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Correlation-enhanced Goos-Hänchen shift in Rydberg atomic gases
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We present here a theoretical investigation on the Goos-Hänchen (GH) lateral shift of a probe field as it is
reflected or transmitted from a three-layer system with a Rydberg atomic gas sandwiched between two dielectric
slabs. Driven by this weak probe field and a strong-coupling field, Rydberg atoms with dipole-dipole interactions
are capable of producing a nonlocal Kerr effect whose strength could far exceed the corresponding local Kerr
effect at a rather low atomic density. The resultant GH shift is distinct from that observed in an extremely
diluted atomic gas with negligible Rydberg-Rydberg interactions and has been examined in two particular cases
specified by different coupling frequencies for a fixed probe frequency. In both cases, the nonlocal Kerr effect
is found to result in an obvious enhancement of the GH shift and more importantly provide an alternative way
for controlling the GH shift by varying the atomic density in an appropriate range. Finally, we present a possible
realization of a highly sensitive displacement sensor by exploiting an approximately linear relation between the
displacement of one dielectric slab and the GH shift of the probe field.
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I. INTRODUCTION

A totally reflected light beam is well known to be laterally
shifted from the position predicted by geometrical optics. This
phenomenon typically referred to as the Goos-Hänchen (GH)
shift is the result of a coherence or interference effect in wave
optics [1,2]. The underlying physics lies in that the waves
comprising an incident light beam acquire different phase
changes in reflection owing to different wave vectors so that
the reflected light beam must exhibit a lateral shift from the
incident point since it cannot be perfectly reconstituted with
these phase reformed waves [3,4]. This mechanism works also
for partially reflected and transmitted light beams, which have
been extensively studied in achieving and manipulating the
GH shift [5–7] with the consideration that one usually has
regular reflection but not total reflection.

As a generic phenomenon of wave mechanics, recently the
GH shift was found to also exist in the reflections of spin
waves [8], neutrons [9], electrons [10–12], etc. As far as the
more familiar light beams are concerned, the GH shift has
been investigated in various media and structures, such as
dielectric slabs or laser dressed media [13–16], optical cavities
or waveguides [17–20], photonic crystals [21], metasurfaces
[22], optomechanical systems [23], and Weyl semimetals [24],
showing diverse features of both fundamental and applied
interests. One particular goal in these studies is to explore the
promising potentials of developing new techniques for con-
trolling the GH shift in order to build high-sensitivity sensors.

Typically, the linear optical responses of laser-dressed me-
dia [13,14,25] are utilized to observe and manipulate the
GH shift. However, on the surfaces of various nonlinear me-
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dia, e.g., that exhibit second-harmonic generation [26,27],
Helmholtz solitons [28] and Airy beams [29], the GH shift
holds more interesting physics and promises additional con-
trols. The problem lies in that the nonlinear responses of
most optical materials are too weak to be utilized. Far-off-
resonance excitations are commonly used to evade large linear
absorption but inevitably reduce the nonlinear interactions be-
tween atoms and photons. An effective scheme to attain both
limited linear absorption and strong optical nonlinearity is
electromagnetically induced transparency (EIT), with which
the linear absorption at resonance is largely suppressed due to
destructive interference between different transition pathways
while the Kerr nonlinearity can be significantly enhanced be-
cause it is immune to this destructive interference [30–32].

On the other hand, recent theoretical and experimental
investigations show that highly excited Rydberg atoms with
large principal quantum numbers provide new opportunities
to generate strong optical nonlinearities [33–35]. In short,
large dipole moments of Rydberg states can give rise to strong
dipole-dipole interactions between two atoms of distances up
to several or more than ten microns, which then create ef-
fective atomic correlations viable to be mapped into nonlocal
optical nonlinearities in the EIT regime [36–38]. The resultant
nonlinear polarizations are many orders of magnitude larger
than those obtained in the conventional EIT media and remain
strong even at the single-photon level [39,40]. Rydberg states
exhibit also long lifetimes up to hundreds of microseconds
so that the induced optical nonlinearities are largely coherent
during atom-light interactions [41,42].

We are then motivated to consider a three-layer system
where a Rydberg atomic gas is sandwiched between two
dielectric slabs as shown in Fig. 1 by aiming at the GH
shift of a probe field in regular reflection and transmission.
This Rydberg atomic gas dressed by the probe field and an-
other coupling field in the EIT regime is found to exhibit
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FIG. 1. (a) Schematic of a three-layer system formed by two di-
electric slabs with susceptibilities χ1 and χ3 and a sandwiched atomic
gas with susceptibility χ2. (b) A ladder configuration with the three
levels assumed, e.g., to be |1〉 = |5S1/2, F = 2〉, |2〉 = |5P3/2, F =
3〉, and |3〉 = |60S1/2〉 for 87Rb atoms driven by a probe (�p) and
a coupling (�c) field. An example of the negative (positive) lateral
shift is shown for a reflected (transmitted) component of the probe
field incident from the left dielectric slab. Each orange-dashed circle
refers to a blockade sphere, in which one atom in the Rydberg state
|3〉 denoted by a dark red dot forbids other atoms denoted by the light
green dots to be excited via dipole-dipole interactions.

