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Laser-controlled electronic symmetry breaking in a phenylene ethynylene dimer:
Simulation by the hierarchical equations of motion and optimal control
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The ability to prepare a specific superposition of electronic excited states leading to a transitory symmetry
breaking of the electronic density in complex systems remains a challenging concern. We investigate how an
initial coherence can be controlled by laser fields. The selected molecular system is a symmetric dimer of
phenylene ethynylene presenting different interesting properties: Two bright nearly degenerate excited states
coupled through a conical intersection are addressable by orthogonal transition dipole moments and are well
separated from neighboring states. Creating a superposed state with equal weights corresponds to a right or
left electronic localization as in the double-well system followed by a transitory oscillation between the two
wells. To ensure a spectral bandwidth typically smaller than 0.25 eV, the pulse duration is in the tens of
femtoseconds range, so nuclear motion cannot be neglected. Optimal control theory (OCT) is applied with
guess fields that effectively create the target coherence in the absence of dephasing due to the vibrational
baths. We analyze the field reshaping proposed by the control and we further fit a sequence of pulses on the
optimal field. The overall result is efficient and robust disymmetry control over reasonable timescales of few
tens of femtoseconds, exceeding the pulse duration. The monotonically convergent algorithm is combined with
the hierarchical equations of motion (HEOM) able to treat strongly coupled non-Markovian dynamics. We
also check the implementation of the combined OCT-HEOM approach in the tensor-train representation with
propagation using the time-dependent variational method.
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I. INTRODUCTION

Controlling electron dynamics and quantum coherence to
trigger particular nuclear displacements is the basic concern of
the emerging fields of attophysics and femtochemistry [1–7].
The preparation by laser fields of specific superpositions of
excited eigenstates generates an electron density reorganiza-
tion or symmetry breaking [8,9] and the correlated directional
properties of the nuclear motion.

The timescale of the light pulse fixes the spectral band-
width and this could be prohibitive when the target is a
narrow band of some particular bright excited states. To avoid
interference with additional bright states, the pulse duration
should not be less than a few tens of femtoseconds. It is
then similar to some vibrational periods and electronic de-
coherence will occur during the interaction with the laser
field. The variation of the off-diagonal elements of the re-
duced density matrix is due to relaxation induced here by
the nonadiabatic transitions and to dephasing caused by the
tuning of the energies. Developing strategies to improve the
preparation of superposed electronic states and to preserve
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coherence at least during the pulse remains a challenging
objective in complex molecular systems [10–16]. Our goal
concerns the timely issue of optimizing control procedures
for quantum systems strongly coupled to structured envi-
ronments and leading to non-Markovian reduced dynamics.
This requires implementing an optimization procedure of the
parametric space among numerous available methods [17–24]
with an efficient treatment of non-Markovian open systems
[16,25–27]. There are two main ways to account for the
non-Markovianity, reviewed, for instance, in Ref. [28]. The
dimension of the active system may be increased by including
a reasonable number of discrete modes while the residual bath
is weakly coupled and Markovian [29–37]. The other scenario
simulates the baths by continuous spectral densities leading to
time-local coupled hierarchical equations of motion (HEOM)
[38–41]. In this work we combine HEOM with a monotoni-
cally convergent algorithm of optimal control theory (OCT) in
the presence of dissipation [42]. For non-Markovian dissipa-
tion, the backward propagation to solve the equation with the
final target condition requires special attention [43]. This is es-
tablished at the second order [44] and generalized for HEOM
[27]. We compare the approach using a standard Cash-Karp
Runge-Kutta adaptive algorithm [45] with a tensor-train (TT)
representation [37,46–52] recently implemented in HEOM
[53–56].
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FIG. 1. Three-dimensional schematic view of (a) the conical intersection between the adiabatic excited states S1 and S2 and (b) the
corresponding localized diabatic states DL and DR with their corresponding electronic lowest unoccupied molecular orbitals [61,65]. Also
shown are (c) ab initio energies and transition dipole moments at the minimum geometry of the ground state S0 and (d) the x-, y-, and z-axis
convention together with the main vibrational mode Xt of A1 symmetry belonging to the tuning bath and the main antisymmetric coupling bath
mode Xc of B2 symmetry.

We consider a symmetric molecular system: a metasubsti-
tuted dimer of phenylene ethynylene of C2v symmetry, which
is a building block of treelike dendrimers [57–59]. The first
excited manifold is composed of two quasidegenerate bright
states (the gap at the Franck-Condon geometry is 0.044 eV)
of different symmetry only radiatively coupled to the ground
state. The two states are coupled through a conical intersection
[60], characterized in Ref. [61]. The model is calibrated from
molecular ab initio data in the framework of the linear vibronic
coupling (LVC) model currently used to describe conical in-
tersections [62]. The adiabatic excited states are delocalized
over the whole nuclear skeleton. Our aim is to create a su-
perposed excited state with a broken symmetry leading to a
transitory localization on the left or right part of the molecule
(see Fig. 1).

For the optimization, we first explore guess fields inspired
by a simplified three-state V-type model without dissipation
for which there is an analytical solution based on simultaneous
π/

√
2 pulses with orthogonal polarization and equal duration

[63]. In the second step we use OCT with an optimization
on a time grid to offer the maximum flexibility to the pulse
shape. The interpretation of the resulting reshaped optimized
field actually suggests a sequence of a few pulses which can
further be designed by shaping techniques. Still another way
is to provide simple analytical forms for the individual pulses
and fit their parameters with the optimized field.

The paper is organized as follows. In Sec. II we present
the ab initio data and particularly the parameters of the LVC
model of the conical intersection between the excited states.
Section III describes the spectral densities of the tuning and
coupling baths, paying particular attention to the correlation
of the tuning baths. In Sec. IV we explicate the strate-
gies for the field-driven dynamics. The results are given in
Sec. V. All the equations for the OCT-HEOM approach are

summarized in Appendix A and the TT representation is given
in Appendix B.

II. MODEL

The molecular system is a C2v metasubstituted dimer of
phenylene ethynylene. We focus on the first excited man-
ifold with two bright excited states S1(1B2) and S2(2A1)
coupled to the ground S0(1A1) state only radiatively through
corresponding transition dipoles. All calculations were per-
formed with the GAUSSIAN16 package (revision A03) [64]
using density-functional theory (ground state S0) and time-
dependent density-functional theory (excited states S1 and S2)
at the CAM-B3LYP/6-31+G* level of theory, the validity
of which having been assessed already in previous works
[61,65]. The electronic-state symmetries, energies, and oscil-
lator strengths at the S0 minimum and S2/S1 minimum-energy
conical intersection (MECI) geometries are provided in the
Supplemental Material [66].

