction induced spatially
periodic intralayer density modulation may be considered as
two interpenetrating sublattices, A and B. It is important to
note that np,q,1 and np,q,2 have identical distributions or the
checkerboard structure in both the layers are aligned. This
is due to the attractive interlayer NN interaction, and is in
contrast to the case when V ′ is repulsive. As mentioned earlier,
the Hamiltonian of this system with J ′ = 0 is equivalent to
the two species lattice Hamiltonian in 2D. In which case,
V ′ is identified as the onsite interspecies interaction strength.
For this two-species system with repulsive onsite interspecies
interaction the checkerboard structure can have phases with
spatially separated density or phase-separated [72].

Due to the intralayer repulsive NN interaction, the bilayer
system can exhibit a state of the dimers with solid or diag-
onal order, which is referred to as dimer checkerboard solid
(DCBS). Then, considering the sublattice description of the
checkerboard order, the DCBS state can be expressed as

|�〉ρ=1/2
DCBS =

∏
(p,q)∈A

|11〉p,q

∏
(p′,q′ )∈B

|00〉p′,q′ . (17)

On the other hand, the interlayer hopping can stabilize the
triplet state as in Eq. (6). As discussed before, this state with
the checkerboard ordered density is the VCBS state. Depend-
ing on the average occupancy the VCBS states have the forms

|�〉ρ=1/4
VCBS =

∏
(p,q)∈A

|t0〉p,q

∏
(p′,q′ )∈B

|00〉p′,q′ , (18)

and

|�〉ρ=3/4
VCBS =

∏
(p,q)∈A

|t0〉p,q

∏
(p′,q′ )∈B

|11〉p′,q′ . (19)

It is important to note that the states described in Eqs. (15)–
(19) correspond to the incompressible phases of the bilayer
system and the SF order parameter φp,q,r is zero in these
phases. In addition, the checkerboard order in the DCBS and
VCBS states are quantified by the nonvanishing Sr (π, π ). As
mentioned earlier, the VCBS states can be distinguished from
the DCBS state using the pair and site occupancies, ρ̃p,q and
np,q,r . In the DCBS phase, ρ̃p,q and np,q,r are finite in the
sublattice A, which is evident from Eq. (17). Whereas, in the
VCBS phases ρ̃p,q is zero but np,q,r is finite in the sublattice
A. The system also exhibits supersolid and superfluid phases
in which φp,q,r is finite. In the SF phase the system has uni-
form np,q,r and φp,q,r . In contrast, the supersolid phase has

checkerboard order in np,q,r and φp,q,r . We show the schematic
representation of the quantum phases discussed here, in Fig. 2.
In the figure, the dimer in the DCBS phase is recognizable,
and the blue shade over the bonds indicate the resonating
structure of the VCBS states.

Like in the triplet state in the bilayer system, the dipolar
atoms in a trilayer optical lattice can exhibit states of the form

|w0〉p,q = 1√
3

(|100〉p,q + |010〉p,q + |001〉p,q ), (20)

and

|w1〉p,q = 1√
3

(|011〉p,q + |101〉p,q + |110〉p,q ). (21)

These states have a resonating structure in one of the two
sublattices, and are analogous to the VCBS states, given in
Eqs. (18) and (19), for a bilayer optical lattice. They are
stabilized by the interlayer hopping. They resemble the W
state of the three qubits that is studied in the context of the
quantum information theory [86]. The density of these states
can vary as ρ = 1/6, 2/6, 4/6, and 5/6 based on the filling
in sublattices A and B. For the |w0〉 state in sublattice A, the
density of these states can be ρ = 1/6 and 4/6 for the zero
and unit filling in sublattice B, respectively. In a similar way,
for the |w1〉 state in sublattice A, the density can be ρ = 2/6
and 5/6. On the other hand, the state corresponding to the
density ρ = 3/6 = 1/2 does not have a resonating structure
unlike others, and is referred to as the trimer checkerboard
solid (TCBS) state. The form of this state, in terms of the
sublattice description, is

|�〉ρ=1/2
TCBS =

∏
(p,q)∈A

|111〉p,q

∏
(p′,q′ )∈B

|000〉p′,q′ . (22)

This is a generalization of the DCBS ρ = 1/2 state, given in
Eq. (17), for a bilayer optical lattice. It has a checkerboard
pattern between sublattices A and B, aligned between the
three layers. The same occupancy between the three layers at a
given lattice site is the result of the strong attractive interlayer
interaction.

D. Mean-field phase boundaries

We calculate phase boundaries between the incompress-
ible and compressible phases of the bilayer system using the
mean-field theory. We do this by adapting the site-decoupling
scheme, and perform perturbative analysis of the mean-field
Hamiltonian. In this method, we decompose the creation,
annihilation and occupation number operators of a lattice site
in terms of the local mean-field and fluctuation operators as
b̂p,q,r = φp,q,r + δb̂p,q,r , b̂†

p,q,r = φ∗
p,q,r + δb̂†

p,q,r , and n̂p,q,r =
np,q,r + δn̂p,q,r Then, the bilinear terms of the Hamiltonian in
Eq. (2) are sum of linear terms of the local operators. In the
perturbation analysis, we consider the interaction terms as the
unperturbed Hamiltonian. These are diagonal with respect to
the single site Fock basis states. The off diagonal hopping
terms are considered as perturbations. The incompressible
to compressible phase boundaries are, then, marked by the
vanishing superfluid order parameter, that is φp,q,r → 0+. The
φp,q,r being small and associated with the off diagonal terms,
it can be considered as the perturbation parameter.
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FIG. 2. Schematic representation of the incompressible phases. The red (gray) spheres represent particles or atoms (holes). (a), (b), and
(c) correspond to the DCBS, VCBS ρ = 1/4 and VCBS ρ = 3/4 phases, respectively. The blue shading across the interlayer bonds in (b) and
(c) denote the entangled state, as given by Eq. (6).

To perform the first-order perturbation analysis, we write
the site-decoupled unperturbed Hamiltonian as

Ĥ (0) =
∑
p,q,r

ĥ(0)
p,q,r

=
∑
p,q,r

n̂p,q,r (V ′np,q,3−r + V np,q,r − μ), (23)

where np,q,r = (np+1,q,r + np−1,q,r + np,q+1,r + np,q−1,r ), with
np,q,r = 〈n̂p,q,r〉 representing the ground state occupancy at
the site (p, q, r). Now, consider the sublattice description of
incompressible states with aligned checkerboard order, the
unperturbed energy of the two different sublattices are

EA
nA

1 nA
2

= V ′nA
1 nA

2 +
2∑

r=1

(
4V nA

r nB
r − μnA

r

)
, (24)

for (p, q) ∈ A, and

EB
nB

1 nB
2

= V ′nB
1 nB

2 +
2∑

r=1

(
4V nB

r nA
r − μnB

r

)
, (25)

for (p, q) ∈ B. Here, nA
r and nB

r are the occupancies in the rth
layer. It is important to note that EA

00 = EB
00 = 0. As mentioned

earlier, the hopping terms in the Hamiltonian are treated
as the perturbations. Then, the site-decoupled perturbation
Hamiltonians are

T̂ A = −4J
2∑

r=1

φB
r

(
b̂A

r + b̂A†

r

) − J ′
2∑

r=1

φA
3−r

(
b̂A

r + b̂A†

r

)
,

T̂ B = −4J
2∑

r=1

φA
r

(
b̂B

r + b̂B†

r

) − J ′
2∑

r=1

φB
3−r

(
b̂B

r + b̂B†

r

)
,

for sublattices A and B, respectively. Now, to the first order in
the superfluid order parameters, the perturbed ground state is

|χα〉 = ∣∣nα
1 nα

2

〉 + ∑
(

mα
1 ,mα

2

)

=
(

nα
1 ,nα

2

)
〈
mα

1 mα
2

∣∣T̂ α
∣∣nα

1 nα
2

〉
(
Eα

nα
1 nα

2
− Eα

mα
1 mα

2

) ∣∣mα
1 mα

2

〉
, (26)

where α ∈ {A, B}. Then, the superfluid order parameters are
φα

κ = 〈χα|b̂α
κ |χα〉. In our study, we have considered that the

intralayer parameters are same for both the layers—the layers
are identical. Therefore φA

1 = φA
2 = ϕA and φB

1 = φB
2 = ϕB.