a significant nonlocal Kerr effect arising from dipole-dipole
interactions, in addition to a weak local Kerr effect and a
comparable local linear response. Taking the respective sus-
ceptibilities into a transfer matrix, it is viable to further
examine the GH shift of a partially reflected or transmitted
probe field in a wide range of the incident angle. We focus
on two cases where the local linear susceptibility (i) vanishes
in its real part so that the probe reflection is essentially de-
termined by the nonlocal nonlinear susceptibility or (ii) is
well counteracted by the nonlocal nonlinear susceptibility in
its imaginary part to cause a great suppression of the probe
absorption. In both cases, the GH shift is greatly enhanced
as compared with that attained in the absence of Rydberg-
Rydberg interactions. Another intriguing feature is that the
GH shift depends critically on the atomic density in the sense
that a slight increase of the atomic density results in a dramatic
enhancement of the GH shift. This feature is promising for
realizing a sensitive displacement sensor because the maximal
GH shift moves evidently to another incident angle as one
dielectric slab suffers a tiny displacement for a proper atomic
density.

The organization of this article is as follows: In Sec. II,
we introduce the model and relevant equations for examining
the GH shift in reflection and transmission. The emphasis will
be placed on how to derive the linear and nonlinear suscep-
tibilities of sandwiched Rydberg atoms. Section III shows
numerical results and relevant discussions on the GH shift
enhanced by the nonlocal Kerr susceptibility in two specific
cases. The second case is further explored for realizing a dis-
placement sensor with respect to one dielectric slab. Finally,
we draw our conclusions in Sec. IV, while detailed equa-
tions for deriving the nonlocal Kerr susceptibility are given
in the Appendix.

II. MODEL AND EQUATIONS

We consider a transverse-electric (TE) polarized laser
beam acting as a probe field that is incident upon a cavity from

vacuum and then gets divided into the reflected and transmit-
ted beams, as shown by the solid-line arrows in Fig. 1(a). The
cavity is composed of three layers of homogeneous media:
two parallel dielectric slabs with susceptibilities χ1 and χ3

and thicknesses d1 and d3 separated by an atomic gas with
susceptibility χ2 and thickness d2. The reflectivities of both di-
electric slabs are not too high in the absence of high-reflecting
coatings on their surfaces so that the three-layer system should
not be considered as a high-quality cavity with an extremely-
frequency-sensitive response, hence allowing the probe field
to come in and be partially reflected and transmitted. On the
surface of the left (right) slab, a lateral shift may exist between
the center point of the reflected (transmitted) beam and the
corresponding point predicted by geometrical optics [see the
red dotted line in Fig. 1(a)]. Based on the stationary phase
theory [3,4,43], the lateral shifts of reflected and transmitted
beams can be calculated via

Sr = − c

ωp cos θ

∂φr

∂θ
,

St = − c

ωp cos θ

∂φt

∂θ
, (1)

where θ (ωp) is the incident angle (angular frequency) of the
probe field, while φr (φt ) is the phase of the reflection r (trans-
mission t) coefficient. Note that a positive St and a negative
Sr have been shown in Fig. 1(a) when they are, respectively,
in the same and opposite directions of the y component of
the probe wave vector. It is also worth noting that a detailed
derivation of Eq. (1) as in Ref. [4] indicates that Sr and St

actually result from the interference between plane waves of
different momentums (wave vectors) parallel to the cavity
surface.

Now we briefly explain how to calculate r and t via the
standard transfer-matrix approach [44]. For a weak probe field
passing through the jth layer with j ∈ {1, 2, 3}, the corre-
sponding transfer matrix can be written as

Mj =
[

cos
(
k j

z d j
)

i sin
(
k j

z d j
)
/q j

iq j sin
(
k j

z d j
)

cos
(
k j

z d j
)

]
, (2)

where k j
z = kp(ε j − sin2 θ )1/2 is the z component of the probe

wave vector in the jth layer with ε j = 1 + χ j , kp = ωp/c,
and q j = k j

z /kp. Then we have the total transfer matrix M =
M1M2M3 for the considered cavity as a product of those for
different layers. With the diagonal and off-diagonal elements
of matrix M, we further have the reflection and transition
coefficients

r = q0(M22 − M11) − (
q2

0M12 − M21
)

q0(M22 + M11) − (
q2

0M12 + M21
) , (3a)

t = 2q0

q0(M22 + M11) − (
q2

0M12 + M21
) , (3b)