The molecule is planar and positioned according to Mul-
liken’s axis convention for C2v symmetry (as shown in Fig. 1).
More precisely, z (A1) is the C2 rotation axis, y (B2) lies within
the molecular plane, and x (B1) is orthogonal to it. The vertical
energies and the dipole transition moments at the ground equi-
librium geometry (minimum of S0) are given in Fig. 1. The
two excited states are coupled through a conical intersection
that was recently characterized [61]. This induces an ultrafast
nonadiabatic funneling between these states. We consider the
A1 and B2 in-plane motions by discarding soft out-of-plane
torsions, which are expected to play a secondary role. The
S1 and S2 states may cross in C2v symmetry. The S1 state
exhibits two equivalent minima in CS geometry connected by
B2 deformations. A scheme of the adiabatic potential energy
surfaces is given in Fig. 1. This adiabatic representation
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may be described in terms of two interesting diabatic basis
sets leading to the so-called delocalized or localized diabatic
states, respectively [67]. The delocalized states are adapted
to the A1 or B2 symmetries. They coincide with the adia-
batic states along symmetry-conserving A1 motions, which are
the tuning modes making the energy gap fluctuate. They are
coupled by a potential electronic coupling along B2 modes,
which are the coupling modes. In the LVC model, the two ex-
cited delocalized diabatic states are written in mass-weighted
coordinates by choosing the Franck-Condon geometry as a
reference point and by neglecting any Duschinsky rotation
of the normal modes. Accordingly, the N normal modes qj

are the same in each electronic state; only their equilibrium
position q(m)

j,0 depends on the electronic state m. The N normal
modes are separated in tuning and coupling classes N = Nt +
Nc according to their symmetry, the corresponding modes
being denoted by q j,t or q j,c respectively. The Hamiltonian
matrix in the delocalized diabatic basis set reads

Hdeloc
mm = ε

(m)
FC + 1

2

N∑
j

(
p2

j + ω2
j q

2
j,t (c)

) −
Nt∑
j

d (m)
j q j,t , (1)

Hdeloc
mm′ =

Nc∑
j

c(mm′ )
j q j,c, (2)

where ε
(m)
FC is the energy at the Franck-Condon geometry. In

the harmonic model, the gradients d (m)
j = ω2

j q
(m)
j,t,0 are related

to the distance q j,t,0 between the minimum position of the ex-
cited state and the reference point. Good agreement between
the two values is a validation of the harmonic hypothesis. The
gradients of the coupling are computed by a method detailed
in Ref. [68]. The components of relevant shifts and gradients
in terms of in-plane normal modes (A1 and B2) are listed in
the Supplemental Material [66]. They lead to the definition
of collective coordinates ensuring the whole coupling to the
electronic system

X (m)
t =

Nt∑
j

d (m)
j q j,t/D(m)

0t (3)

and

X (mm′ )
c =

Nc∑
j

c(mm′ )
j q j,c/D(mm′ )

0c (4)

with D(m)
0t

= ∑Nt
j d (m)2

j and D(mm′ )
0c = ∑Nc

j c(mm′ )2
j . In Fig. 1

we illustrate the main vibrational tuning and coupling modes
contributing to the effective coordinates. They are the high-
frequency stretching modes of the two triple bonds connecting
the phenyl rings with the symmetric A1 deformation for X (m)

t
and the antisymmetric B2 one for X (mm′ )

c , respectively.
By transforming the 2 × 2 subspace of the excited de-

localized diabatic basis set by a π/4 rotation matrix, the
equilibrium positions of the diabatic localized states DL and
DR correspond to those of the adiabatic lowest state, which
displays a double-well profile along a B2 displacement. Each
localized diabatic state corresponds to the localization of the
excited electronic density on one side or the other of the dimer
as illustrated in Fig. 1.

III. OPEN QUANTUM SYSTEM

According to the open quantum system approach, the full
vibronic space is partitioned into an active subsystem ex-
plicitly treated quantum mechanically and its surroundings
addressed as a bath. The choice of the partition is a key
ingredient to get a computationally tractable master equation.
Hierarchical equations of motion are one of the standard
strategies to solve the system-bath dynamical equations in
a numerically exact way provided the bath is harmonic and
linearly coupled to the system. Different partitions have been
used in HEOM applications with a conical intersection by
including in the active system the main tuning and coupling
modes and the corresponding potential energy surfaces cou-
pled to residual baths [69], or only the electronic subsystem
at a reference geometry (here the equilibrium geometry of
the ground electronic state) [63,70,71], the baths being all the
nuclear tuning or coupling vibrational modes at thermal equi-
librium at the reference point. We adopt the second strategy.
The full Hamiltonian is then rewritten as

H = HS + HSB + HB, (5)

where HS is the diabatic, delocalized, symmetry adapted elec-
tronic Hamiltonian at the Franck-Condon geometry. At this
reference point, the diabatic and adiabatic energies coincide
and the coupling vanishes. The energies are given in Fig. 1.
The transformation to the localized diabatic representation

H loc
S = U †HSU (6)

involves the matrix

U =
⎛
⎝1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2

⎞
⎠. (7)

The system-bath coupling is HSB = ∑
b SbBb, where b =

t, c designates the bath, with Sb and Bb operators of the
electronic and of the complementary vibrational spaces,
respectively. The linear coupling is induced by the antisym-
metric coupling modes, which are coupled off-diagonally by
the operator Sc = |S1〉〈S2| + |S2〉〈S1|. The tuning baths induc-
ing fluctuation of the energy gaps are often considered as
independent when they gather modes belonging to different
molecular sites embedded in complex structures as in light
harvesting complexes. The operator relating each tuning bath
is then the projector on the corresponding electronic state
St,m = |m〉〈m| and the total contribution to the coupling term
is St,m1 Bb1 + St,m2 Bb2 . In the case of the conical intersection in
a single molecular system, the modes are assumed to be the
same in the excited electronic states. When some modes lead
to different gradients in the different states, they are correlated
and make cross terms appear in the correlation function of
the bath modes. An approximate way of accounting for bath
correlation is to work with a single bath coupled via a com-
posite operator St = |m〉〈m| + w|m′〉〈m′|. Limit values w = 1
and w = −1 correspond to fully correlated and anticorrelated
baths, respectively, i.e., each mode leads to the same gradient
or the opposite gradient in the two electronic states [72]. We
take a model with a constant correlation factor fixed by the
principal A1 mode leading the largest gradient and we use
the operator St = |S1〉〈S1| + 0.893|S2〉〈S2| as discussed below
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FIG. 2. Discrete spectral densities (8) broadened by a Lorentzian
function with a width of wave number 160 cm−1: (a) JS1 and JS2 of
the tuning baths and (b) JS1S2 of the coupling bath.

when we present the bath spectral densities. A more sophis-
ticated method introducing a frequency-dependent correction
of the spectral density has been used recently [73].

