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Shift of the photoelectron momentum against the radiation pressure force in linearly polarized
intense midinfrared laser fields
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The propagation direction momentum component of direct photoelectrons emitted by ionization of an atomic
target in an intense, linearly polarized, midinfrared laser field is analyzed. Within the dipole approximation, the
average value of this component is zero. However, when nondipole corrections are included, it becomes nonzero.
Applying the saddle-point approximation to compute the integral over the ionization times in the expression for
the nondipole strong-field approximation differential ionization rate, we surprisingly find a negative momentum
shift, corresponding to a shift against the radiation pressure force. Our analysis shows that there is a positive
contribution originating from individual ionization pathways within one optical cycle. The interference of
contributions from ionization pathways arising within the same optical cycle of the field (intracycle interference)
causes an oscillatory behavior, which, crossing to negative values, induces the shift against the radiation pressure
force.
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I. INTRODUCTION

Transfer of momentum from the electromagnetic field to a
target manifests itself through the radiation pressure force act-
ing on the target. The force accelerates the target, propelling it
in the propagation direction of the field [1]. Theoretically ac-
counting for this effect requires treatment of the field beyond
the dipole approximation, i.e., the spatial dependence of the
field must be included.

In laser-induced ionization processes of atomic and molec-
ular targets, the momentum transfer results in an asymmetric
photoelectron momentum distribution (PMD) along the field
propagation direction, as demonstrated by investigations pre-
sented in a number of recent works [2–36]. The total energy
Etot supplied by the laser field in ionization processes is related
to the total momentum transferred to the target in the propaga-
tion direction by Etot/c, where c is the speed of light. One part
of the energy is used to liberate the electron from a bound state
of energy −IP while the excess energy is carried away as the
kinetic energy of the emitted electron Ep. It was shown that the
photoelectron carries away 1/3 of the momentum associated
with the ionization potential IP [IP/(3c)] in the strong-field
ionization regime [7,8,15]. Experiments confirmed this result
for circularly polarized fields [27]. In the cases of intense
linearly and elliptically polarized fields with small values of
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ellipticity, field-induced rescattering becomes important, and
a shift of the momentum in the direction opposite to the
radiation pressure force occurs. This counterintuitive shift was
explained with the combined effect of Coulomb focusing and
the magnetic field [11,12,27,37]. For more details, we refer
the reader to one of the recent reviews [38–40].

In this work we investigate the propagation direction
momentum component of direct photoelectrons emitted by
ionization of an atomic target in an intense, linearly polarized,
long midinfrared laser field. For this purpose, the nondipole
strong-field approximation (SFA) introduced in our recent
publication of Ref. [33] is applied. The approach is extended
by utilizing the saddle-point approximation to evaluate the
time integral appearing in the nondipole SFA differential ion-
ization rate. For the linearly polarized long field we obtain
analytic solutions of the saddle-point equation and perform an
analytic computation of the partial average value of the propa-
gation direction momentum component. We demonstrate that
the contributions of individual saddle points give strictly pos-
itive values. However, the complete expression, including the
interference of contributions from the saddle points originat-
ing in the same optical cycle (intracycle interference) leads
to a shift against the radiation pressure force. We illustrate
that, even when rescattering of emitted photoelectrons on their
parent core is not included, a shift of the propagation direction
momentum component against the radiation pressure force
may occur and we trace its origin to the oscillatory behavior
induced by the intracycle interference.

2469-9926/2022/106(4)/043122(7) 043122-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1302-1305
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.043122&domain=pdf&date_stamp=2022-10-31
https://doi.org/10.1103/PhysRevA.106.043122
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The article is structured in the following way. In Sec. II,
we introduce the theoretical formalism, apply the saddle-point
approximation and obtain the solutions of the saddle-point
equation with nondipole corrections for the case of a linearly
polarized long field. Moreover, the main result of the article
is presented and discussed. Finally, the article is summarized
in Sec. III. Unless otherwise stated, atomic units are used
throughout the article.