We first obtain the phase boundary separating the DCBS
phase from a compressible phase, which can either be super-
fluid or supersolid. The DCBS state in Eq. (17) is an eigenstate
of Ĥ (0) in Eq. (23), with occupancies (nA

1 , nA
2 ) = (1, 1) and

(nB
1 , nB

2 ) = (0, 0). Then, the superfluid order parameters cal-
culated with respect to the perturbed ground state in Eq. (36)
are (p, q) ∈ A

ϕA = − 4JϕB(
EA

11 − EA
01

) + J ′ , (27)

and

ϕB = − 4JϕA(
EB

00 − EB
10

) + J ′ . (28)

We solve Eqs. (27) and (28) simultaneously, and then, we take
the limit {ϕA, ϕB} → 0+ to get

16J2 = [(
EA

11 − EA
01

) + J ′] × [(
EB

00 − EB
10

) + J ′]. (29)

Now, substituting the values of EA
11, EA

01 from Eq. (24), and
EB

10 from Eq. (25), we obtain the DCBS phase boundary as a
solution of

16J2 = (V ′ − μ + J ′)(μ − 4V + J ′). (30)

From this, the DCBS lobe in the plane of J/V − μ/V can
be obtained for different values of J ′ and V ′. Similarly, the
mean-field phase boundary for the particle and the hole vac-
uum states given in Eqs. (15) and (16), respectively can
be obtained. The phase boundary for the |�〉ρ=0

VAC state is a
solution of

4J = −μ − J ′, (31)

while for the |�〉ρ=1
VAC state, it is

4J = μ − 4 − V ′ − J ′. (32)

Next, we calculate the equations of the phase boundaries
separating the parameter domains of the VCBS states de-
scribed in Eqs. (18) and (19) from the compressible phases
of the system. It is important to notice that these two states
are eigenstates of Ĥ (0) in Eq. (23). However, as emphasized
earlier, the interlayer hopping is essential to stabilize the |t0〉p,q

triplet state of the VCBS states. And, this term is not present in
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the site-decoupled unperturbed Hamiltonian Ĥ (0). So, in order
to obtain the triplet state |t0〉 as an eigenstate, we define local
unperturbed Hamiltonian of sublattice A as

H(0)
A = − J ′(b̂†

p,q,1b̂p,q,2 + H.c.) + V ′n̂p,q,1n̂p,q,2

+
2∑

r=1

(V n̂p,q,rnp,q,r − μn̂p,q,r ), (33)

for (p, q) ∈ A. Then, we can express the unperturbed ground
state energy for sublattice A as

EA
t0 = 〈

t0
∣∣H(0)

A

∣∣t0〉 = −J ′ +
2∑

r=1

(
4V nA

r nB
r − μnA

r

)
. (34)

This has a contribution from interlayer hopping process, and
in contrast to the Eq. (24), it does not have interlayer interac-
tion energy. This is because the pair expectation, as mentioned
earlier, is zero with respect to |t0〉. It is to be noted that in
Eq. (34), nA

1 = nA
2 = 0.5, which are the occupancies calcu-

lated with respect to the |t0〉 state. On the other hand, unlike in
the previous case, the perturbation Hamiltonian now contains
only the intralayer hopping terms, that is,

T̂ ′A = −4J
2∑

r=1

φB
r

(
b̂A

r + b̂A†

r

)
. (35)

Then, the perturbed ground state is

∣∣χA
t0

〉 = |t0〉 +
∑

mA
1 ,mA

2

〈
mA

1 mA
2

∣∣T̂ ′A∣∣t0〉(
EA

t0 − EA
mA

1 mA
2

) ∣∣mA
1 mA

2

〉
, (36)

where (mA
1 , mA

2 ) ∈ {(0, 0), (1, 1)}. Using this state the super-
fluid order parameters in sublattice A can be calculated as
φA

r = 〈χA
t0 |b̂A

r |χA
t0 〉. Similar to the previous case φA

1 = φA
2 =

ϕA. Then, the superfluid order parameter is

ϕA = −4JφB

[
1(

EA
t0 − EA

00

) + 1(
EA

t0 − EA
11

)]
. (37)

For the VCBS state with ρ = 1/4, we calculate the su-
perfluid order parameter as given in Eq. (37) from the
perturbative correction to |t0〉p,q in sublattice A. However,
we perform the perturbation analysis of the site-decoupled
Hamiltonian in sublattice B. So, we obtain the superfluid order
parameter as given in Eq. (28) from the perturbative correction
to |00〉p,q state in sublattice B. We solve the Eqs. (37) and
(28) simultaneously, and then take the limit {ϕA, ϕB} → 0+ to
obtain

1

16J2
=

[
1(

EA
t0 − EA

00

) + 1(
EA

t0 − EA
11

)]

×
[

1(
EB

00 − EB
10

) + J ′

]
. (38)

Note that, for the unperturbed ground state the occupancies
(nA

1 , nA
2 ) = (0.5, 0.5) and (nB

1 , nB
2 ) = (0, 0). Now, by substi-

tuting the values of EA
t0 from Eq. (34), EA

11 from Eq. (34),
and EB

10 from Eq. (34), we obtain the VCBS (ρ = 1/4) phase

boundary as a solution of

16J2(2J ′ + V ′) = (μ − 2V + J ′)(J ′ + μ)(μ − J ′ − V ′).

(39)

It is worth mentioning that EA
11 from Eq. (34) is equal to

〈11|H(0)
A |11〉. Similarly, for the VCBS state with ρ = 3/4, we

perform the perturbative analysis to state |11〉p,q in sublattice
B. We obtain the expression of the superfluid order parameter
ϕB, which is similar to the Eq. (28) with the superscripts
A and B interchanged. We, then simultaneously solve this
equation and Eq. (37), and take the limit {ϕA, ϕB} → 0+ like
in the previous case. Then, we obtain the VCBS (ρ = 3/4)
phase boundary as a solution of

16J2(2J ′ + V ′) = (2V + V ′ − μ + J ′)(μ − 4V + J ′)

×(μ − J ′ − 4V − V ′). (40)

From Eqs. (39) and (40), the VCBS lobes with ρ = 1/4 and
3/4 can be obtained in the J/V − μ/V plane for different
values of J ′ and V ′.