The bath operators are collective modes having the di-
mension of energy. For the correlated tuning baths involving
the composite operator St , we use the tuning collective mode
Bt = ∑Nt

j d (S1 )
j q j,t = D(S1 )

0t X (S1 )
t , where d (S1 )

j are the S1 gradi-
ents at the reference point. The coupling collective mode is
Bc = ∑Nc

j c(S1S2 )
j q j,c = D(S1S2 )

0c Xc, where c(S1S2 )
j are the gradi-

ents of the interstate coupling.
The key tool is the spectral density

Jt (c)(ω) = π

2

∑
j

f 2
j ω

−1
j δ(ω − ω j ), (8)

where f 2
j is the strength of the coupling at each fre-

quency and f j = d j or c j for t or c, respectively. It is
linked to the so-called thermal spectral density JT

t (c)(ω) =
Jt (c)(ω)(eβω − 1)

−1
with β = 1/kBT . The JT

t (c)(ω) is used
in different approaches with discrete modes to account
for the temperature. In the continuous approach, the mas-
ter equation involves the Fourier transform Ct (c)(t ) =∫ ∞
−∞ dω JT

t (c)(ω)e−iωt that is the two-time correlation function
of the collective modes Ct (c)(t ) = 〈Bt (c)(t )Bt (c)(0)〉eq, where
Bt (c)(t ) is the Heisenberg representation of the operator and
〈·〉M denotes the average over a Boltzmann distribution at tem-
perature T . The δ distribution of the discrete spectral density is
broadened by a Lorentzian smoothing function δ(ω − ω j ) →
1
π

�

(ω−ω j )2+�2 [74–76]. In this work we use � with a wave

number 160 cm−1. The tuning spectral densities of the two
excited states denoted by JS1 and JS2 are given in Fig. 2(a).
Figure 2(b) displays the spectral density of the coupling bath
JS1S2 . The smooth spectral densities have been fitted by three
two-pole Tannor-Meier Lorentzians [77]

Jt (c)(ω) =
Nl,t (c)∑

i

piω[
(ω + �i )2 + �2

i

][
(ω − �i )2 + �2

i

] , (9)

where Nl,t (c) is the number of two-pole Lorentzians in the tun-
ing or coupling bath. The fitted functions and their parameters
are given in the Supplemental Material [66]. The main com-
ponents are the high-frequency modes corresponding to the
symmetric (wave number 2367.4 cm−1) and antisymmetric
(wave number 2366.5 cm−1) stretches of the acethylenic bond
(see Fig. 1). The central peaks at wave number 1692.1 cm−1

for the tuning modes and wave number 1681.9 cm−1 for the
coupling ones are associated with A1 or B2 in-plane deforma-
tions of the central benzene ring. The third peak corresponds
to secondary contributions to the tuning (A1 at 1199c cm−1)
and to the coupling (B2 at 1160c cm−1) modes. They describe
in-phase and out-of-phase stretches of the bonds linking the
acetylenic moieties to the benzenic ones, respectively, with
induced in-plane triangular distortions of the rings.

We assume a positive correlation between the S1 and
S2 tuning baths independent of the frequency and fixed by
the high-frequency modes with wave number 2367 cm−1.
This approximation seems reasonable and reduces the com-
putational effort by introducing a single tuning bath and a
composite system-bath operator.

The partition of the electronic system leads to highly
non-Markovian dynamics. The non-Markovianity is related
to the backflow of information from the baths to the sys-
tem. In the case of this electronic partition, it results from
the possible recurrence of a partial vibrational wave packet
in the initial Franck-Condon region during the nonadiabatic
dynamics. This leads to a signature in different measures
of non-Markovianity [27,78,79]. It is related to the shape
of the correlation function, which is the Fourier transform
of the thermal spectral density and therefore depends on the
occurrence of sharp peaks leading to a long oscillatory decay
of C(t ) and thus a long memory timescale. This strong in-
teraction between the system and the baths requires efficient
non-Markovian approaches and is dealt with using the HEOM
method. The key point is the expression of the correlation
function of each bath b as a sum of ncor,b decay modes as-
sociated with the poles of the thermal spectral density (poles
of the spectral density and of the Bose function also called
Matsubara frequencies)

Ct (c)(t ) =
ncor,t (c)∑

k=1

αt (c),keiγt (c),kt . (10)

The HEOM method is well documented in the literature
[38,40,41,53,56,80–85]. We adapt the HEOM algorithm by
using a particular definition of the complex conjugate in which
the rates remain the same in both expressions

C∗
t (c)(t ) =

ncor,t (c)∑
k=1

α̃t (c),keiγt (c),kt . (11)

Analytical expressions of the αk , α̃k , and γk are given in
Refs. [77,86]. We summarize the operational equations in
Appendix A, paying particular attention to the backward prop-
agation used in OCT. The corresponding expressions in the TT
representation are given in Appendix B.

Methods similar to HEOM operate by tracing out the
bath degrees of freedom. However, even if the vibrational
dynamics is not completely resolved, important information
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pertaining to the bath is available, for instance, heat current or
fluxes [82,83,87,88]. The extraction and visualization of the
time-dependent thermal probability distributions Pm(Xb, t ) of
each collective mode b = t, c in each electronic state m is an
interesting tool to analyze non-Markovian dynamics [71,89].
Here Pm(Xb, t ) is expanded in the basis set of the eigenfunc-
tions of the Ornstein-Uhlenbeck operator of the stochastic
Liouville equation

Pm(Xb, t ) =
∑

l

am,b,l (t )�l (Xb), (12)

with �l (Xb) = 1√
2π

√
2l l!

Hl [Xb/
√

2Cb(0)]e−X 2
b /2Cb(0), where the

Hermite polynomials Hl are weighted by a temperature-
dependent factor via the initial value of Cb(t ), which is the
integral of the thermal spectral density. The computation may
require HEOM at a high level when the distribution is far from
the equilibrium Gaussian distribution. The expression of the
am,b,l (t ) coefficients is given in Appendix A.

In particular, this first moment providing the average po-
sition of the coupling effective mode in each electronic state
〈X m

b 〉 is obtained from the auxiliary density operators (ADOs)
of the first level for each bath

Bb(t ) = −
∑

n

ρn(t ), (13)

where the sum runs over all the collective index n for which∑
k nk,b = 1, with b = t or b = c, respectively. The average

in each electronic state is then given by the corresponding
diagonal element

〈
X (m)

b

〉 = 1

D(m)
0b

(Bb)mm, (14)

where D0b is given by D2
0t (c) = (2/π )

∫ ∞
0 Jt (c)(ω)ω dω. This

average is an interesting bit of information about the vibra-
tional relaxation and the evolution towards equilibrium. By
expressing all the density matrices in Eq. (13) in the basis set
of the localized diabatic states DL (R) via the transformation
matrix U given in Eq. (7), one gets the average position
in each left or right diabatic well showing the dissymmetry
of the damped wave packet when the superposition |±〉 =
(|S1〉 ± |S2〉)/

√
2 is created. The electronic dissymmetry is

estimated by the parameter


X = 1

tlim

∫ tlim

0

(〈
X (DR )

c

〉 + 〈
X (DL )

c

〉)
dt, (15)

where tlim has been fixed at 100 fs in this application.
The HEOM summarized in Appendix A are propagated

at T = 298 K by the Cash-Karp-Runge-Kutta algorithm [45]
by a homemade parallelized FORTRAN code. In Sec. V D we
explore the implementation referring to the tensor-train ap-
proach. The HEOM adapted to this formulation are given
in Appendix B. The propagation in the TT representation
is made by the projector-splitting KSL scheme [47,48,90],
designated by the three letters given to the three steps of
the symmetrized splitting of second-order scheme also imple-
mented in the TTPY package (tt.ksl.ksl) [91]. The number
of matrices for K decay modes [Eq. (A2)] is then N = (L+K )!