II. THEORY AND DISCUSSION

A. Theoretical formalism

The nonrelativistic strong-field ionization beyond the
dipole approximation is described as in Ref. [33]. Shortly,
the SFA is extended beyond the dipole approximation by
expanding the vector potential A(r, t ) in powers of 1/c and
retaining terms up to the first order. This corresponds to
replacing the dipole approximation vector potential A(t ) by
A(t ) + k̂·r

c E(t ) (k̂ is the unit vector in the propagation direc-
tion) [41]. Correctly accounting for the terms that are of higher
order in 1/c would require a relativistic treatment (see, e.g.,
Refs. [42,43]). The pulse propagates along the z axis, with the
electric field polarized along the x axis E(t ) = exE0 cos(ωt ).
E0 is the amplitude of the field and ω is the frequency of the
field with period T = 2π/ω. The differential ionization rate
upon absorption of n photons for the direct photoelectrons is
[33]

wpi(n) = 2π p|Tpi(n)|2. (1)

The integer n relates to the energy conservation

Ep + IP + UP(1 + pz/c) = nω, (2)

where Ep = p2/2 is the kinetic energy, IP is the ionization
potential and UP is the ponderomotive energy, UP = A2

0/4.
Tpi(n) is the T -matrix element for the transition from the
initial (ground) state |ψi〉 eiIPt to the nondipole Volkov state
|π(p, t )〉 e−iS(p,t )

Tpi(n) =
∫ T

0

dt

T
〈π(p, t )|Hint (t )|ψi〉 eiφ(t ). (3)

The time integration in Eq. (3) is performed over the ioniza-
tion times within one period T of the long laser field. The
modified canonical momentum with the nondipole correction
in the square bracket is

π(p, t ) = p + A(t ) + [p · A(t ) + A2(t )/2]ez/c, (4)

and the phase is φ(t ) = S(p, t ) + IPt . The nondipole Volkov
phase up to the first order in 1/c reads

S(p, t ) = 1

2

∫ t

dt ′π2(p, t ′)

= Ept + [p · α(t ) + UPt + U1(t )][1 + pz/c]. (5)

The vector potential is

A(t ) = −
∫ t

dt ′E(t ′) = −exA0 sin (ωt ), (6)

with the amplitude A0 = E0/ω. The remaining quantities are

α(t ) =
∫ t

dt ′A(t ′) = exA0 cos (ωt )/ω (7)

and

U1 =
∫ t

dt ′A(t ′)2
/2 − UPt = −A2

0 sin (2ωt )/(8ω). (8)

The dependence of the T -matrix element, Eq. (3), on the
integer n is reflected through the energy conservation imposed
by Eq. (2). The interaction Hamiltonian is given by

Hint (t ) =
(

r − i
z

c
∇

)
· E(t ). (9)

B. Saddle-point approximation

To solve the integral in Eq. (3), we apply the saddle-point
approximation [44], which leads to the result

Tpi ≈ 1

T

∑
ts

√
2π i

φ′′(ts)
〈π(p, ts)|Hint (ts)|ψi〉 eiφ(ts ). (10)

The summation is performed over the saddle-point times ts.
They are obtained as the solutions of the saddle-point equation

∂tφ(t )|t=ts = π2(p, ts)/2 + IP = 0. (11)

Equation (11) yields complex saddle-point times which are
interpreted as ionization times. Their complexity relates to
the quantum tunneling nature of ionization [45]. Each saddle-
point time ts corresponds to a different ionization pathway
[46]. The second derivative of the phase at ts, up to 1/c, is

φ′′(ts) = −E(ts) · [p + A(ts)][1 + pz/c]. (12)

With the above expressions for the field-related quantities
entering π(p, ts), Eq.(4), the saddle-point equation, Eq. (11),
reduces to

[
sin2 (ωts) − 2

px

A0
sin (ωts)

][
1 + pz

c

]
+ Ep + IP

2UP
= 0,

(13)
where terms of the second order in 1/c are neglected. Physi-
cally meaningful solutions satisfy

0 � ωtR
s < 2π, ωt I

s > 0, (14)

with tR
s = Re(ts) and t I

s = Im(ts). The first requirement as-
sures that only ionization times within one optical cycle
contribute to the T -matrix element in Eq. (3). The second
requirement guarantees the convergence of the integral solved
by applying the saddle-point approximation to obtain Eq. (10).
The quadratic equation in sin(ωts), Eq. (13), is solved by

sin (ωts)± = px

A0
± i

√
Ep + IP

2UP
(
1 + pz

c

) −
(

px

A0

)2

= z±. (15)
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FIG. 1. The partial average of pz as a function of px , Eq. (18),
for the 1s initial state of the hydrogen atom. The field intensity
is I = 1.4 × 1014 W/cm2 and the wavelength is λ = 4 μm. (a) the
individual contributions from saddle points ts1 (SP1) and ts2 (SP2).
(b) The coherent sum of the contributions from the two saddle points.
The dipole approximation result is obtained by setting 1/c = 0.