The above formalism can be generalized to the trilayer
system and the details of the derivation are given in the
Appendix B. The equation defining the phase boundary be-
tween the TCBS phase and the compressible phase is

16J2 = (2V ′ − μ + 2J ′)(μ − 4V + 2J ′). (41)

Based on this, the VCBS (ρ = 1/6) phase to compressible
phase boundary is given by

16J2(3V ′ + μ + 8J ′) = (3μ − 4V + 6J ′)(μ + 2J ′)(μ − V ′),

(42)

and that of VCBS (ρ = 2/6) is

16J2(5V ′ − μ + 8J ′) =(3μ − 8V + 6J ′)

× (μ − 2V ′ − 2J ′)(μ − V ′). (43)

Invoking the particle-hole symmetry of the model, we can
write the phase boundaries between the VCBS ρ = 4/6 and
the compressible phase as

16J2 (3V ′ − 4V + μ + 8J ′) = (6J ′ + 4V + 6V ′ − 3μ)

×(4V − μ − 2J ′)(−μ + V ′ + 4V ), (44)

and that of VCBS ρ = 5/6 as

16J2 (5V ′ + 4V − μ + 8J ′) = (6J ′ + 8V + 6V ′ − 3μ)

×(4V − μ + 2J ′ + 2V ′)(−μ + V ′ + 4V ). (45)

The phase diagram obtained based on these equations, shown
in the results section, is in good agreement with the one
obtained numerically.

IV. RESULTS AND DISCUSSIONS

To find the ground state of the bilayer system, we first scale
the Hamiltonian in Eq. (2) by the intralayer NN interaction
strength V . This choice yields four independent parameters,
J/V , J ′/V , V ′/V and μ/V , which can be varied to probe
different quantum phases of the system. We present the pa-
rameter domains of these quantum phases in the J/V − μ/V
plane for fixed values of V ′/V and J ′/V . To begin with we
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FIG. 3. Phase diagrams in the J/V − μ/V plane for J ′/V = 0
and 0.5, respectively for V ′ = −1.0V . The black lines represent
the phase boundaries between the incompressible and compress-
ible phases, obtained numerically with 2 × 2 × 2 clusters in the
CGMF method. Metastable quantum phases with intermediate values
of ρ are present in the red shaded region in the phase diagram.
And, the filled black circles denote the analytical phase boundaries
obtained from the site-decoupled mean-field method, as given in
Eqs. (30)–(32).

consider the case when V ′/V = −1, and examine the quan-
tum phases in three broad domains of interlayer hopping.
These are weak (J ′/V = 0 and 0.5), moderate (J ′/V = 0.8
and 1.0), and strong (J ′/V = 1.2 and 1.5) interlayer hopping.
We present and discuss the corresponding phase diagrams in
Sec. IV A. Then, we also examine the effects of the quantum
correlations on the parameter domains of the quantum phases.
We then consider the case of |V ′| 
= V in Sec IV B. As rep-
resentative cases we consider V ′ = −0.25V and −2.0V . The
effect of the thermal fluctuations is discussed in Sec. IV C.
Considering the influence of thermal fluctuations on the quan-
tum phases is essential to relate our results to the possible
experimental realizations.

A. V ′ = −1.0V

This is a suitable choice to probe the interplay between
different hopping and interaction energies theoretically. In
terms of lattice constants, it corresponds to az = 3

√
2a. We

extend the theoretical insights gained from this case to the
|V ′| 
= V regime.

1. Weak interlayer hopping J′/V < 1

In this domain, we consider two values of J ′/V = 0, 0.5.
The corresponding phase diagrams are shown in Figs. 3(a)
and 3(b), respectively. For J ′/V = 0, the interlayer hop-
ping is absent, and the two layers are coupled only through
the NN attractive interaction. As mentioned earlier, this is
equivalent to the two-species extend Bose-Hubbard model
for hardcore bosons with attractive onsite and zero offsite
interspecies interaction strengths [72]. In Fig. 3, the solid
lines represent the phase boundaries obtained numerically
with 2 × 2 × 2 clusters in the CGMF method. Here after,
for compact notation, we shall refer to the 2 × 2 × 2 cluster
as the 23 cluster. The filled circles mark the incompressible-

compressible phase boundaries obtained analytically from the
site-decoupled mean-field theory. In particular, the filled cir-
cles in Figs. 3(a) and 3(b) represent the phase boundary of
the DCBS phase obtained by solving the Eq. (30) with V ′ =
−1.0V , J ′ = 0V and 0.5V , respectively. It is evident from the
Fig. 3(a) that the numerical and analytical results are in good
agreement for J/V � 0.34. In this parameter regime the dif-
ference between the numerical and analytical results are below
0.1μ/V . It is, however, larger for J/V < 0.34. This is due
to merging of the incompressible lobes and the applicability
of site-decoupled mean field to discern only incompressible-
compressible phase boundaries. The merger of the DCBS ρ =
1/2 and uniform ρ = 0, 1 state lobes result in the emergence
of incompressible states with intermediate values of ρ. In our
computations, these states are dependent on the initial condi-
tions, and vary with the values of μ/V and J/V , indicating
metastability for these parameter domains. This may signify a
first-order phase transition between the incompressible states
or the presence of emulsion phases [16,17]. In Fig. 3(a), the
shaded regions indicate the parameter domains of these states.
Similar feature was also reported in the previous studies with
attractive interactions [16,17,87]. It is to be noted that in
these regions, an incompressible ground state required for
the perturbation analysis is ill defined. In contrast, for our
perturbative analysis either the uniform ρ = 0, 1 or DCBS
ρ = 1/2 state is taken as the reference state to calculate the
incompressible-compressible phase boundaries. This is the
reason for the poor agreement between the analytical and
numerical phase boundaries in Fig. 3(a). The overlapping
analytical phase boundaries of the incompressible phases in-
dicate the merging of the incompressible lobes. However,
the numerically obtained states have lower energy than the
considered incompressible states in the perturbative analysis.
So, in the suppressed interlayer and the weak intralayer hop-
ping regime, the numerical phase-boundaries provide better
description of the parameter domains of quantum phases. The
merger of the incompressible lobes is a result of the attractive
interlayer interaction but suppressed interlayer hopping. More
importantly, the merging of the parameter domains leads to
emergence of triple points [17] at μ/V = 3.57 and μ/V =
−0.57 for J/V = 0.138 in Fig. 3(a). With the increase in the
J ′/V the triple points shift towards left due to enhanced kinetic
energy of the system. And, the points reside on the μ/V = 0
axis for J ′/V � 0.3.

From Fig. 3(a), it is evident that the ground state is either
MI with ρ = 0 and ρ = 1, or a DCBS state with ρ = 1/2.
The DCBS state has checkerboard order of the dimers, and
can be described as in Eq. (17). The checkerboard ordering
is due to the intralayer NN repulsive interaction, which disfa-
vors phases with density like the MI phase. It is important
to note that MI phases sandwich the DCBS phase. This is
because, the DCBS state can be obtained through dimer cre-
ation and annihilation from the MI ρ = 0 and ρ = 1 states,
respectively. This feature of the DCBS state is also evident
from the comparison between the Eqs. (15)–(17). At
higher J/V , the atoms in the lattice acquire enough ki-
netic energy, and they become itinerant. So, the system
exhibit SF phase with uniform density distribution. In
this phase φp,q,r is finite and uniform throughout the
lattice.
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FIG. 4. Phase diagrams in the J/V − μ/V plane for J ′/V = 0.8,
1.0, 1.2 and 1.5 for V ′/V = −1.0 are shown in (a), (b), (c), and (d),
respectively. The black lines indicate the phase boundaries between
the incompressible and compressible phases, and the blue lines repre-
sent the SS-to-SF phase boundary, which are computed numerically
with 2 × 2 × 2 clusters in the CGMF method. Filled black circles
are the phase boundaries obtained from the perturbative analysis of
the mean-field Hamiltonian, as given in the Eqs. (30), (31), (32),
(39), and (40). The red shaded region in the (d) corresponds to an
incompressible phase with no dimer structure.