L!K! .
In the TT approach, nmax is the same for each mode, leading to

a larger number of matrices N ′ = nK
max. The TT representation

is expected to reduce the storage resources (see Appendix B).

IV. FIELD-DRIVEN DYNAMICS

Our objective is the depletion of the initial ground state and
the creation of a coherent superposition of the excited states
|±〉 = (|S1〉 ± |S2〉)/

√
2. States S1(1B2) and S2(2A1) are ex-

cited by orthogonal transition dipole moments μy = 3.96ea0

and μz = −1.83ea0, respectively, the axes being defined in
Fig. 1. The molecule is in the plane Oyz orthogonal to the
propagation direction Ox of the electromagnetic waves, as
indicated in Fig. 1. The time-dependent system Hamiltonian
becomes HS (t ) = HS + V (t ), where the interaction with the
electromagnetic field 	E (t ) is written in length gauge and
within the dipole approximation. In a V-type system at frozen
equilibrium geometry, the superposition could be prepared
by two pulses with orthogonal polarizations and integrated
Rabi frequencies equal to π/

√
2 in the absence of inter-

ference with another bright state. This has been shown for
pulses of duration τ and sine-square envelopes Ey (z)(t ) =
E0,y (z)sin2( πt

τ
) cos(ωy (z)t + φy (z) ) [63]. The maximum am-

plitudes are then given by E0,y (z) = √
2π/μy (z)τ . When the

pulses have the same duration, the field amplitudes are then in
the inverse ratio of the dipole transition moments. However,
for ultrashort pulses with one or two optical cycles, one must
ensure a zero-area laser pulse [92,93]. The field

Ey (z)(t ) = −∂Ay (z)(t )

∂t
(16)

is then derived from the vector potential Ay (z)(t ) =
( E0,y (z)

ω
)sin2( π (t−ti )

τ
) sin[ω(t − ti ) + φ], where ti is the initial

time of the pulse.
The best superposition would be obtained by ultrashort

pulses to fight against the decoherence induced by the baths.
However, the spectral band should not exceed 0.25 eV to
avoid any contamination with neighboring states. We there-
fore focus on pulses of several tens of femtoseconds during
which interaction with the vibrational motions occurs. The
first strategy involves positive or negative chirp pulses with
a linear variation of the carrier frequency. For commodity,
we introduce a factor f that remains close to one and the
time-dependent frequency is expressed by

ω(t ) = ωy (z)

f
− ωy (z)/ f − f ωy (z)

τ
t, (17)

where ωy (z) is the carrier frequency in resonance with the
two transitions. The chirp rate ω′ = (ωy (z)/ f − f ωy (z) )/τ is
positive or negative according to f > 1 or f < 1.

In the second step, the best chirped pulses are taken as
guess fields for optimization by OCT [42,94]. The optimal
field is built iteratively to maximize the cost functional also
called performance index or objective index

I = Re{Tr[ρ†(τ )ρtarget]} (18)

at a final time τ with constraints to restrain the field intensity
and to fulfill the master equation at any time. The corre-
sponding Lagrange multipliers are denoted by α and χ (t ),
respectively. The optimal field is obtained from the system
matrix density propagated by the master equation with initial
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FIG. 3. Field-free so-called ideal case where the system is pre-
pared in the superposed state |+〉 = (|S1〉 + |S2〉)/

√
2. A comparison

of the dynamics with three spectral density models is made by retain-
ing for each bath the highest frequency peak (1L, displayed by the
thin solid line), the two highest frequency peaks (2L, displayed by
the thick solid line), and the full density (3L, displayed by the dashed
line) (see Fig. 2). (a) Population in the excited electronic states S1

(red) and S2 (blue). (b) Average position of the coupling mode in the
localized diabatic states DR (red) and DL (blue). (c) Modulus of the
electronic coherence between the two excited states (21) and (22).

condition ρ(t = 0) = ρini and from the Lagrange multiplier
propagated with a final condition χ (τ ) = ρtarget. The HEOM
adapted for forward or backward propagations are given in
Appendix A and the corresponding TT representation is in
Appendix B. The field at each iteration k is obtained by
ε(k) = ε(k−1) + 
ε(k), where 
ε(k) is estimated by


ε(t ) = 1

α
Im

{
Tr[ρ(t )χ (t )]Tr

[
χ (t )

(∑
p

μp, ρ(t )

)]}
,

(19)
where p = y, z [42].

V. RESULTS

A. Field-free case

Figure 3 compares the field-free dynamics with the full
or the truncated spectral density (see Fig. 2) by retaining
only the highest-frequency region for the two baths around
2360c cm−1 (denoted by 1L), the two highest peaks by adding
those around 1700c cm−1 (2L), and the full density (3L). This
is the so-called ideal case when the initial condition is the
superposition

|+〉 = (|S1〉 + |S2〉)/
√

2 (20)

corresponding to a population on the right side DR. We com-
pare the populations of the excited states PS1 (t ) and PS2 (t )
[Fig. 3(a)], the average position of the coupling mode in the
localized DL and DR states [Fig. 3(b)], and the modulus of the
coherence |ρS1S2 (t )| [Fig. 3(c)]. The coherence

ρS1S2 (t ) = ρ∗
S2S1

(t ) (21)

is the off-diagonal element corresponding to the two excited
states denoted by S1 and S2 of the system reduced density
matrix

ρ(t ) = TrB[ρtot(t )], (22)

which is the trace over the bath modes of the full density
matrix. In the target state [Eq. (20)] the coherence is |ρS1S2 | =
0.5. During the first 10 fs, the dynamics is dominated by the
high-frequency mode. After this early relaxation, the popula-
tion exchange is reduced when the lower frequency around
1700c cm−1 is considered. The modifications induced by the
lowest-frequency region are less significant and we adopt a
compromise by retaining two peaks for each bath (2L) in
order to reduce the computational cost. Indeed, the partition
adopted here leads to a very high system-bath coupling de-
manding a high level in the HEOM propagation [70,71]. The
HEOM are carried out at level 12 without Matsubara terms
in the correlation function. Retaining only two Lorentzians
per bath (2L) involves 1.3 × 105 matrices versus 2.7 × 106

matrices in the 3L model. In the field-free case, the thermal
equilibrium populations of the excited manifold are reached
in 250 fs. The final populations are 0.39 for S2 and 0.61
for S1. We have verified that the equilibrium populations are
the same for any initial excited state. These values do not
correspond to a thermal Boltzmann mixture since the ground
state is not coupled by nonadiabatic couplings with the excited
states and the radiative decay is neglected. When we describe
the excitation by laser pulses in the following sections, the
population at equilibrium is different when the ground state
is not completely depleted. The coherence decays in about
100 fs and the dissymmetry remains during the same period
before leading finally to an equilibrium symmetric distribution
in each well. The full distributions PDL (Xc, t ) and PDR (Xc, t )
[Eq. (12)] of the coupling mode in the DL and DR states are
given in Figs. 4(a) and 4(b). This requires performing HEOM
at least at level 15 to converge the expansion of Eq. (12). For
this ideal case, the right side is populated and the oscillation
persists for 40 fs before the transition towards the left side.
For a simple statistical mixture with equal weights of the two
states and no coherence, the populations are always identical
in both localized states.