There are two solutions satisfying Eq. (14). For px � 0, the
corresponding complex inverse sines can be expressed as

ωts1 = −iLn

(
iz+ +

√
1 − z2+

)
,

ωts2 = −iLn

(
iz− −

√
1 − z2−

)
. (16)

Real parts ωtR
s1 and ωtR

s2 appear in the falling and rising edge of
E(t ) symmetrically around π/2 while for the imaginary parts
ωt I

s1 = ωt I
s2 holds. For px < 0, Eq. (14) is satisfied by

ωts1 = −iLn

(
iz− −

√
1 − z2−

)
+ 2π,

ωts2 = −iLn

(
iz+ +

√
1 − z2+

)
+ 2π,

(17)

so that real parts ωtR
s1 and ωtR

s2 appear symmetrically around
3π/2 and the imaginary parts remain the same as for px � 0.
The above equations refer to the principal values of the com-
plex logarithm and the square root.

C. Discussion

We investigate the partial average

〈pz〉px =
∫

d pyd pz pzwpi∫
d pyd pz wpi

. (18)

To evaluate it, we compute the three-dimensional (3D) PMD
via Eqs. (17), (16), (10), and (1) and numerically solve
the integrals over py and pz. In Fig. 1, we present the
results for the hydrogen atom, with the 1s initial wave func-
tion given by ψi(r) = e−r/

√
π and the ionization potential

FIG. 2. Part of Fig. 1(a) for px ∈ [2.118, 2.202] a.u.

IP = 0.5 a.u. (13.605 eV). The corresponding interaction ma-
trix element for a generic momentum q is (see Ref. [33])

〈q|Hint (t )|ψi〉 = −i
8
√

2

π

q · E(t )

(q2 + 1)3

(
1 + qz

c

)
. (19)

The applied field intensity is I = 1.4 × 1014 W/cm2 and the
wavelength is λ = 4 μm. Figure 1(a) displays the results ob-
tained for two individual saddle-point times ts1 (SP1) and ts2

(SP2) in Eq. (10). The two saddle points separately yield
the same figure for 〈pz〉px , which, as we show below, closely
oscillates around the parabola p2

x/(2c) + IP/(3c) with strictly
positive values. The positive values of 〈pz〉px imply a forward
shift of the PMD along the field propagation direction (in the
direction of the radiation pressure force). The sum of the con-
tributions from the two saddle points ts1 and ts2 [SP1 + SP2
in Fig. 2(b)] in Eq. (10) yields a result which features rapid
oscillations with a larger amplitude around a similar parabolic
figure. These oscillations, caused by the intracycle interfer-
ence of contributions from the two saddle points, cross to
negative values for smaller values of px, implying a backward
shift of the PMD along the field propagation direction, i.e., a
shift against the radiation pressure force. We note that this is
a purely nondipole effect. Within the dipole approximation,
〈pz〉px is zero everywhere because the corresponding PMD is
symmetric along the propagation direction.

The oscillations present in Fig. 1(a) are, on the contrary, the
consequence of the intercycle interference, i.e., the interfer-
ence of contributions originating from different cycles of the
field, which lead to the same final momentum. The intercycle
interference pattern in energy spectra consists of equidistant
peaks separated by the photon energy ω [47]. As a conse-
quence of the periodicity of the long field that we here use,
the contributions from different cycles are compressed in the
energy conservation Eq. (2), see, e.g., Ref. [48] and references
therein. To demonstrate this, we consider Eq. (2) for an integer
n. As we are interested in 〈pz〉px as a function of px, we set
py = 0. Furthermore, pz behaves as the already mentioned
parabola p2

x/(2c) + IP/(3c) in Fig. 1(a) and, because the ki-
netic energy is quadratic in momentum, gives a contribution
of the order O(1/c2) to the kinetic energy, which we neglect.
As a result, we have the equation (p(n)

x )2/2 + IP + UP = nω.
Considering two neighboring values, n and n + 1, we ob-

tain the relation p(n+1)
x =

√
2ω + (p(n)

x )2 that connects two
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KAHVEDŽIĆ AND GRÄFE PHYSICAL REVIEW A 106, 043122 (2022)

TABLE I. Approximate locations of the peaks in Fig. 2 computed
as explained in the main text.