For J ′/V = 0.5, the qualitative features of the phase dia-
gram are similar to J ′/V = 0. However, the nonzero value of
the interlayer hopping disfavors the dimer state, and the DCBS
ρ = 1/2 lobe shrinks. This can be observed from a compar-
ison between Figs. 3(a) and 3(b). The interlayer hopping is,
however, not sufficiently strong to favor the triplet state as in
Eq. (6). The shrinking of incompressible lobes like the DCBS
at higher hopping strength is a common feature of optical lat-
tice system. The system tends to exhibit compressible phases
as the total hopping energy is enhanced. So, the DCBS lobe
continues to shrink with further increase in J ′/V , which can
also be read off from Fig. 4.

2. Moderate interlayer hopping J′/V ≈ 1

We consider J ′/V = 0.8 and 1 as representative cases for
this domain, and the phase diagrams are shown in Figs. 4(a)
and 4(b), respectively. As in the previous case, the solid black
lines are the numerical phase boundaries. And, the filled cir-
cles are the analytical solutions of Eqs. (30), (39), and (40) for
the DCBS ρ = 1/2, VCBS ρ = 1/4, and VCBS 3/4 states,
respectively. One striking feature of the phase diagrams is the
presence of the VCBS phase. In these states, the occupancy
can be thought as resonating between two NN lattice sites
in different layers, which corresponds to the triplet state in
Eq. (6). This triplet state is stabilized by the interlayer hop-
ping, and the VCBS states appear when J ′/V > 0.5. They
emerge as small lobes above and below the DCBS lobe, and
grows with the increase in J ′/V . This is because, the ρ = 1/4
and 3/4 VCBS states are the hole and particle excitations of
the DCBS ρ = 1/2 state, respectively. This is also evident
from the comparison of the Eqs. (17)–(19). Thus, besides the

MI and DCBS states, the system hosts the VCBS states at low
values of J/V . In addition, the compressible SS phases also
appears in between the DCBS and VCBS phases. In the SS
phase, both the diagonal and off-diagonal long-range order are
present. That is, it has the superfluid characteristics and the
periodic modulation in np,q,r distribution. These are charac-
terized by the finite values of φp,q,r and Sr (π, π ), respectively.
For larger values of J/V , the system is in the SF phase with
uniform np,q,r and φp,q,r .

Comparing Figs. 4(a) and 4(b), we observe an enhance-
ment in the domains of the VCBS and SS phases. This
implies that the VCBS phase, even though incompressible,
is stabilized by the large interlayer hopping. This needs to
be contrasted with the DCBS phase, for which the domain
shrinks with increased hopping strength. The enhancement of
the SS domain indicates that the SS phase originates from
the intralayer hopping induced particle-hole excitations to the
VCBS states, but not to the DCBS state. This is corroborated
later by considering stronger interlayer hopping strength. We
also observe good agreement between the analytical and nu-
merical phase boundaries of the VCBS states. Whereas, for
the DCBS phase, the analytical results tend to over estimate
the phase boundary. This is because, the VCBS states are
eigenstates of the unperturbed Hamiltonian in Eq. (33), which
has the interlayer hopping term. So, as in the CGMF method,
the interlayer hopping term is treated exactly in the analytical
approach. However, for the DCBS state, the site-decoupled
mean-field analysis is applicable. It treats all the intra- and
interlayer hopping as perturbations and fails to capture the
domain with large hopping.

3. Strong interlayer hopping J′/V > 1.0

We consider J ′/V = 1.2 and 1.5 as representative cases of
this domain. And, the phase diagrams are shown in Figs. 4(c)
and 4(d), respectively. The VCBS states are more prominent
with higher J ′/V . The DCBS ρ = 1/2, on the other hand,
continues to shrink with the increase in J ′/V . And, this is
consistent with the earlier observation. For J ′/V = 1.5, the
extent of the DCBS and VCBS lobes are comparable. It is
important to note that the SS phases are sandwiched between
the VCBS and DCBS lobes. However, the extent of these
domains around the DCBS lobe shrink with the increase in
J ′/V . That is, the domains detach from the DCBS lobe. And,
the SS phase surround only the VCBS lobes when J ′/V = 1.5.
This implies that the SS phase in our study is created through
the particle-hole excitations to the VCBS states. Hence, this
state may be referred to as the valence bond SS (VSS) state.

An emergent feature of the strong interlayer hopping is
the quantum phase in the shaded parameter domain in the
phase diagram. This occurs for μ/V ∈ [0.4, 0.5] and μ/V ∈
[2.5, 2.6], in the phase diagram as shown in the Fig. 4(d). The
discernible distortion of the phase boundary in this region is
due to a new incompressible phase which replaces the DCBS
phase. The intralayer and interlayer density distributions ex-
hibit checkerboard order with a two sublattice structure, and
average density is ρ = 0.5. The occupancies, however, are
real for both the layers. Unlike the DCBS phase, the pair
expectation between the two layers of this phase is ≈ 10−4,
which highlights the nondimer structure. The stability of this
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FIG. 5. Phase diagrams of the bilayer optical lattice in the
J/V − μ/V plane for J ′/V = 0 and V ′/V = −1.0 obtained from the
clusters of different sizes: 1 × 1 × 1 (magenta), 1 × 1 × 2 (gold),
2 × 1 × 2 (green), 4 × 1 × 2 (red), and 2 × 2 × 2 (black). The filled
black circles represent the analytically obtained phase boundary ob-
tained from the Eqs. (30)–(32).

phase is the strong interlayer hopping, which prefers the basis
states allowing maximal interlayer hopping. For μ/V = 0.5
to 0.6, this new phase is metastable and competes with the
energetically lower DCBS phase. Further studies, in the strong
interlayer hopping domain are underway, to understand the
properties of the quantum phases in this domain.

An important feature of all the phase diagrams in Figs. 3
and 4 is the vertical symmetry of the quantum phases around
the μ/V = 1.5 axis. This is due to the underlining particle-
hole symmetry of the system Hamiltonian. From the Eq. (A4),
it is evident that the particle-hole symmetry point is at μ/V =
1.5 for V ′ = −1.0V ,

4. Quantum fluctuations

The phase diagrams considered so far are computed with
the 23 clusters. To understand the effects of the quantum
fluctuations to the quantum phases, we perform computations
by varying the cluster sizes from a single site to 4 × 1 × 2. In
the CGMF method, quantum correlations are better described
with increasing cluster size. Thus the method provides better
results with larger clusters.