with q0 = cos θ . Substituting the phases of r = |r|eiφr and t =
|t |eiφt into Eq. (1), it is straightforward to calculate the lateral
shifts of both reflected and transmitted probe beams. Above
discussions clearly show that Sr and St depend on the incident
angle θ and the angular frequency ωp of the probe field as well
as the thicknesses d1, d2, and d3 and the susceptibilities χ1, χ2,
and χ3 of different layers.
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It is of particular interest that χ2 describes the optical re-
sponse of a sandwiched atomic gas to the weak probe field and
offers us a flexible avenue to control Sr and St since χ2 can be
modified on demand by another strong-coupling field. Specifi-
cally, this atomic gas is assumed to be driven into a three-level
ladder-type EIT configuration as shown in Fig. 1(b). The
refracted probe field (after passing the left slab and before
leaving from the right slab) interacts with different atoms
by driving the |1〉 ↔ |2〉 transition of resonant frequency ω21

at a single-photon detuning 	p = ω21 − ωp. Meanwhile, the
coupling field of angular frequency ωc (traveling, e.g., along
the y direction) drives the |2〉 ↔ |3〉 transition of resonant
frequency ω32 at a single-photon detuning 	c = ω32 − ωc.
In this case, the optical response described by χ2 depends
critically on an important parameter: the double-photon de-
tuning δ defined as δ = 	c + 	p = ω31 − ωc − ωp that will
be frequently used in the following discussions. In addition,
we assume that level |3〉 refers to a high Rydberg state with
a long radiative lifetime, a large electric-dipole moment and a
strong dipole-dipole interaction [45].

With above considerations, we can write down the total
Hamiltonian for all coherently driven atoms [37]

Ĥ = Na

∫
d3rĤ(r), (4a)

as a volume integral of the local Hamiltonian Ĥ(r) for a single
atom at position r. In this integral, Na describes the atomic
density while Ĥ(r) is given by

Ĥ(r)/h̄ = 	pŜ22(r) + δŜ33(r)

− [�pŜ12(r) + �cŜ23(r) + H.c.]

+ Na

∫
d3r′Ŝ33(r′)V (r′ − r)Ŝ33(r), (4b)

with the single-atom transition (α �= β) and projection (α =
β) operators defined as Ŝαβ (r) = |β(r)〉〈α(r)| [38]. Here
�p = μ21Ep/2h̄ and �c = μ32Ec/2h̄ are Rabi frequencies of
the probe and coupling fields of amplitudes Ep and Ec, respec-
tively, with μ21 and μ32 being dipole matrix elements on the
respective atomic transitions. We have also introduced the van
der Waals (vdW ) potential V (r − r′) = C6/|r − r′|6 [46] with
C6 = 2π × 140 GHz μm6 for the |3〉 = |60S1/2〉 state of 87Rb
atoms to model the Rydberg-Rydberg interaction between one
atom at position r and another atom at position r′. Then the
integral describes that the atom at a fixed position r exhibits an
energy shift in state |3〉 as induced by its nonlocal interactions
with other atoms at variable positions r′.

The optical response of an atom at position r to the
probe field is determined by ρ21(r) defined as the expecta-
tion value 〈Ŝ21(r)〉. It is indeed a one-body density-matrix
element and can be calculated via the optical Bloch equation
ih̄∂t 〈Ŝαβ (r)〉 = 〈[Ŝαβ (r), Ĥ(r)]〉 as

∂tρ21(r) = −g21ρ21(r) + i�∗
cρ31(r)

+ i�p[ρ11(r) − ρ22(r)], (5a)

with g21 = γ21 + i	p and γ21 denoting the decoherence rate
of ρ21(r). As we can see, this equation further relates to

ρ31(r), whose dynamic evolution is governed by

∂tρ31(r) = − g31ρ31(r) + i�cρ21(r) − i�pρ32(r)

− iNa

∫
d3r′V (r′ − r)ρ33,31(r′, r),

(5b)

with g31 = γ31 + iδ and γ31 denoting the decoherence rate
of ρ31(r). The other one-body dynamic equations are listed
in the Appendix and can be solved together with Eqs. (5a)
and (5b) to calculate ρ21(r) in the steady state, provided the
two-body density matrix elements ρ33,31(r′, r) are known.
Here ραβ,μν (r′, r) is defined as 〈Ŝαβ (r′)Ŝμν (r)〉 and repre-
sents the quantum correlation between two atoms at positions
r and r′, respectively. The calculation of ρ33,31(r′, r) in
the steady state involves another set of two-body dynamic
equations, which can be attained from the set of one-body dy-
namic equations via ∂t 〈Ŝαβ (r′)Ŝμν (r)〉 = 〈∂t Ŝαβ (r′)Ŝμν (r)〉 +
〈Ŝαβ (r′)∂t Ŝμν (r)〉. Taking ρ33,31(r′, r) as an example, its dy-
namic evolution is found to obey

∂tρ33,31(r′, r) = −[g33,31 + iV (r′ − r)]ρ33,31(r′, r)

+ i�c[ρ33,21(r′, r) + ρ31,23(r′, r)]

− i�∗
cρ32,31(r′, r) − i�pρ33,32(r′, r)

− iNa

∫
d3r′′V (r′′ − r)ρ33,33,31(r′′, r′, r),

(6)

with g33,31 = g31 + �32 and �32 denoting the population
decay rate of ρ33(r′). It is not of any surprise that
Eq. (6) further involves a three-body density-matrix el-
ement ρ33,33,31(r′′, r′, r) = 〈Ŝ33(r′′)Ŝ33(r′)Ŝ31(r)〉 describing
the quantum correlation between three atoms at positions r′′,
r′, and r, respectively. Note that the integration with respect
to r′ and r′′ in the above equations should be done under the
requirement r′′ �= r′ �= r. In the following, we just consider
a few dilute-enough atomic media so that the contribution of
three-body correlation ρ33,33,31(r′′, r′, r) in Eq. (6) is negligi-
bly small, as detailed in the last paragraph of this section.