Peak px (a.u) Peak px (a.u.)

1 2.120 9 2.163
2 2.125 10 2.168
3 2.131 11 2.173
4 2.136 12 2.178
5 2.141 13 2.184
6 2.147 14 2.189
7 2.152 15 2.194
8 2.157 16 2.199

neighboring peaks along the px direction. Figure 2 shows a
zoomed-in part of Fig. 1(a) for px ∈ [2.118, 2.202] a.u.. The
first peak in Fig. 2 is located at p(1)

x ≈ 2.120 a.u.. We can now

compute p(2)
x =

√
2ω + (p(1)

x )2 ≈ 2.125 a.u., which gives us
the position of the second peak. Continuing this iteration for
the range of px in Fig. 2, we obtain the values presented in
Table I. It predicts that, for the considered range of px, there
are 16 peaks and gives their positions along the px direction,
which agrees with Fig. 2.

To analyze the shift against the radiation pressure force in
more detail, we restrict the problem to the px-pz plane (py =
0). This simplification allows us to approximate Eq. (18) with
simple, analytically solvable integrals. The complete expres-
sion for the phase φ(t ) is

φ(t ) =
[

Ep + IP + UP

(
1 + pz

c

)]
t

+
[

pxA0

ω
cos (ωt ) − A2

0

8ω
sin (2ωt )

][
1 + pz

c

]
. (20)

Extracting the real {φR
s = Re[φ(ts)]} and imaginary

{φI
s = Im[φ(ts)]} parts of the phase at the saddle-point

times leads to

φR
s =

[
Ep + IP + UP

(
1 + pz

c

)]
tR
s

+
[

pxA0

ω
cos

(
ωtR

s

)
cosh

(
ωt I

s

)

− A2
0

8ω
sin

(
2ωtR

s

)
cosh

(
2ωt I

s

)][
1 + pz

c

]
, (21)

φI
s =

[
Ep + IP + UP

(
1 + pz

c

)]
t I
s

−
[

pxA0

ω
sin

(
ωtR

s

)
sinh

(
ωt I

s

)

+ A2
0

8ω
cos

(
2ωtR

s

)
sinh

(
2ωt I

s

)][
1 + pz

c

]
. (22)

Neglecting the prefactors containing the slowly varying in-
teraction matrix element in Eqs. (1) and (10), we approximate
the differential ionization rate as the sum of the contributions

from the phase φ at the two saddle-point times

wpi ∼ ∣∣eiφ(ts1 ) + eiφ(ts2 )
∣∣2 = ∣∣eiφR

s1−φI
s1 + eiφR

s2−φI
s2
∣∣2

= e−2φI
s1 + e−2φI

s2 + 2e−φI
s1−φI

s2 cos
(
φR

s2 − φR
s1

)
. (23)

The first two terms represent the contributions from the indi-
vidual saddle points which are exponentially decaying with
the respective imaginary parts of the phases, whereas the
third term accounts for their interference, oscillating with the
difference of the real parts of the phases and exponentially
decaying with the sum of the imaginary parts of the phases.
Extracting the real and imaginary parts from Eq. (15) yields a
nonlinear system of equations for tR

s and t I
s

sin
(
ωtR

s

)
cosh

(
ωt I

s

) = px

A0
,

cos
(
ωtR

s

)
sinh

(
ωt I

s

) = ±
√

Ep + IP

2UP
(
1 + pz

c

) −
(

px

A0

)2

. (24)

The small values of the imaginary component of the saddle-
point times (ωt I

s 
 1) justify keeping only the leading terms
in the expansion of hyperbolic sine and hyperbolic cosine

sin
(
ωtR

s

) ≈ px

A0
,

cos
(
ωtR

s

)
ωt I

s ≈ ±
√

Ep + IP

2UP
(
1 + pz

c

) −
(

px

A0

)2

. (25)

Expansion of the square root up to the second order in pz in
the above equation leads to the solutions in accordance with
Eq. (14) for px � 0

ωtR
s1 ≈ arcsin

(
px

A0

)
,

ωtR
s2 ≈ π − arcsin

(
px

A0

)
,

ωt I
s ≈

√
2IP

A2
0 − p2

x

[
1 + pz

c

p2
x + 2IP

4IP
+ p2

z

4IP

]
.