We first consider the case of J ′/V = 0, to analyze quan-
titative changes of the DCBS ρ = 1/2 lobe with different
cluster sizes. The phase diagram is shown in Fig. 5. The
phase boundary near the tip of the lobe shows marginal
enlargement with the increase in cluster size. For compar-
ison we mark the analytically determined phase boundary
by black filled circles. This, except for minor deviations
around the tip of the DCBS lobe, is in good agreement
with the single-site numerical results. The agreement is an
expected feature as the site-decoupled mean-field theory is
equivalent to single-site mean-field theory in determining the
incompressible-compressible phase boundaries. The deviation
around the tip can be attributed to the large value of J/V
and the numerical threshold in the value of the superfluid
order parameter. Another interesting aspect of the figure is

FIG. 6. The incompressible to compressible phase boundaries in
the J/V − μ/V plane for J ′/V = 1.0 and V ′/V = −1.0 obtained
from clusters of different sizes: 1 × 1 × 1 (magenta), 1 × 1 × 2
(gold), green for 2 × 1 × 2 (green), 4 × 1 × 2 (red), and 2 × 2 × 2
(black). The filled black circles indicate the analytical phase bound-
aries obtained from Eqs. (30), (39), and (40).

the overlap of the phase boundaries obtained from single-site
and 1 × 1 × 2 clusters. This is because, for J ′/V = 0 the
interlayer coupling is only through interlayer interaction. So,
in the intralayer hopping dominated regime, large J/V , the
two are expected to give similar results. In this domain the
results, however, improve with the increase in the intralayer
cluster size, for example, with 2 × 1 × 2, 4 × 1 × 2, and 23

clusters. On the other hand, the phase boundaries obtained
from single-site and 1 × 1 × 2 clusters do not match in the
low J/V regime. In this domain, the quantum phases are
determined by the interaction energy, and is better described
by the 1 × 1 × 2 cluster.

Next, we consider the case of J ′/V = 1, and study the im-
pact of quantum fluctuations on the VCBS ρ = 1/4 and 3/4,
and DCBS ρ = 1/2 phases. The VCBS states has checker-
board distribution of the maximally entangled triplet state.
So, it is important to study the effects of the quantum cor-
relations, better described by the CGMF method with larger
cluster sizes, on the VCBS phase. For this, we obtain phase
diagram by varying the cluster size. We observe that the
VCBS lobes shrink with the increase in cluster size, shown
as insets in Fig. 6. Note that the single-site theory cannot
describe the VCBS states due to absence of the minimal
intersite correlations required to represent the state. Therefore
the phase boundaries of the VCBS states are obtained using
1 × 1 × 2, 2 × 1 × 2, 4 × 1 × 2, and 23 clusters. In addition,
we illustrate the analytical phase boundaries obtained by solv-
ing Eqs. (39) and (40), which are in agreement with the phase
boundaries obtained using 1 × 1 × 2 cluster. This is because,
the unperturbed Hamiltonian in Eq. (33) treats the interlayer
hopping term exactly, and the intralayer hopping terms are
considered as perturbation with the SF order parameter as
perturbation parameter. So, this is similar to the mean-field
Hamiltonian considered in the CGMF method for 1 × 1 × 2
cluster. It is important to note that, unlike the J ′/V = 0 case,
now the DCBS lobe shrinks with the increase in cluster size.
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FIG. 7. Phase diagram in the J/V -μ/V plane for V ′/V = −0.25
(top) and V ′/V = −2.0 (bottom). The subplots (a) and (b) corre-
spond to J ′/V = 0.25 and 0.5, respectively. The subplots (c) and
(d) correspond to J ′/V = 1.0 and 1.5, respectively. The black solid
lines represent the phase boundaries between incompressible and
compressible phases, and the blue lines indicate the phase boundaries
between SS and SF phases. These phase boundaries are obtained nu-
merically using 2 × 2 × 2 clusters in the CGMF method. The black
circles represent the analytically obtained phase boundary points
obtained from the Eqs. (30), (31), (32), (39), and (40).

This is evident from the phase boundaries shown as inset in
Figs. 5 and 6 for the DCBS lobe.

In addition, to verify the robustness of the quantum
phases against quantum correlations and fluctuations, we have
calculated the ground state with exact-diagonalization with
system size 4 × 4 × 2 at different hopping strengths and val-
ues of ρ. We, however, do not generate the phase diagrams
using 4 × 4 × 2 cluster due to large size of the Hamiltonian
matrix as the local Hilbert space grows exponentially with the
cluster size. This leads to long computational time to obtain
the phase boundaries.

B. V ′ �= V case

The results discussed so far consider identical intralayer
repulsive and interlayer attractive NN interactions. Now
we consider the regime with asymmetric NN interaction
strengths. In particular, we consider the cases of V ′ = −0.25V
and −2V . The former is motivated by the experimental study
of Baier et al. [6]. In the experiment, the wavelengths of
the lasers generating the optical lattice have the ratios λx :
λy : λz = 1 : 1 : 2. This implies az = 2a and corresponds to
V ′ = −0.25V . The case of V ′ = −2V corresponds to az =
a(λx : λy : λz = 1 : 1 : 1) and the optical lattice has cubic
unit cell.

1. V ′ = −0.25V

The phase diagram for J ′/V = 0.25 and 0.50 are shown in
Figs. 7(a) and 7(b), respectively. The phase diagrams are sym-
metric about the particle-hole symmetry point μ/V = 1.875.
And, we obtain the same value from the analytic expression in
Eq. (A4). In the phase diagram, the VCBS ρ = 1/4 and 3/4

lobes are small. This is due to the weak interlayer hopping
strength and these lobes emerge when J ′/V > 0.13. Like in
V ′ = −V , we observe domains of SS phase which originate
from the edge of the VCBS lobes, and terminate on the DCBS
lobe. On increasing J ′/V to 0.5, the VCBS lobes are enhanced
and so do the domains of the SS phase. In contrast the DCBS
lobe, liker earlier cases, shrinks in size. For both the values of
J ′/V , the phase boundaries obtained analytically are in good
agreement with the numerical results.

2. V ′ = −2V

The phase diagrams for this case are shown in Figs. 7(c)
and 7(d), and these correspond to the interlayer hopping
strengths J ′/V = 1 and 1.5, respectively. An important feature
of the phase diagram in Fig. 7(c) is the absence of the VCBS
phase. The phase diagram is thus qualitatively similar to the
phase diagram in Fig. 3(b). This indicates that a larger inter-
layer hopping J ′/V is essential for the VCBS phase to appear
in the system. This ensures that one of the sublattice has triplet
state |t0〉 as a ground state, which is a characteristic of the
VCBS phase. We observe the VCBS state enters as a possible
ground state when J ′/V > 1. So, based on the phase diagrams
for V ′/V = −1, −0.25, and −2, the system may exhibit the
VCBS phase when J ′ > |V ′|/2.

C. Finite-temperature phase diagram

The results discussed so far are obtained at zero temper-
ature. These provide qualitative descriptions of the quantum
phases present in the system. This follows from the charac-
terization of quantum phases and quantum phase transitions
as zero temperature phenomena. Experimental realizations,
however, are at finite temperatures. So, we incorporate the
effects of temperature on the quantum phases, and examine
the domains in the phase diagrams. The quantum phases are
known to “melt” by the thermal fluctuations associated with
finite temperatures. Thus, at finite temperature, the system
exhibits a normal fluid (NF) phase. It is characterized by zero
SF order parameter and real occupancy at each lattice site
[18,19,72,88–90]. This is to be contrasted with the incom-
pressible quantum phases, which have integer occupancy at
each lattice site and zero SF order parameter.