The one-body and two-body dynamic equations are rather
complicated and can be solved in the steady state by
setting ∂tραβ (r) = ∂tραβ,μν (r′, r) = 0 via the perturbation
method with respect to a weak probe field. This perturba-
tion method requires us to solve the nth-order components
ρ

(n)
αβ (r) and ρ

(n)
αβ,μν (r′, r) order by order after making the

series expansions ραβ (r) = ∑∞
n=0 ρ

(n)
αβ (r) and ραβ,μν (r′, r) =∑∞

n=0 ρ
(n)
αβ,μν (r′, r). To be more specific, we know that ρ

(n)
αβ (r)

and ρ
(n)
αβ,μν (r′, r) are proportional to �p|�p|n−1 as n is an odd

integer while to |�p|n as n is an even integer. It is also known
that some one-body density-matrix elements like ρ21(r) have
only the odd components ρ

(n)
21 (r) with n ∈ {1, 3, 5, . . .} while

others like ρ11(r) have only the even components ρ
(n)
11 (r) with

n ∈ {0, 2, 4, . . .}. As for a two-body density-matrix element
ραβ,μν (r′, r), its expansion is determined by those of two
one-body counterparts ραβ (r′) and ρμν (r).

This perturbation method with more details shown in
Ref. [37] has been used to attain the one-body first-order
component ρ

(1)
21 , which is irrelevant to Rydberg-Rydberg in-

teractions and hence independent of position r. Then we can
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write down the linear susceptibility

χ
(1)
2 = Naμ

2
21

ε0h̄

ρ
(1)
21

�p
= Naμ

2
21

ε0 h̄

ig31

g21g31 + |�c|2 , (7)

describing the linear optical response of a typical three-level
EIT system. With the same method, we have also attained the
one-body third-order component

ρ
(3)
21 = �p

[
2ig31ρ

(2)
11 + ig31ρ

(2)
33 + �∗

cρ
(2)
32

]
g21g31 + |�c|2

+ �∗
c

g21g31 + |�c|2 Na

∫
d3r′V (r′ − r)ρ (3)

33,31(r′, r),

(8)

where the one-body second-order components ρ
(2)
11 , ρ

(2)
33 , and

ρ
(2)
32 are irrelevant to Rydberg-Rydberg interactions again and

hence position independent. In a thick-enough atomic gas, it is
viable to further consider that the position dependence of the
two-body third-order component ρ

(3)
33,31(r′, r) can be averaged

out by the volume integral because V (r′ − r) reduces rapidly
with the increase of |r′ − r| so that it is safe to neglect the
boundary effect for most interacting atoms. It is why ρ

(3)
21 has

been rewritten in a position-independent form, with which we
can write down the following Kerr nonlinear susceptibility

χ
(3)
2 = χ (3)

a + χ
(3)
R = Naμ

4
21

4ε0 h̄3

ρ
(3)
21

|�p|2�p
, (9)

divided into a local (χ (3)
a ) and a nonlocal (χ (3)

R ) component.
Here χ (3)

a refers to the first term on the right-hand side of
Eq. (8) and can be realized even with independent atoms in the
absence of Rydberg-Rydberg interactions, while χ

(3)
R refers

to the second term on the right-hand side of Eq. (8) and can
be realized only with correlated atoms exhibiting Rydberg-
Rydberg interactions.

The local nonlinear susceptibility takes the form

χ (3)
a = Naμ

4
21

4ε0 h̄3

{
2ig31

P1

(
− g31

�21P1
− |�c|2g23

P1P2
+ c.c.

)

+ ig31|�2
c |

P1

(
2γ32g31 + �21g32

�21P1P2
+ c.c.

)

+ |�c|2
�21P1P2

[
ig23�32�21

P∗
1

+
(

ig23�32g31

P∗
1

+ c.c.

)

+
(

i�21|�c|2
P∗

1

− c.c.