(26)

Since ωt I
s1 = ωt I

s2, we label the corresponding solution with
ωt I

s . For px < 0, the solutions are

ωtR
s1 ≈ π + arcsin

( |px|
A0

)
,

ωtR
s2 ≈ 2π − arcsin

( |px|
A0

)
,

(27)

where ωt I
s is the same as in Eq. (26). From Eqs. (27), (26),

and (22), it is clear that φI
s1 = φI

s2, which we simply label with
φI

s in the following. The imaginary part of the phase can now
be approximated with the following expression [see Eqs. (27),
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FIG. 3. Contributions from the individual saddle points SP1 and
SP2 from Fig. 1(a) and the value represented by Eq. (34).

(26), and (22)]:

φI
s ≈ 1

ω

√
2IP

A2
0 − p2

x

[
3

4
p2

z − pz

c

3p2
x + 2IP

4
+ IP

]
. (28)

On the other hand, the difference of the real parts of the phases
(�φR

s = φR
s2 − φR

s1) for the full range of px can be expressed
as [see Eqs. (27), (26), and (21)]

�φR
s ≈

[
p2

x + p2
z

2
+ IP + UP

(
1 + pz

c

)]2 arccos
( |px |

A0

)
ω

− 3|px|
2ω

√
A2

0 − p2
x

(
1 + pz

c

)
. (29)

The differential ionization rate, Eq. (23), is now

wpi ∼ e−2φI
s + e−2φI

s cos
(
�φR

s

)
= e−2φI

s + 1

2
e−(2φI

s +i�φR
s ) + 1

2
e−(2φI

s −i�φR
s ), (30)

which allows us to compute the partial average

〈pz〉px ∼
∫ ∞
−∞ d pz pzwpi∫ ∞
−∞ d pz wpi

. (31)

The arguments of the exponential functions in Eq. (31) are
quadratic in pz

2φI
s = αp2

z − βpz + γ ,

2φI
s ± i�φR

s = α± p2
z − β± pz + γ±,

(32)

with the coefficients α, β, γ , α±, β±, and γ± given in the
Appendix. The integrals in Eq. (31) are now readily solved.
Neglecting the terms beyond 1/c leads to the approximate
result

〈pz〉px ∼ β

2α

1 + Re
[(

α
α+

)3/2 β+
β

exp(γ − γ+)
]

1 + Re
[(

α
α+

)1/2
exp(γ − γ+)

] . (33)

FIG. 4. The analytic estimate given by Eq. (33) and the value
represented by Eq. (34).

The factor

β

2α
= p2

x

2c
+ IP

3c
(34)

is the result of contributions from individual saddle points,
which is precisely the parabola found previously [7,8,27]. In
contrast, the interference term gives a complicated function
modifying it. The other factors present in Eq. (33) are given
in the Appendix.

Figure 3 reveals the individual contributions from the two
saddle points in Fig. 1(a) alongside the result of Eq. (34). It
demonstrates that the always positive result obtained using the
separate saddle points closely oscillates around the parabola
given by p2

x/(2c) + IP/(3c). The complete estimate, including
the intracycle interference contribution, as given by Eq. (33),
oscillates around the same parabola p2

x/(2c) + IP/(3c) and for
the range of px ∈ [−1.4, 1.4]a.u. takes negative values, see
Fig. 4.

III. CONCLUSION

In conclusion, we employed the saddle-point approxi-
mation to solve the time integral in the nondipole SFA
differential ionization rate expression. Two complex saddle
points per optical cycle, corresponding to different ionization
pathways, contribute. The two saddle points separately give
the same result for the differential ionization rate but they
feature different real parts of the ionization phase. Comput-
ing the partial average value of the propagation direction
momentum component (pz) as a function of the polarization
direction momentum component (px), we demonstrated that
individual ionization pathways lead to a forward momentum
shift along the propagation direction, obeying the parabolic
relation p2

x/(2c) + IP/(3c). However, the intracycle interfer-
ence, i.e., the interference of the ionization pathways from
the two saddle-point solutions originating within the same
optical cycle of the field, results in an oscillatory behavior
around a parabola depending on the difference of the real
parts of the ionization phases. Due to these oscillations, the
momentum component can take negative values, suggesting
a backward momentum shift along the propagation direction.
As a nondipole effect studied with a nonrelativistic theoret-
ical approach, this result is expected to be pronounced for
light fields of high but nonrelativistic intensities and long
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wavelengths starting from the midinfrared spectral region,
where the motion of an electron along the field propagation
direction becomes important, see, e.g., Ref. [49].