B. Chirped laser pulses

Figures 4(c) and 4(d) give the distributions PDL (Xc, t ) and
PDR (Xc, t ) when the system is initially in the ground electronic
state with the vibrational baths at thermal equilibrium at the
equilibrium geometry and excited by two polarized pulses
along y or z with τ = 10 fs and amplitudes satisfying the
π/

√
2 rule. When the system is excited by the pulses, one

has a first delay of about 5 fs during the depopulation of the
ground state before observing a notable density on the right
side and the symmetry breaking has a lifetime shorter than in
the field-free ideal case.

The first control against the decoherence during the inter-
action with the field is done by chirped pulses. For different
pulse durations τ , the amplitudes of the two pulses are fixed
by the π/

√
2 rule and we impose a positive- or negative-

frequency chirp with a rate fixed by the f factor [Eq. (17)].
The efficiency is measured by the dissymmetry parameter
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FIG. 4. Distributions PDL (Xc, t ) and PDR (Xc, t ) of the coupling
collective mode in the localized excited states (model 2L). (a) and
(b) Ideal case with the initial condition |+〉 = (|S1〉 + |S2〉)/

√
2

corresponding to the population in the right site DR and (c) and
(d) excitation from the ground state by two polarized pulses of 10
fs and amplitudes satisfying the π/

√
2 condition, in (a) and (c) the

localized state DL and (b) and (d) the localized state DR. The color
bar gives P × 102.


X [Eq. (15)] presented in Fig. 5. For the ideal case 
X =
2.30m1/2

e a0. A negative value does not mean that the initial
localization is not on the right side but that later transitions
may induce a large oscillation on the left side. Whatever the
sign, a nonzero value confirms the existence of a dissymmetry
linked to a residual coherence. The positive chirp increases
the dissymmetry only for τ in the range 10–35 fs. For longer

FIG. 5. Electronic dissymmetry 
X (in m1/2
e a0) defined by

Eq. (15) for two polarized pulses along y or z with positive ( f > 1)
and negative ( f < 1) chirps. The f factor determining the chirp rate
is given in Eq. (17).

FIG. 6. Optimal fields Ey (thin black line) and Ez (thick red line)
obtained when the guess fields are pulses of 50 fs with a negative
chirp with f = 0.962 [Eq. (17)]. The fit is obtained with six Gaus-
sian pulses for each polarization. The parameters are given in the
Supplemental Material [66].

pulses (35–50 fs) that exceed the coherence lifetime of the
ideal case, the efficiency is very weak in the absence of any
chirp ( f = 1). Negative chirps slightly improve the result.

In the following section, we select three pulses of 50, 15,
and 10 fs with the chirp factor f giving the maximum absolute
value of 
X . The first is longer than the decoherence time of
the ideal case and the second one corresponds to the vibra-
tional period of the effective coupling mode. These pulses are
guess fields for an optimization by OCT to check which kind
of restructuring is finally obtained.

C. Optimal control

The target reduced density matrix ρtarget at the end of the
pulses τ is the one corresponding to the superposition |+〉 =
(|S1〉 + |S2〉)/

√
2 with zero population in the initial equilib-

rium ground state. Our strategy is to let OCT optimize the y
and z fields on a time grid. The objective index I [Eq. (18)] is
never 100% (i.e., |ρS1S2 | = 0.5) because we limit the field am-
plitude to an upper value of 10−2 a.u. (5.1422 × 109 V m−1)
corresponding to an intensity of 3.51 × 1012 W cm−2. The
OCT fields obtained from the 50-, 15-, and 10-fs chirped guess
fields and their fits are presented in Figs. 6, 7, and 8, re-
spectively. We then fit the optimal fields for each polarization
with a sequence of NG simple Gaussian pulses with central
time TM ,

Efit
y (z)(t ) =

NG∑
i

ε0i e
− (t−tMi )2/2σ 2

i cos[ωi(t − tMi )]. (23)

The optimally fitted parameters ε0i , tMi , σi, and ωi are given
in the Supplemental Material [66]. We use the trust region
reflective algorithm of the PYTHON module scipy.optimize
to fit the optimal fields. The algorithm uses nonlinear least
squares to fit data to a functional form [95,96]. In each case,
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FIG. 7. Optimal fields Ey and Ez obtained when the guess fields
are pulses of 15 fs with a positive chirp with f = 1.03 [Eq. (17)].
The fit is obtained with three Gaussian pulses for each polarization.
The parameters are given in the Supplemental Material [66].

OCT strongly reshapes the simple chirped pulses and suggests
a sequence of pulses with nearly the same delay for both
polarisations. The rms of the fits is very good. It is given
with all the parameters in the Supplemental Material [66].
The fitted fields with a pulse sequence are not fully identical
but they retain the main features of the dynamics as seen in
Figs. 9–11, where dynamics are compared.

(i) In the 50-fs case, the penalty factor is α = 5 × 103

[Eq. (19)]. The performance index [Eq. (18)] after 50 itera-
tions is I = 84% providing a coherence of 0.34. Modifying

FIG. 8. Optimal fields Ey and Ez obtained when the guess fields
are pulses of 10 fs with a positive chirp with f = 1.04 [Eq. (17)].
The fit is obtained with three Gaussian pulses for each polarization.
The parameters are given in the Supplemental Material [66].

FIG. 9. Comparison between the dynamics driven by the chirped
y and z pulses of 50 fs with f = 0.962 [Eq. (17)], the optimal pulses
obtained with these guess fields, and the sequence of six Gaussians
pulses fitting each OCT pulse. (a) Population in the ground state S0

(black) and the excited electronic states S1 (red) and S2 (blue). (b) Av-
erage position of the coupling mode in the localized diabatic states
DR (black) and DL (red). (c) Modulus of the electronic coherence
between the two excited states (21) and (22).

α only influences the rate of convergence, but the optimal
coherence never exceeds about 0.35 but nevertheless remains
three time higher than the value given by the guess field. The
creation of the coherence is more difficult for long pulses.
However, the dissymmetry of the average value of the cou-
pling mode on both sides is more striking for the long pulses.
The OCT notably improves the depletion of the ground state,

FIG. 10. Comparison between the dynamics driven by the
chirped y and z pulses of 15 fs with f = 1.03 [Eq. (17)], the optimal
pulses obtained with these guess fields, and the sequence of three
Gaussians pulses fitting each OCT pulse. The description of each
panel is the same as in Fig. 9.
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FIG. 11. Comparison between the dynamics driven by the
chirped y and z pulses of 10 fs with f = 1.04 [Eq. (17)], the optimal
pulses obtained with these guess fields, and the sequence of three
Gaussians pulses fitting each OCT pulse. The description of each
panel is the same as in Fig. 9.

the residual population being about 0.05 versus 0.62 with the
chirped pulse. The OCT field consists of six pulses (around
5, 10, 17, and 29 fs) roughly corresponding to two pulses per
vibrational period (14 fs).

(ii) In the 15-fs case, with α = 1 × 104 one gets I = 89%
and a coherence of 0.42 after 150 iterations. The creation of
the coherence is better for the short pulses, i.e., 0.42 as com-
pared to 0.28. The residual population in the ground state is
about 0.05 versus 0.38. The reshaping is particularly striking
in this case leading to two main pulses for each polarization.