)]}
, (10a)

with P1 = g21g31 + |�c|2, P2 = �32|g32|2 + 2γ32|�c|2, and
g32 = g∗

23 = γ32 + i	c. Here we have also introduced γ32 to
denote the decoherence rate of ρ32(r) and �21 to denote the
population decay rate of ρ22(r). The nonlocal nonlinear sus-
ceptibility takes the form

χ
(3)
R = N2

a μ4
21

4ε0 h̄3

�∗
c

P1

∫
d3r′V (r′ − r)

ρ
(3)
33,31(r′, r)

|�p|2�p
, (10b)

and will be solved numerically together with Eq. (A2) in
the Appendix since it is difficult or impossible to attain the
analytical solution of ρ

(3)
33,31(r′, r). Equation (10b) indicates

that the two-body correlation between an atom at position r′

characterized by ρ
(2)
33 and another atom at position r character-

ized by ρ
(1)
31 may largely alter the optical response to the probe

field �p with the help of the coupling field �c and the vdW
potential V (r′ − r).

Up to the third-order expansion, the total optical response
of the atomic gas to the probe field is

χ2 = χ
(1)
2 + χ (3)

a |Ep|2 + χ
(3)
R |Ep|2, (11)

which will be examined via numerical calculations in the
regime of 	p 
 γ21 to avoid significant probe absorption due
to the single-photon excitation of intermediate state |2〉 [38].
In this regime, we can determine the radius of a blockade
sphere Rb = (|C6	p|/|�c|2)1/6 [41,46], a distance from one
Rydberg atom within which other atoms hardly get excited to
the Rydberg state |3〉 [47] owing to large energy shifts caused
by Rydberg-Rydberg interactions. In this regard, the volume
integral in Eq. (10b) needs to be performed from |r′ − r| = Rb

to |r′ − r| = ∞, with the upper limit ∞ referring in fact to a
finite value roughly less than 3Rb because V (r′ − r) rapidly
reduces to become vanishing with the increase of |r′ − r|.

In Fig. 2, we examine the total optical response χ2 to the
probe field as well as its three linear and nonlinear com-
ponents against the double-photon detuning δ with a probe
detuning fixed as 	p/2π = −160 MHz and a coupling de-
tuning tuned around 	c = −	p. Figure 2(a) shows that the
coupling field shifts the resonant frequency of the linear
susceptibility χ

(1)
2 (i.e., that of the Rydberg state |3〉) by

an amount −|�c|2/	c ≈ −2.13γ21. It is also clear that the
linear absorption characterized by Imχ

(1)
2 > 0 appears quite

weak because the probe field is far detuned from transition
|1〉 ↔ |2〉. Figures 2(b) and 2(c) show that the local (χ3

a |Ep|2)
and nonlocal (χ3

R|Ep|2) nonlinear responses exhibit resonant
features near δ ≈ −2.13γ21 as well, although the former is
much weaker than the latter. Hence, the total probe response
χ2 shown in Fig. 2(d) is mainly determined by the comparable
linear (χ (1)

2 ) and nonlocal nonlinear (χ3
R|Ep|2) responses.

It is worth noting that the nonlocal nonlinear response
could (i) be made even stronger than the linear response by
increasing �p because the former is proportional to |�p|2
while the latter is independent of �p [cf. Eq. (11)]; (ii) exhibit
a quicker rise than the linear and local nonlinear responses
as Na increases because χ

(3)
R is proportional to N2

a while χ (3)
a

and χ
(1)
2 are both proportional to Na [cf. Eqs. (7), (10a), and

(10b)]. However, a few limitations have been imposed on the
two quantities before Eq. (11) is finally attained. First of all,
the probe field must be kept weak enough so as to ensure the
perturbation method valid. Second, there should be no more
than one Rydberg atom inside each blockade sphere, which
requires 4

3πR3
bNaρ

(2)
33 � 1 with ρ

(2)
33 ∝ |�p|2 being the lowest-

order nonzero component of Rydberg population ρ33. Finally,
three-body correlations should be negligible when calculating
ρ33,31(r′, r) in Eq. (6), which requires 1 < 4

3π (3Rb)3Naρ
(2)
33 <

2. This requirement indicates that there exist less than two,
but more than one, Rydberg atoms outside a blockade sphere
of radius Rb and meanwhile inside a concentric sphere of
radius 3Rb. These limitations can be simultaneously satisfied
in the case of Na < 5 × 1010 cm−3 and �p = 0.01γ21 with
Rb 
 5 μm attained for the parameters used in Fig. 2.
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FIG. 2. (a) Linear χ
(1)
2 , (b) local nonlinear χ (3)

a |Ep|2, and (c) nonlocal nonlinear χ
(3)
R |Ep|2 susceptibilities as well as the (d) total probe

susceptibility χ2 plotted as a function of the double-photon detuning δ/γ21. These susceptibilities are shown as pink-solid lines for their real
parts and as blue-dashed lines for their imaginary parts. The vertical red and gray lines refer, respectively, to δ = −2.13γ21 and δ = −2.12γ21

as two cases of special interest. Other parameters used in calculations are �21/2π = 6 MHz, �32/2π = 3 kHz, γ32 ≈ γ21 ≈ �21/2, γ31 ≈
�31/2, 	p/2π = −160 MHz, �c/2π = 32 MHz, �p = 0.01γ21 equivalent to Ep = 1.11 V m−1, λp = 780 nm, μ21 = 3.58 × 10−29 C m, and
Na = 4.0 × 1010 cm−3.