The finite temperature calculations require thermal averag-
ing of the observables. This is done by computing the partition
function of a cluster as

Z =
∑

l

e−βEl , (46)

where β = 1/kBT , kB is the Boltzmann constant, T is the
temperature of the system, and El is the lth eigenvalue of the
cluster Hamiltonian ĤC in Eq. (8). Then, the thermal average
of a local operator Ôp,q at the site (p, q) within the cluster is

〈〈Ôp,q〉〉 = 1

Z
Tr(e−βĤC Ôp,q ), (47)

where 〈〈. . . 〉〉 denotes thermal average, and here the trace
is calculated with respect to the eigenstates of the cluster
Hamiltonian. The details of the finite temperature computa-
tions with the CGMF method are given in our previous work
[18]. Owing to the better representation of the eigen energies
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FIG. 8. Finite temperature phase diagram for the bilayer optical
lattice in the J/V -μ/V plane for J ′/V = 1.0, V ′/V = −1.0, and
kBT = 0.05V . The phase boundaries are obtained numerically with
2 × 2 × 2 clusters in the CGMF method. The green lines represent
the phase boundary between the NF and the compressible phase,
while black lines indicate the phase boundaries between incompress-
ible, unmelted phases and compressible phases.

and eigenstates of the system with larger size clusters, the
thermal fluctuations are better described by the clusters of
larger sizes. However, it is to be noted that our study is in the
strong on-site interaction regime. In this regime, the intersite
coupling is weak and the ground state can be considered as a
product state. Thus, the Gutzwiller mean-field ansatz is a good
choice and captures the gapped incompressible phases. In our
simulations, we have observed that the gap is of the order of
temperature considered near the phase boundaries. Thus, the
effects of finite temperature on the zero-temperature quan-
tum phases are qualitatively well described by the thermal
averaging in Eq. (47). This thermal averaging is incorporated
self-consistently for SF order parameters and site occupancies
in the cluster Hamiltonian in Eq. (8). Alternatively, the ther-
mal averages of physical quantities can also be computed from
the low energy collective excitations obtained through variants
of mean-field theory [21–26,72,91]. In the gapless superfluid
regime, these techniques describe the effects of the finite
temperature. We consider J ′/V = 1 and V ′/V = −1 as a rep-
resentative case to examine the effects of thermal fluctuations
and phase diagram is shown in Fig. 8 for kBT = 0.05V . To
estimate the corresponding temperature, we have considered
the system parameters from the experimental work of Baier
et al. [6]. Then, the kBT = 0.05V correspond to T ≈ 0.1 nK.
We observe the melting of the DCBS and VCBS phases at the
top and bottom domains of the lobes. These are the parameter
domains where the lobes close and density fluctuations are
prominent. So, it is natural for the thermal fluctuation effects
to be higher in these domains and melting to commence. The
phase fluctuations are dominant around the tip of the lobes and
the quantum phases persist. A sequence of finite temperatures
computations around the tip of the solid DCBS lobes shows
that it can persist upto T ≈ 1.0 nK. While, for the VCBS lobe,
the melting temperature is T ≈ 0.2 nK. These are consistent
with the estimate of T � 1.5 nK by Baier and collaborators
[6] to observe novel stripe phases in their experiment. As

FIG. 9. Plot of the κ and S(π, π ) as a function of temperature.
The blue solid (dashed) line indicates the S(π, π ) for DCBS ρ = 1/2
(VCBS ρ = 1/4) state at low temperatures. The red solid (dashed)
line indicates the κ for DCBS ρ = 1/2 (VCBS ρ = 1/4) state. Here
the system parameters J ′/V = 1.0 and V ′/V = −1.0 are considered.
The value of J/V is fixed at 0.08, and the values of the chemical
potential μ/V are −0.5 and 1.5 for VCBS (ρ = 1/4) and DCBS
phases, respectively.

mentioned earlier, φ is zero in the NF phase, but has nonzero
number fluctuation. Thus, the NF-SS and NF-SF phase bound-
aries are obtained by locating Jc/V at which φ becomes
nonzero. However, to distinguish the NF phase from the in-
compressible quantum phases, we consider compressibility κ

as the order parameter. The NF phase possesses finite κ , but,
it is negligibly small for the incompressible quantum phases.
For example, it is of O(10−1) within the NF domain, while
for the incompressible quantum phases, it is of the O(10−6).
One point to be noted is, at finite temperatures the number
fluctuations, however small, are present in all the quantum
phases. And this leads to finite κ for all the quantum phases.
So, to identify the NF-VCBS or NF-DCBS phase boundary an
appropriate threshold value for κ is to be chosen. This is also
a characteristic of a continuous phase transition. Earlier works
[88,89] have reported the condition on κ to distinguish the NF
phase from the incompressible quantum phases. In the present
work, we consider the threshold value of κ as 0.04/V . That is,
κ > 0.04/V indicates the melting of the quantum phases, and
thus, the presence of NF phase.

One important feature of the NF phase is, it inherits the
density order of the original incompressible phase. For ex-
ample, melting of the checkerboard incompressible quantum
phases forms a checkerboard NF (CBNF) phase. The checker-
board order vanishes at higher temperature, and we obtain
uniform density NF phase. To illustrate the transition, we plot
the Sr (π, π ) and the κ as a function of temperature in Fig. 9.
The CBNF domain is identified by the nonzero Sr (π, π ) and
κ and occurs at lower temperatures. With the increase in tem-
perature Sr (π, π ) decrease and becomes zero at T = 0.92 and
0.52 for the DCBS and VCBS ρ = 1/4 phases, respectively.
In this domain, the NF phase has uniform density distribution.
However, the particle-hole symmetry of the phase diagram
is robust against thermal fluctuations and persists at finite
temperatures. That is, the melting of the quantum phases is
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FIG. 10. Phase diagram for trilayer optical lattice in the
J/V -μ/V plane for J ′/V = 1 and V ′/V = −1. The black solid lines
represent the phase boundaries between incompressible and com-
pressible phases, and the blue lines indicate the phase boundaries
between SS and SF phase, obtained numerically with 2 × 1 × 3
clusters in the CGMF method and with periodic boundary condi-
tion along z direction. The black circles represent the analytically
obtained phase boundary points from the Eqs. (41)–(45).

symmetric about μ/V = 1.5. It is important to notice that
for a fixed value of J/V , the VCBS states melt at lower
temperatures than the DCBS state. This can be read off from
Fig. 9. The melting of the VCBS phase at a lower temperature
implies that the VCBS states are entangled and have larger
quantum correlation embedded. This renders the phase fragile
against the thermal fluctuations.

D. Phase diagrams of trilayer system

We now consider introducing an additional layer to the
bilayer system and make it a trilayer system. The Hamiltonian
of the system is given by the Eq. (5) with M = 3. We, then, in-
vestigate the quantum phases emerging due to the competition
between the interlayer hopping and interlayer interaction. For
illustration, we consider V ′ = −V , and J ′ = V , and the phase
diagram in the J/V − μ/V plane, is shown in Fig. 10.