The present work does not consider the important effects of
field-induced recollisions and Coulomb effects, which signifi-
cantly affect the PMD in linearly polarized fields. Even when
these effects to which the shift of the PMD against the radia-
tion pressure force was previously attributed are not accounted
for, we find that such a shift prevails. We here reveal that
the mechanism causing the shift of momentum distributions
of direct photoelectrons against the radiation pressure force
originates in the intracycle interference of different ionization
pathways leading to the same final momentum. The derivation
leading to Eq. (33) accounts for the initial state only via
the ionization potential IP. This means that, in principle, any
binding potential allowing for ionization from a bound state
(e.g., the zero-range potential) would be characterized by the
negative shift described here. We believe our result provides
new insight into the discussion on the cause of this shift, as
our approach does not incorporate recollisions and Coulomb
focusing.
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APPENDIX

The coefficients in Eqs. (32)–(34) are

α = 3

2ω

√
2IP

A2
0 − p2

x

, (A1)

β = 1

2ωc

√
2IP

A2
0 − p2

x

(
3p2

x + 2IP
)
, (A2)

γ = (2IP )3/2

ω

√
A2

0 − p2
x

, (A3)

α± = α ± i
arccos

( |px |
A0

)
ω

, (A4)

β± = β ± i

c

[
3|px|
2ω

√
A2

0 − p2
x − 2UP arccos

( |px |
A0

)
ω

]
, (A5)

γ± = γ ± i

[(
p2

x

2
+ IP + UP

)2 arccos
( |px |

A0

)
ω

− 3|px|
2ω

√
A2

0 − p2
x

]
. (A6)
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[17] J. Daněk, K. Z. Hatsagortsyan, and C. H. Keitel, Analytical
approach to coulomb focusing in strong-field ionization. I.
nondipole effects, Phys. Rev. A 97, 063409 (2018).

[18] B. Böning, W. Paufler, and S. Fritzsche, Nondipole strong-field

043122-6

https://doi.org/10.1103/PhysRevLett.97.043601
https://doi.org/10.1103/PhysRevA.76.033415
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevA.85.041404
https://doi.org/10.1103/PhysRevA.71.033408
https://doi.org/10.1103/PhysRevLett.110.153004
https://doi.org/10.1103/PhysRevA.88.063421
https://doi.org/10.1103/PhysRevA.95.053402
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevA.92.051401
https://doi.org/10.1103/PhysRevLett.113.243001
https://doi.org/10.1103/PhysRevA.94.033405
https://doi.org/10.1088/1361-6455/aa8ab1
https://doi.org/10.1103/PhysRevLett.118.163203
https://doi.org/10.1088/1361-6455/aaba42
https://doi.org/10.1103/PhysRevA.97.063409


SHIFT OF THE PHOTOELECTRON MOMENTUM AGAINST … PHYSICAL REVIEW A 106, 043122 (2022)

approximation for spatially structured laser fields, Phys. Rev. A
99, 053404 (2019).

[19] M.-X. Wang, H. Liang, X.-R. Xiao, S.-G. Chen, W.-C. Jiang,
and L.-Y. Peng, Nondipole effects in atomic dynamic interfer-
ence, Phys. Rev. A 98, 023412 (2018).

[20] S. Brenneckeand M. Lein, High-order above-threshold ioniza-
tion beyond the electric dipole approximation, J. Phys. B: At.,
Mol. Opt. Phys. 51, 094005 (2018).

[21] S. Brenneckeand M. Lein, High-order above-threshold ioniza-
tion beyond the electric dipole approximation: Dependence on
the atomic and molecular structure, Phys. Rev. A 98, 063414
(2018).

[22] S. Brenneckeand M. Lein, Strong-field photoelectron hologra-
phy beyond the electric dipole approximation: A semiclassical
analysis, Phys. Rev. A 100, 023413 (2019).

[23] B. Willenberg, J. Maurer, U. Keller, J. Daněk, M. Klaiber,
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