III. THE LATERAL SHIFT

In this section, we focus on typical characteristics of the
lateral shifts of both reflected and transmitted probe fields by
paying attention to the important roles of the nonlocal Kerr
nonlinearity. It is of particular interest to note from Fig. 2
that, in a narrow range of δ, Imχ

(1)
2 and Imχ3

R|Ep|2 have the
opposite signs so as to yield a reduced absorption coefficient
while Reχ (1)

2 and Reχ3
R|Ep|2 have an identical sign so as to

yield an enhanced refractive index. These features, desired
for attaining large lateral shifts, inspire us to consider two
specific cases: (I) δ 
 −2.13γ21 marked by the vertical red
lines, at which Reχ (1)

2 vanishes as shown in Fig. 2(a) and Reχ2

is mainly determined by Reχ (3)
R ; (II) δ 
 −2.12γ21 marked

by the vertical gray lines, at which Imχ
(3)
R well counteracts

Imχ
(1)
2 and a dip appears in Imχ2 as shown in Fig. 2(d). Note

that Imχ (3)
a < 0 in Fig. 2(b) and Imχ

(3)
R < 0 in Fig. 2(c) do not

mean an amplification of the probe field because the overall
probe response is determined by χ2 and the atomic medium
exhibits loss (gain) only if Imχ2 is positive (negative). We
further assume d1 = d3 = 5 μm and χ1 = χ3 = 1.22 for the
two dielectric slabs. Then it is viable to calculate the lateral
shifts of reflected and transmitted probe fields via Eqs. (3a)
and (3b) after taking d2 = 95 μm and χ2 in Fig. 2(d) into
Eq. (2).

The case I corresponding to δ = −2.13γ21 is a situation
where the probe and coupling fields are at exact resonance
with the double-photon transition |1〉 ↔ |3〉. The total probe
susceptibility χ2 
 0.002 + 0.001i attained in this case has
been used to plot the reflection modulus |r|, the reflection
phase φr , and the lateral shift Sr as shown by the orange solid
lines in Figs. 3(a1), 3(b1), and 3(c1). We find from Fig. 3(a1)
that a series of minima in reflection modulus appear at certain
incident angles, indicating cavity-like resonances between the
incident probe field and the three-layer system. Each of these
minimum is accompanied by a sharp change of reflection
phase, as shown in Fig. 3(b1). Based on Eq. (1), we can say
that such sharp phase changes will result in considerable lat-
eral shifts of the reflected probe field, as shown in Fig. 3(c1).
The largest lateral shift is seen to appear at θ 
 0.14 rad due
to a sudden change of φr , which is, however, meaningless as
|r| is exactly vanishing.

To have an insight into the contribution of Rydberg-
Rydberg interactions, we have presented relevant results
attained in the absence of a nonlocal Kerr nonlinearity, i.e.,
with χ2 = χ

(1)
2 + χ (3)

a |Ep|2 
 −5 × 10−5 + 0.003i, as shown
by the gray dashed lines in Figs. 3(a1), 3(b1), and 3(c1). A
direct comparison of these orange solid and gray dashed lines
shows that the lateral shift is evidently enhanced, when the
nonlocal Kerr nonlinearity is included with χ

(3)
R �= 0, because

the oscillations of |r| and φr become more prominent. It is
also important that larger lateral shifts can be achieved with
stronger reflections as the incident angle increases. This is

FIG. 3. (a1) Modulus |r| and (b1) phase φr of the reflection
coefficient as well as the corresponding (c1) lateral shift Sr are
plotted with orange solid lines as a function of the incident angle
θ . For the transmitted field, |t |, φt , and St are plotted, respectively,
in panels (a2), (b2), and (c2). The gray dashed lines describe rele-
vant results attained in the absence of a nonlocal Kerr nonlinearity.
Relevant parameters are the same as in Fig. 2 except δ = −2.13γ21

corresponding to case I.
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FIG. 4. (a1) Modulus |r| of the reflection coefficient and (b1) the
corresponding lateral shift Sr against the incident angle θ . For the
transmitted field, |t | and St are plotted, respectively, in panels (a2)
and (b2). Relevant parameters are the same as in Fig. 2 except δ =
−2.12γ21 corresponding to case II.

more or less contrary to the usual trade-off in the sense that the
phase discontinuity on a lossless dielectric slab at resonance
can give rise to a giant lateral shift with null reflection [13]
while introducing weak absorption will yield minor but avail-
able reflection with an attenuated lateral shift [14,25]. It is thus
clear that Rydberg-Rydberg interactions can reduce some-
what the trade-off between the lateral shift and the reflection
modulus because Reχ (3)

R (Imχ
(3)
R ) has a positive (negative)

contribution to Reχ2 (Imχ2).
In Figs. 3(a2), 3(b2), and 3(c2), we plot modulus |t | and

phase φt of the transmission coefficient as well as the lateral
shift St with the orange solid referring to χ