(iii) In the 10-fs case, with α = 2 × 104, I = 87% with
a coherence of 0.43 versus 0.29 after 30 iterations. The im-
provement is less spectacular. Even for this short duration,
OCT reshapes the field, suggesting a central shorter pulse of
higher amplitude in a train of three pulses.

In all the previous examples, the simultaneous addressing
of the two electronic states by the two polarizations is main-
tained in the OCT fields. To check the stability of this result,
we also use a sequence of pulses with the two alternating
polarizations and the same duration. Without a bath, the first
π/2 pulse polarized along z makes a superposition of the
ground and one excited state. Then a π pulse polarized along y
in resonance with the second transition inverts the population
of the ground and the second excited state. This guess field
is less efficient than the simultaneous chirped pulses. The
interesting result is that OCT reshapes the fields by mixing
the polarization from the beginning. This is illustrated for
a sequence of total duration of 15 fs in the Supplemental
Material [66].

D. OCT by tensor trains

Finally, in the 10-fs case (see Fig. 11) we compare the
simulations with the usual Cash-Karp-Runge-Kutta (denoted
by HEOM) and the TT implementation (denoted by TT-

FIG. 12. Comparison between the dynamics performed by the
adaptive Runge-Kutta method (HEOM) and TT simulation (TT-
HEOM) with 10-fs pulse duration when the spectral densities are
approximated by one (1L) or two (2L) Lorentzians. The HEOM level
is 8. The OCT is driven in 50 iterations with α = 2 × 104 for 1L and
30 iterations with α = 1 × 104 for 2L.

HEOM) described in Appendix B. For these fast dynamics,
the behavior is very similar when the spectral densities are
approximated by one or two Lorentzians, namely, the model
1L or 2L discussed above (see Fig. 3). In the 1L case, the
optimization is made in 50 iterations with α = 2 × 104. In
the 2L case, we consider 30 iterations with α = 1 × 104 (α
is decreased to speed up the optimization rate). The HEOM
level is 8 in each example. The dynamics are compared
in Figs. 12(a), 12(c), and 12(e) for 1L and in Figs. 12(b),
12(d), and 12(f) for 2L. As one could notice, adaptive Runge-
Kutta method HEOM, displayed by thin solid lines, and TT
simulations, shown by dotted lines, give roughly the same
fields, the same populations, and the same coherences. For
both cases 1L and 2L, we obtain similar encouraging results.
However, it is difficult to ensure good convergence when the
spectral density presents several peaks. The ordering of the
modes may be an important factor influencing the efficiency
of time-dependent variational principle methods [97]. Fur-
ther improvements are currently underway to consider the
reorganization of the modes [73,98], rank adaptive methods
[37,56,99–101], or hierarchical tensor-train approach [55].

VI. CONCLUSION

This work has addressed the laser control of the electronic
symmetry breaking inducing a localization and a transitory
oscillation on a given side of a symmetric dimer. The target
initial electronic state is a superposed state of two nearly de-
generate bright states coupled through a conical intersection.
An initial superposition with equal weights of the delocalized
excited adiabatic states in phase (plus sign) or out of phase
(minus sign) corresponds to a localized diabatic state with
electronic density on one side or the other of the symmetric
dimer. Preparing a superposition means maintaining the elec-
tronic coherence during the control process. Ultrashort pulses
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with a broad energy band are a priori more favorable, but
they may interfere with additional bright states. We mainly
considered control extending several tens of femtoseconds to
ensure a width of about 0.25 eV. Then decoherence occurs
during the pulses due to vibrational motions.

The control targets are the highest possible population
in the excited manifold and the highest possible coherence
(0.5 in our case) corresponding to the expected superposi-
tion, which induces the maximum dissymmetry. Based on
experimental constraints concerning pulse shaping (frequency
chirping rate and leading intensities) and the property of the
V-type system with orthogonal transition dipole moments, we
considered three steps. (i) We examined guess fields inspired
by mechanisms whose efficiency is well known in the ab-
sence of baths: simultaneous pulses linearly polarized along
orthogonal directions with negative or positive linear chirps
and fulfilling for their amplitudes the π/

√
2 time integration

condition, or a sequence of π/2 and π pulses with alternative
polarization. (ii) We used these guess fields to initiate an
optimal control scheme to see the suggested reshaping. (iii)
We checked the robustness of such fields by fitting them with
a sequence of simple Gaussian pulses.

It is worth noting that the dissymmetry towards the right or
the left side may be easily reversed by changing the sign of the
pulse with polarization z coupling to state S2 through μz. This
phase inversion generates the superposed state with the minus
sign and changes the populated localized side. This is verified
for the guess field and for the corresponding OCT field.

The tensor-train representation is a very promising ap-
proach for solving HEOM as it tackles the dimensionality
curse with respect to the necessary memory space. Moreover,
the TT approach is a background for future implementation
of deep learning algorithms [98]. We have explicated the TT
representation of the HEOM for OCT. However, it turns out
that the present molecular system is particularly demanding
since the electron-nuclei partition leads to strong system-bath
coupling and a high hierarchy level with the ensuing large
number of ADOs and a structured spectral density with at
least two important peaks per bath. We face several numer-
ical difficulties and instabilities when addressing structured
spectral densities. An adaptive rank is necessary during the
propagation. We have improved the results by a mixed strat-
egy including steps with the Runge-Kutta algorithm in the
variational time-dependent KSL procedure to increase the
ranks. Further developments with other adaptive methods are
ongoing [99,100].

As the molecular system is of moderate size, in principle,
the full quantum dynamics with the LVC model could be
performed by the variational multilayer multiconfiguration
time-dependent Hartree method [102] with thermal average
over initial conditions. Similar results are expected for very
short laser pulses, mainly before the so-called Zeno time
[103]. However, it is not clear whether the thermalization is
treated on an equal footing in the wave packet with initial
time average and in the open quantum system. Noise could
also be introduced in a stochastic time-dependent Schrödinger
equation with an improved treatment of the thermalization
[104].

On general grounds, one observes that OCT suggests inter-
esting strategies that could eventually be quite different from

an initial guess. For the very smooth simultaneous y and z
chirps at resonance, OCT reshapes the fields in a sequence of a
few pulses of 5 or 10 fs, slightly off-resonance and addressing
again simultaneously the two excited states. When the guess
is a sequence of π and π/2 pulses addressing successively the
two states, OCT confirms our first strategy based on simulta-
neous use of the two polarizations by mixing from the very
beginning the y and z polarizations. Optical control theory
suggests the number of individual pulses and the simultaneous
use of the polarizations. In this work we have fitted Gaussian
pulses on the OCT fields. However, the OCT fields do not
fully reach the target. The following prospective step would
be to optimize the parameters (amplitude, frequency, central
position, and width) imposing only the number of pulses sug-
gested by OCT.