At low J/V , the ground state is either the VCBS state, or
a trimer checkerboard solid (TCBS) state. The TCBS lobe
corresponds to the ρ = 1/2, and is the central large lobe in the
phase diagram. This state is an analog of the DCBS ρ = 1/2
state in the bilayer system, and is incompressible. The two
lobes below the TCBS lobe are the VCBS ρ = 1/6 and 2/6
lobes, in the increasing order of μ/V . And, the two lobes
above the TCBS lobe are of the VCBS ρ = 4/6 and VCBS
ρ = 5/6 states. Thus, the system displays a rich structure of
the VCBS states for the trilayer system. As in the case of
the bilayer system, the VCBS states are also incompressible.
They result from the increased degrees of freedom associated
with the interlayer hopping. The particle-hole symmetry of the
trilayer system which can be deduced from the phase diagram
is μ/V = 1. This particle-hole symmetric μ/V value is also
analytically obtained from Eq.(A5), the details are given in
the Appendix (A).

FIG. 11. Phase diagram for trilayer optical lattice in the
J/V -μ/V plane for J ′/V = 1 and V ′/V = −1. The black solid lines
represent the phase boundaries between incompressible and com-
pressible phases, and the blue lines indicate the phase boundaries
between SS and SF phase, obtained numerically with 2 × 1 × 3
clusters in the CGMF method and with open boundary condition
along z direction.

As J/V is increased, the system acquires higher intralayer
hopping energy. This, then, leads to co-existence of diagonal
and off-diagonal long range order in the system and makes
the system compressible. The system is then in the supersolid
phase. The supersolid phases envelopes the VCBS states, ear-
lier similar results observed for the bilayered systems. For an
n-layered system, we can generalize the VCBS states from
ρ = 1/2n to ρ = 2n − 1/2n, excluding the ρ = n/2n = 1/2
state. We thus observe that our results can be generalized for
the multilayered systems. This generalization is evident from
the states obtained for bi- and trilayer systems. It is to be em-
phasized that the trilayer system is the minimal one where the
distinction between boundary and bulk layers is applicable. To
avoid boundary effects and represent multilayer system with
larger number of layers we used periodic boundary conditions.
The choice of open boundary conditions, on the other hand, is
not an appropriate one as the boundary effects can influence
the quantum phases and corresponding phase diagrams.

To illustrate the boundary effects and it’s impact on the
phase diagram, we compute the quantum phases and phase
diagram with open boundary condition along z direction.
However, with periodic boundary conditions along x and y
directions. We obtain quantum phases similar to the periodic
boundary condition along z direction. In general, as there is
no hopping and interaction between the first and third layer,
the basis states in Eqs. (20) and (21) do not have equal co-
efficients. For example, the state analogous to the |w0〉p,q is
1
2 (|100〉p,q + √

2|010〉p,q + |001〉p,q ) and it is independent of
J ′ and V ′. On the otherhand, for the present case of V ′ = −J ′,
the |w1〉p,q state remains unchanged. However, this state is
modified for other choices of J ′ and V ′. The phase diagram
of the trilayer system with open boundary condition is shown
in Fig. 11. The phase diagram is not symmetric as observed
in Fig. 10. There are also other qualitative differences like the
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type of phases, phase boundaries and range of the chemical
potential. Unlike the periodic boundary condition, we cannot
obtain the analytical phase boundaries with the open boundary
condition. The reason is that the homogeneity of the sublattice
structures is essential for the perturbative analysis used in the
analytical method.

V. CONCLUSIONS

In conclusion, we have examined the quantum phases of
the polarized dipolar atoms in multilayer optical lattices at
zero and finite temperatures. The rich phase diagrams of the
model display parameter domains for dimer (trimer) checker-
board solid and valence bond checkerboard solid phases for
the bi-(tri-)layer lattice system. The interlayer attractive in-
teraction is responsible for formation of the dimers (trimers),
and the intralayer repulsion induces the in-plane checkerboard
ordering. This stabilizes dimer (trimer) checkerboard solid
phase for average occupancy ρ = 1/2. With the increase in
interlayer hopping the dimers (trimers) break to form res-
onating valence bond like states. Then, the bilayer lattice
can exhibit VCBS phases with average occupancies ρ = 1/4
and 3/4, respectively. Similarly, the trilayer lattice supports
VCBS phases with ρ = 1/6, 2/6, 4/6, and 5/6. These states
are stabilized when J ′ > |V ′|/2, and the corresponding lobes
are enlarged with increasing interlayer hopping strength J ′.
On the contrary, the parameter domain of the dimer (trimer)
checkerboard solid shrinks with increasing J ′. In addition to
the solid phases, the system also exhibits supersolid phases. In
the weak and moderate interlayer hopping regime, this phase
appear in the vicinity of both the DCBS and VCBS lobes.
However, the domains envelope only the VCBS lobes for
strong interlayer hopping, indicating the valance bond nature
of the supersolid phase. With the inclusion of the thermal
fluctuations, the quantum phases are observed to melt to a
structured normal fluid, where the melting of the VCBS phase
occurs at a lower temperature than the DCBS phase.
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APPENDIX A: PARTICLE-HOLE SYMMETRY

The particle-hole symmetry of the Hamiltonian in Eq. (2)
can be seen by doing the particle hole transformation of the
creation and annihilation operators. The following transfor-
mation is used

â†
i,r = b̂i,r,

âi,r = b̂†
i,r,

where the operators âi,r and â†
i,r are the hole annihilation and

creation operators. The particle and the hole operators satisfy

the canonical anti-commutation relation

{b̂i,r, b̂†
i,r} = 1,

{âi,r, â†
i,r} = 1.

With these expressions, the Hamiltonian in Eq. (2) can be
rewritten as

ˆ̃Hbi = − J
∑
〈i j〉,r

(âi,r â†
j,r + H.c.) − J ′ ∑

i

(âi,1â†
i,2 + H.c.)

+ V
∑
〈i j〉,r

âi,r â†
i,r â j,r â†

j,r + V ′ ∑
i

âi,1â†
i,1âi,2â†

i,2

− μ
∑
i,r

âi,r â†
i,r . (A1)

This can be further simplified as
ˆ̃Hbi = − J

∑
〈i j〉,r

(â†
j,r âi,r + H.c.) − J ′ ∑

i

(â†
i,2âi,1 + H.c.)

+ V
∑
〈i j〉,r

(1 − ˆ̃ni,r )(1 − ˆ̃n j,r )

+ V ′ ∑
i

(1 − ˆ̃ni,1)(1 − ˆ̃ni,2) − μ
∑
i,r

(1 − ˆ̃ni,r ), (A2)

where the hole number operator is ˆ̃ni,r = â†
i,r âi,r .

ˆ̃Hbi = − J
∑
〈i j〉,r

(â†
j,r âi,r + H.c.) − J ′ ∑

i

(â†
i,2âi,1 + H.c.)

+ V
∑
〈i j〉,r

( ˆ̃ni,r ˆ̃n j,r − ˆ̃n j,r − ˆ̃ni,r + 1)

+ V ′ ∑
i

( ˆ̃ni,1 ˆ̃ni,2 − ˆ̃ni,1 − ˆ̃ni,2 + 1) − μ
∑
i,r

(1 − ˆ̃ni,r ),

(A3)
ˆ̃Hbi = − J

∑
〈i j〉,r

(â†
j,r âi,r + H.c.) − J ′ ∑

i

(â†
i,2âi,1 + H.c.)

+ V
∑
〈i j〉,r

ˆ̃ni,r ˆ̃n j,r − zV
∑
i,r

ˆ̃ni,r

+ V ′ ∑
i

ˆ̃ni,1 ˆ̃ni,2 − V ′ ∑
i,r

ˆ̃ni,r + μ
∑
i,r

ˆ̃ni,r

= −J
∑
〈i j〉,r

(â†
j,r âi,r + H.c.) − J ′ ∑

i

(â†
i,2âi,1 + H.c.)