(3)
R �= 0 while

the gray dashed lines referring to χ
(3)
R = 0. It is seen that

the transmission modulus |t | can be greatly enhanced while
the transmission phase φt remains roughly unchanged as the
nonlocal Kerr nonlinearity is included. In addition, the lateral
shift seems independent of the nonlocal Kerr nonlinearity for
smaller incident angles at which |t | and φr always change
smoothly with negligible oscillations. However, a difference
occurs at the incident angles θ > 0.2 rad where |t | and φt start
to oscillate in the situation of χ

(3)
R �= 0, yielding thus slightly

enhanced lateral shifts. It is of no doubt that greatly enhanced
lateral shifts will be attained due to stronger oscillations of |t |
and φt at larger incident angles (not shown) as the nonlocal
Kerr nonlinearity is included.

The case II corresponding to δ 
 −2.12γ21 is another in-
triguing situation where Rydberg-Rydberg interactions alter
the optical response of the atomic gas mainly via the imag-
inary part of the nonlocal Kerr nonlinearity. In this case, we
have indeed χ2 
 0.002 + 5i × 10−4 where the much smaller
imaginary part indicates a minimum of the probe absorption
due to the negative interplay of Imχ

(3)
R < 0 and Imχ (1) >

0. The further suppressed absorption then results in much
larger lateral shifts, which is clear if we compare Fig. 4(b1)
with Fig. 3(c1) to examine the lateral shift in reflection, and
Fig. 4(b2) with Fig. 3(c2) to examine the lateral shift in
transmission. It is also worth noting that the weaker prober
absorption leads to stronger oscillations and larger magnitudes

FIG. 5. (a) GH shift in reflection against incident angle for
Na = 2N0 (orange dash-dotted line), 3N0 (pink dotted line), 4N0

(red dashed line), and 4.5N0 (purple solid line) plotted with d2 =
95.00 μm. (b) GH shift in reflection against incident angle for
d2 = 95.00 μm (purple solid line), 95.02 μm (red dashed line), and
95.04 μm (blue dotted line) plotted with Na = 4.5N0. (c) GH shift
in reflection against thickness of the atomic gas for Na = 4N0 (red
triangles) and 4.5N0 (purple circles) plotted with θ = 0.9426 rad.
Relevant parameters are the same as in Fig. 2 except N0 = 1.0 × 1010

cm−3 and δ = −2.12γ21 corresponding to case II.

in reflection [Fig. 4(a1)] and transmission [Fig. 4(a2)], which
hold promising potentials in the realization of highly sensitive
sensors by exploiting relevant lateral shifts.

Applications of the enhanced lateral shifts have been ex-
plored, e.g., in measuring refractive index [48], displacement
[49], temperature [50], relative humidity [51], and chemical
vapors [52]. Taking the displacement sensor as an example, a
slight variation of the medium thickness inside a cavity can
lead to a dramatic adjustment of the lateral shifts in reflection
and transmission [17,53,54]. To this end, we note that our Ry-
dberg atomic gas has an amazing feature: Its optical response
is more sensitive to the atomic density than other usual atomic
gases because the nonlocal nonlinear susceptibility χ

(3)
R is

proportional to N2
a but not Na like the linear susceptibility χ

(1)
2

and the local nonlinear susceptibility χ (3)
a . That means, the

contribution of two-body atomic correlations increases much
faster than that of one-body atomic excitations as the mean
interatomic distance becomes smaller. It is thus of interest to
examine how the lateral shift Sr is controlled by the atomic
density Na.

In Fig. 5(a), we present the lateral shift Sr against incidence
angle θ in case II with different atomic densities. The results
suggest that one Sr peak moves toward larger incident angles
and meanwhile become higher in magnitude when the atomic
density increases. The peak movement indicates a change of
the corresponding resonance point determined by the real part
of total susceptibility χ2, which can be enhanced by increasing
the atomic density. The peak enhancement, however, should
be a consequence of the suppressed absorption determined
by the imaginary part of total susceptibility χ2, which can
be reduced by increasing the atomic density. In particular, a
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sharp and tall peak is observed at θ 
 0.9422 rad for Na =
4.5 × 1010 cm−3, which cannot be further increased so as to
not break the validity of our perturbation calculations. This
sharp and tall peak is an excellent candidate for exploring
sensor applications, e.g., in the atomic layer thickness or
the displacement of one dielectric slab. We then examine in
Fig. 5(b) how it depends on the atomic thickness d2 by plotting
Sr for d2 = 95.00 μm, 95.02 μm, and 95.04 μm, respectively.
It is found that the peak moves toward larger incident angles
with negligible profile and magnitude changes as the atomic
thickness d2 increases. More importantly, the three Sr peaks
seem to be about equally spaced for the three d2 values of
equal difference and a dramatic change of Sr seems to happen
due to a tiny change of d2, both of which are the desired effects
for building a highly sensitive sensor.