The data that support this study are available on request
from the authors.
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APPENDIX A: HEOM FOR FORWARD
AND BACKWARD PROPAGATION

The non-Markovian master equation for the reduced den-
sity matrix of the system ρ̇(t ) = − i

h̄ TrB[Ĥ, ρtot(t )], where
ρtot(t ) is the full density matrix, is solved by a time-local
system of coupled equations among auxiliary matrices ar-
ranged in a hierarchical structure. Each auxiliary matrix has
the dimension of ρ(t ) and is labeled by a collective index

n = {n1, . . . , nK} (A1)

specifying the phonon occupation number of each decay mode
in each bath b,

K =
NB∑
b

ncor,b, (A2)

where NB is the number of baths (here NB = 2) and b =
t, c [see Eq. (10)]. The system density matrix has the index
n = {0, . . . , 0}. Matrices with an occupation number rising or
descending by one unit are the only ones connected in the
hierarchy.

The non-Markovian forward equation of OCT is an
equation with initial condition, which may be written
ρ̇(t ) = LSρ(t ) + ∫ t

0 K (t, t ′)ρ(t ′)dt ′. The corresponding cou-
pled equations of the HEOM with correlation functions
[Eqs. (10) and (11)] and with h̄ = 1 are

ρ̇n = LSρn + i
NB∑
b

ncor,b∑
k=1

nk,bγk,bρn − i
NB∑
b

[
Sb,

ncor,b∑
k=1

ρn+
k,b

]

− i
NB∑
b

ncor,b∑
k=1

nk,b
(
αk,bSbρn−

k,b
− α̃k,bρn−

k,b
Sb

)
, (A3)
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where LS· = −i[HS (t ), ·] and the parameters αk , α̃k , and γk

are defined in Eqs. (10) and (11). The analytical expressions
as a function of the spectral density parameters are given
in Refs. [77,86]. The Sb operators are defined in Sec. III.
The rising n+

k = {n1, . . . , nk + 1, . . . , nncor } and descending
n−

k = {n1, . . . , nk − 1, . . . , nncor } matrices are those for which
the occupation number differs by one unit in the hierarchy
nk → nk ± 1. The initial condition is assumed to be factorized
ρtot(t0) = ρ(t0)ρeq, where ρeq is the Boltzmann equilibrium
distribution at the chosen temperature. The separable initial
condition is justified because the vibrational bath is initially
at equilibrium and the electronic system is in the ground state
decoupled from the excited manifold. It may also be valid in
the case of an ultrafast Franck-Condon excitation.

The Lagrange multiplier of OCT is propagated with a
final condition χ (t f ) = ρtarget at the time t = t f (end of
the laser pulse). The non-Markovian equation with a final
equation involves a different memory term χ̇ (t ) = LSχ (t ) −∫ t f

t K†(t, t ′)χ (t ′)dt ′ corresponding to the following coupled
equations:

χ̇n = LSρn − i
NB∑
b

ncor,b∑
k=1

nk,bγk,bρn − i
NB∑
b

[
Sb,

ncor,b∑
k=1

ρn+
k

]

+ i
NB∑
b

ncor,b∑
k=1

nk
(
αk,bρn−

k
Sb − α̃k,bSbρn−

k

)
. (A4)

In practice they are solved backward starting from χ (t f ) =
ρtarget and all the auxiliary matrices are set equal to zero.
The factorized condition is less obvious than for the forward
preparation, but the final condition does not correspond to a
new equilibrium state of the baths.

For each electronic state m the coefficients am,b,l (t ) in
the expansion of the time-dependent thermal probability dis-
tributions Pm(Xt/c, t ) of each collective mode [Eq. (12)]
are the corresponding diagonal element of a matrix built
from the auxiliary operators Ab,l (t ) = (−1)l√

l!Cl
b(0)

∑
n

l!
�nk,b

ρn(t ),

where the sum
∑

k nk,b = l [71,82,83] runs over the index n
for which the partial level of bath b is equal to l .

APPENDIX B: TENSOR TRAINS

As already suggested by Shi and co-workers [53–55] and
later by Borelli and Dolgov [56], we investigate solving the
hierarchical equations of motion (A3) and (A4) by using
the so-called tensor-train decomposition (also referred to as
the matrix product state in the quantum physics community
[37,46–50,52,97,105]). The usual truncation of the hierarchy
retains all the ADOs up to a level L, so the sum of the
occupation number is equal to L.

1. Tensor-train representation of the density matrices

The HEOM formalism relies on a set of auxiliary matrices
which is basically a multidimensional array ρn, where n and
K are defined in Eqs. (A1) and (A2), respectively. Instead
of considering a set of density matrices of dimension n × n,
with n the number of states in the system Hamiltonian HS , we
flatten each matrix as an n2 vector without loss of generality.
This vectorized density matrix will be denoted by ρ̄n and each

FIG. 13. Tensor-train decomposition schematization: Ak are the
cores of the tensor; α runs from 1 to n2, where n is the number of
states in the system; and nk is the index for each decay mode that
runs from 0 to nmax.

of its element α (α ∈ [1, n2]) will be written in the TT format
as

ρ̄α
n ≈

∑
j0

∑
j1

· · ·
∑

jk

· · ·
∑
jK+1

A0( j0, α, j1)A1( j1, n1, j2) × · · ·

× Ak ( jk, nk, jk+1) · · · AK ( jK , nK , jK+1). (B1)

Here jk goes from 1 to rk , where rk is the kth rank of the tensor
(note that r0 = rK+1 = 1 for dimensionality consistency). The
Ak are called cores and consist in arrays of dimension rk ×
ne × rk+1, where ne = n2 for k = 0 and ne = nHEOM = nmax +
1 for k �= 0 (nHEOM is the hierarchy order).

Tensor trains are often schematized as shown in Fig. 13
with the tensor network displaying a train shape where several
cars are successively connected. Such decomposition is exact
as long as the tensor ranks rk grow without limitation. In
practice, rk are parameters during the simulation and one has
to carefully check the convergence over them. Details on the
mathematical background are beyond the scope of this article
but they can be found in Refs. [47,48,51]. We heavily rely
on the library TTPY developed in PYTHON and FORTRAN by
Oseledets and co-workers [91]. It provides a user-friendly
interface to build tensor trains, convert matrices (tt.matrix)
and vectors (tt.vector) in TT format, and deal with the
algebra of basic arithmetic operations (+, −, etc.) and Kro-
necker products (tt.kron) on TT-format objects.