+ V
∑
〈i j〉,r

ˆ̃ni,r ˆ̃n j,r + V ′ ∑
i

ˆ̃ni,1 ˆ̃ni,2 − μ̃
∑
i,r

ˆ̃ni,r,

where μ̃ = (−μ + zV + V ′).
Particle hole symmetry point is

μ =μ̃

⇒ μ = − μ + zV + V ′

⇒ μ =
(

zV + V ′

2

)
. (A4)

Similarly, for a multilayer system, the particle-hole sym-
metry point is

μ =
(

zV + 2V ′

2

)
. (A5)
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This result is obtained after employing the periodic boundary
condition along z direction.

APPENDIX B: TRILAYER PHASE BOUNDARY

We present the derivation of the analytical phase bound-
aries of the quantum phases of the trilayer optical lattice. We
first derive the phase boundary separating the TCBS ρ = 1/2
domain from the compressible phase.

1. TCBS phase boundary

As discussed for the phase boundary of the DCBS phase,
we first write the site-decoupled unperturbed Hamiltonian for
trilayer optical lattice as

ĥ(0)
p,q =

3∑
r=1

n̂p,q,r (V ′np,q,r+1 + V np,q,r − μ). (B1)

It has to be understood that the r + 1 in the above equa-
tion is considered with modulo 3, so that we have interaction
between the first and third layers. The unperturbed energies
corresponding to the eigenstates |nr

1, nr
2, nr

3〉 of the unper-
turbed Hamiltonian (r = {A, B}) are

EA
nA

1 nA
2 nA

3
= V ′(nA

1 nA
2 + nA

2 nA
3 + nA

3 nA
1

) +
3∑

r=1

(
4V nA

r nB
r − μnA

r

)
,

(B2)

for (p, q) ∈ A, and

EB
nB

1 nB
2 nB

3
= V ′(nB

1 nB
2 + nB

2 nB
3 + nB

3 nB
1

) +
3∑

r=1

(
4V nB

r nA
r − μnB

r

)
,

(B3)

for (p, q) ∈ B. The perturbation Hamiltonian is

T̂ A = − 4J
3∑

r=1

φB
r

(
b̂A

r + b̂A†

r

) − 2J ′
3∑

r=1

φA
r+1

(
b̂A

r + b̂A†

r

)
,

T̂ B = − 4J
3∑

r=1

φA
r

(
b̂B

r + b̂B†

r

) − 2J ′
3∑

r=1

φB
r+1

(
b̂B

r + b̂B†

r

)
.

The TCBS state, given by Eq. (22), has occupancies as
(nA

1 , nA
2 , nA

3 ) = (1, 1, 1) and (nB
1 , nB

2 , nB
3 ) = (0, 0, 0). Then, the

perturbed ground state for sublattice A, similar to the one in

Eq. (36), is

|χA〉 = |111〉A +
∑

mA
1 ,mA

2 ,mA
3

〈
mA

1 mA
2 mA

3

∣∣T̂ A
∣∣111

〉A(
EA

111 − EA
m1m2m3

) ∣∣mA
1 mA

2 mA
3

〉
,

(B4)

where (mA
1 , mA

2 , mA
3 ) 
= (1, 1, 1). Substituting the perturbation

Hamiltonian T̂ A in the previous equation, we obtain

|χA〉 =|111〉A + (−4JϕB − 2J ′ϕA)

×
[ |011〉A(

EA
111 − EA

011

) + |101〉A(
EA

111 − EA
101

) + |110〉A(
EA

111 − EA
110

)]
.

(B5)

And similarly, the perturbed state for sublattice B is

|χB〉 =|000〉B + (−4JϕA − 2J ′ϕB)

×
[ |100〉B(

EB
000 − EB

100

) + |010〉B(
EB

000 − EB
010

) + |001〉B(
EB

000 − EB
001

)]
.

(B6)

Like in the bilayer case, we have assumed that φA
r = ϕA and

φB
r = ϕB for all values of r. We can substitute the energy

difference denominators by calculating the energies, using
Eqs. (B2) and (B3). Then, we calculate the order parameter
for sublattice A and B to get

ϕA = − 4JϕB

2V ′ − μ + 2J ′ (B7)

and

ϕB = − 4JϕA

μ − 4V + 2J ′ . (B8)

Solving these two equations simultaneously, and taking the
limit {ϕA, ϕB} → 0+, we get the phase boundary separat-
ing the TCBS phase from the compressible phase, given in
Eq. (41).

2. VCBS phase boundary

We first discuss the derivation of the phase boundary be-
tween the VCBS ρ = 1/6 phase and the compressible phase.
The unperturbed local Hamiltonian for sublattice A is

H(0)
A = −J ′

3∑
r=1

(b̂†
p,q,r b̂p,q,r+1 + H.c.) + V ′

3∑
r=1

n̂p,q,r n̂p,q,r+1 +
3∑

r=1

(V n̂p,q,rnp,q,r − μn̂p,q,r ). (B9)

The eigenstates of this unperturbed Hamiltonian are{
|000〉, |111〉, |w0〉 = 1√

3
(|001〉 + |010〉 + |100〉),

|α1〉 = 1√
2

(|001〉 − |100〉), |β1〉 = 1√
2

(|010〉 − |100〉),

|w1〉 = 1√
3

(|011〉 + |110〉 + |101〉),

|α2〉 = 1√
2

(|011〉 − |110〉), |β2〉 = 1√
2

(|101〉 − |110〉)

}
.
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The perturbation Hamiltonian consists of only the in-
tralayer hopping terms and has a similar form as that of
Eq. (35). For the VCBS ρ = 1/6 phase, the |w0〉 state is
present at sublattice A. The first order correction to the wave
function at sublattice A is then given by

|χA〉 = |w0〉A +
∑
� 
=w0

〈�|T̂ A|w0〉A(
EA

w0
− EA

�

) |�〉,

where the state |�〉 in the summation is chosen from the set
of the eigenstates stated previously. Then, with the substitu-
tion of the perturbing Hamiltonian, and simplifying steps, we
obtain the expression for the perturbed state as

|χA〉 = |w0〉A − 4JϕB

( √
3

−μ − 2J ′ |000〉 + 2

μ − V ′ |w1〉
)

.

(B10)

The ϕA = 〈χA|b̂A|χA〉 is then given as

ϕA = −4JφB

(
1

−μ − 2J ′ + 4

3(μ − 4V ′)

)
. (B11)

Since the state on the sublattice B is |000〉 for VCBS
ρ = 1/6 phase, we can use the expression given in Eq. (B8).
Then solving for ϕA and ϕB simultaneously and taking the
limit {ϕA, ϕB} → 0+, we get Eq. (42). A similar analysis
can be performed for obtaining the phase boundary of the
VCBS ρ = 2/6 and the compressible phase. The particle-hole
symmetry can be exploited to obtain the phase boundaries of
the VCBS ρ = 4/6 and 5/6 states. We can substitute μ →
−μ + zV + 2V ′ in the phase boundaries of VCBS ρ = 1/6
and 2/6 states, to get the phase boundaries of VCBS ρ = 5/6
and 4/6 states.
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