To compute the system density matrix, we avoid a full
expansion of ρ̄α

n to overcome memory limitations. Instead, we
make use of projectors in TT format

Pα = Pα ⊗
K∏

j=1

Vj, (B2)

where Pα is a vector of dimension n2 with elements Pα,l = δα,l

and Vj a vector of dimension nHEOM with elements Vj,1 = 1
if l = 1 and = 0 if l �= 1. Thus, the elements of the system
density vector are written

ρ̄α
n={0,...,0,...,0} = Pαρ̄n. (B3)

2. Time evolution

We solve the dynamic problem by using the projector-
splitting KSL scheme [47,48,90] implemented in the TTPY

package (tt.ksl.ksl) [91]. To use this algorithm, one has
to provide a single superoperator which acts on the full
TT-converted vector ρ̄n (or χ̄n in the case of backward
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propagation) representing all the auxiliary density operators
such that

d

dt
ρ̄n = Lρ̄n, (B4)

d

dt
χ̄n = Lbχ̄n. (B5)

The Liouvillian superoperators L and Lb can be derived from
the hierarchical set of equations of motions for both the for-
ward [Eq. (B4)] and backward [Eq. (B5)] propagations. We
provide below a summary of the essential equations to build
these Liouvillian operators. It is worth mentioning that all the
necessary arithmetic operations can be performed in the TT
format.

a. Forward propagation

For the forward propagation, the associated Liouvillian
(B6) denoted in our case as a superoperator L is written

L = LS +
K∑

k′=1

(Lk′ + Lk′− + Lk′+), (B6)

where k′ = (k, b) is a collective index which addresses both
the index of the correlation function terms (k ∈ [1, ncor,b])
(see Eq.(10)) and the index of the bath (b ∈ [1, NB]). Each
of the terms in Eq. (B6) can be further derived as Kronecker
products of various operators. In the following expressions,
In denotes the identity matrix with dimensions n × n, ⊗ is a
matrix Kronecker product for two matrices, ⊗∏

is an ordered
(from left to right) sequence of Kronecker products, and δl,m is
a Kronecker delta symbol (δl,m = 1 if l = m and 0 if l �= m).
The system Liouvillian is written

LS = −i(HS ⊗ In − In ⊗ HS ) ⊗
K∏

k′′=1

InHEOM . (B7)

The damping term is

Lk′ = iγk′,t (c)In2 ⊗
K∏

k′′=1

Mk′′ , (B8)

where Mk′′ = InHEOM if k′′ �= k′ and Mk′′,lm = (l − 1)δl,m if
k′′ = k′ (l, m ∈ [1, nHEOM]). The superoperator connecting the
ADOs with an upper layer in the hierarchy is

Lk′+ = −i(Sk′ ⊗ In − In ⊗ Sk′ ) ⊗
K∏

k′′=1

M ′
k′′ , (B9)

where M ′
k′′ = InHEOM if k′′ �= k′ and M ′

k′′,lm = δl+1,m if k′′ =
k′ (l, m ∈ [1, nHEOM]). The superoperator connecting ADOs
with a lower layer in the hierarchy is

Lk′− = −i(αk′,t (c)Sk′ ⊗ In − α̃k′,t (c)In ⊗ Sk′ ) ⊗
K∏

k′′=1

M ′′
k′′ ,

(B10)

where M ′′
k′′ = InHEOM if k′′ �= k′ and M ′′

k′′,lm = (l − 1)δl−1,m if
k′′ = k′ (l, m ∈ [1, nHEOM]).

Finally, for pedagogical purpose, we provide in the Sup-
plemental Material [66] a step-by-step derivation of the
superoperators with a simplified two-dimensional system and
a single tuning bath treated by HEOM at level 2.

b. Backward propagation

The very same procedure can be applied for the backward
propagation. Thus, the backward Liouvillian Lb is written

Lb = LS +
K∑

k′=1

(−Lk′ + Lbk′− + Lk′+), (B11)

where the superoperator acting on a lower layer is slightly
modified as

Lbk′− = i(αk′,t (c)In ⊗ Sk′ − α̃k′,t (c)Sk′ ⊗ In) ⊗
K∏

k′′=1

M ′′
k′′ .

(B12)

One can check by expanding L [Eq. (B6)] and Lb [Eq. (B11)]
that Eqs. (B4) and (B5) are equivalent to Eqs. (A3) and (A4),
respectively.
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[93] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker,

Above-threshold ionization by few-cycle pulses, J. Phys. B 39,
R203 (2006).

[94] W. Zhu, J. Botina, and H. Rabitz, Rapidly convergent iteration
methods for quantum optimal control of population, J. Chem.
Phys. 108, 1953 (1998).

[95] https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.curve_fit.html.

[96] M. Branch, T. F. Coleman, and Y. Li, A subspace, interior, and
conjugate gradient method for large-scale bound-constrained
minimization problems, SIAM J. Sci. Comput. 21, 1 (1999).

[97] X. Xie, Y. Liu, Y. Yao, U. Schollwöck, C. Liu, and H. Ma,
Time-dependent density matrix renormalization group quan-
tum dynamics for realistic chemical systems, J. Chem. Phys.
151, 224101 (2019).

[98] F. A. Y. N. Schröder, D. H. P. Turban, A. J. Musser, N. D. M.
Hine, and A. W. Chin, Tensor network simulation of multi-
environmental open quantum dynamics via machine learning
and entanglement renormalisation, Nat. Commun. 10, 1062
(2019).

[99] S. V. Dolgov, A tensor decomposition algorithm for large odes
with conservation laws, Comput. Methods Appl. Math. 19, 23
(2019).

[100] A. J. Dunnett and A. W. Chin, Efficient bond-adaptive ap-
proach for finite-temperature open quantum dynamics using
the one-site time-dependent variational principle for matrix
product states, Phys. Rev. B 104, 214302 (2021).

[101] Y. Xu, Z. Xie, X. Xie, U. Schollwöck, and H. Ma, Stochas-
tic adaptive single-site time-dependent variational principle,
JACS Au 2, 335 (2022).

[102] H. Wang and H.-D. Meyer, On regularizing the ML-MCTDH
equations of motion, J. Chem. Phys. 149, 044119 (2018).

[103] L. Chen, M. F. Gelin, Y. Zhao, and W. Domcke, Mapping
of wave packet dynamics at conical intersections by time-
and frequency-resolved fluorescence spectroscopy: A compu-
tational study, J. Phys. Chem. Lett. 10, 5873 (2019).

[104] S. Mandal, F. Gatti, O. Bindech, R. Marquardt, and
J. C. Tremblay, Stochastic multi-configuration time-dependent
Hartree for dissipative quantum dynamics with strong in-
tramolecular coupling, J. Chem. Phys. 157, 144105 (2022).

[105] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
(NY) 349, 117 (2014).

043121-15

https://doi.org/10.1063/1.5100529
https://doi.org/10.1063/1.479669
https://doi.org/10.1016/j.chemphys.2017.07.011
https://doi.org/10.1103/PhysRevA.97.033411
https://doi.org/10.1143/JPSJ.74.3131
https://doi.org/10.1103/PhysRevE.75.031107
https://doi.org/10.1063/1.4766358
https://doi.org/10.1063/1.4870035
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/5.0007327
https://doi.org/10.1016/j.chemphys.2010.02.017
https://doi.org/10.1063/1.3125003
https://doi.org/10.1103/PhysRevB.95.064308
https://doi.org/10.1016/j.chemphys.2019.110392
https://doi.org/10.1007/s10543-013-0454-0
https://github.com/oseledets/ttpy
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1088/0953-4075/39/14/R01
https://doi.org/10.1063/1.475576
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1063/1.5125945
https://doi.org/10.1038/s41467-019-09039-7
https://doi.org/10.1515/cmam-2018-0023
https://doi.org/10.1103/PhysRevB.104.214302
https://doi.org/10.1021/jacsau.1c00474
https://doi.org/10.1063/1.5042776
https://doi.org/10.1021/acs.jpclett.9b02208
https://doi.org/10.1063/5.0105308
https://doi.org/10.1016/j.aop.2014.06.013