In Fig. 5(c), we present the dependence of lateral shift Sr

on atomic layer thickness d2 in a very small range of d2 ∈
[95.00, 95.05] μm. This is done for Na = 4.0 × 1010 cm−3

and 4.5 × 1010 cm−3, which have been used to calculate the
red dashed and purple solid lines, respectively, in Fig. 5(a). We
have also chosen θ = 0.9426 rad as denoted by the vertical
gray line in Fig. 5(b) where Sr is seen to increase with d2

for a fixed atomic density. From Fig. 5(c), we can see that
an approximately linear relation holds between Sr and d2

for both curves denoted by red triangles and purple circles.
Then a displacement sensor may be envisaged in case that a
slight change of atomic layer thickness d2 is interpreted as
a small displacement of one dielectric slab. It is clear that
the slope of lateral shift against slab displacement depends
on the atomic density, a steeper slope indicating a larger
sensitivity is typically attained for a higher atomic density. We
estimate, in particular, that the displacement sensitivity is ap-
proximately 11.2 mm/μm (3.2 mm/μm) for Na = 4.5 × 1010

cm−3 (4.0 × 1010 cm−3).

IV. CONCLUSIONS

In summary, we have investigated the lateral GH shifts
in both reflection and transmission for a probe field inci-
dent upon a three-layer system with a sandwiched Rydberg
atomic gas. Numerical results show that Rydberg-Rydberg
interactions can result in a remarkable nonlocal nonlinear
response, which is much stronger than the local nonlinear
response and meanwhile comparable to the linear response at
a quite low atomic density. In two particular cases referring
to different double-photon detunings, the nonlocal nonlinear
response manifests itself in a maximum of the refractive index
and a minimum of the absorption coefficient, respectively, in
the total response as it is added to the linear response. This

then leads to sharp reflection and transmission resonances in
both cases and hence enhanced lateral GH shifts at a series of
incident angles of the probe field. The sensitivity of enhanced
lateral GH shifts to density and thickness of the Rydberg
atomic gas are then explored in case II to envisage a promising
displacement sensor.
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APPENDIX: ONE-BODY DENSITY-MATRIX EQUATIONS

In addition to Eqs. (5a) and (5b), other dynamic equa-
tions of one-body density-matrix elements are

∂

∂t
ρ11 = �21ρ22 − (i�pρ12 + c.c.), (A1a)

∂

∂t
ρ22 = �32ρ33 − �21ρ22 − (i�cρ23 − i�pρ12 + c.c.),

(A1b)

∂

∂t
ρ33 = −�32ρ33 + (i�cρ23 + c.c.), (A1c)

∂

∂t
ρ32 = −g32ρ32 + i�cρ22 − i�cρ33 − i�∗

pρ31

− iNa

∫
d3r′V (r′ − r)ρ33,32(r′, r, t ). (A1d)

One can obtain dynamic equations for two-body density-
matrix elements from above one-body equations, and then
solve them using the perturbation method as explained in
Sec. II. We are only interested in the third-order two-body
density-matrix element ρ

(3)
33,31 that determines the nonlocal

nonlinear susceptibility χ
(3)
R . It can be solved from the fol-

lowing equation:

Qx(3) = q, (A2)

where x(3) (q) is a vector of the minimal number of third-order
(two-order) two-body (two-body and one-body) density-
matrix elements needed to get the desired solution, while
Q denotes the corresponding coefficient matrix composed of
some known parameters defined in Sec. II. To be more spe-
cific, we have

x(3) = [
ρ

(3)
22,21, ρ

(3)
22,31, ρ

(3)
33,21, ρ

(3)
33,31, ρ

(3)
32,21, ρ

(3)
21,23, ρ

(3)
32,31, ρ

(3)
31,23

]T
,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M31 �∗
c −i�23 0 �∗

c −�c 0 0
�c M32 0 −i�23 0 0 �∗

c −�c

0 0 M33 �∗
c −�∗

c �c 0 0
0 0 �c M34 0 0 −�∗

c �c

�c 0 −�c 0 M35 0 �∗
c 0

−�∗
c 0 �∗

c 0 0 M36 0 �∗
c

0 �c 0 −�c �c 0 M37 0
0 −�∗

c 0 �∗
c 0 �c 0 M38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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q = �p
[−ρ

(2)
21,12 + ρ

(2)
21,21 − ρ

(2)
22 ,−ρ

(2)
31,12 + ρ

(2)
21,31,−ρ

(2)
33 , 0, ρ

(2)
21,31 − ρ

(2)
32 ,−ρ

(2)
23 − ρ

(2)
21,13, ρ

(2)
31,31,−ρ

(2)
31,13

]T
.

with M31 = i(g21 + �21), M32 = i(g31 + �32), M33 = i(g21 + �32), M34 = i(g21 + �32) − V , M35 = i(g21 + g32), M36 = i(g21 +
g23), M37 = i(g31 + g32) − V , M38 = i(g23 + g31), and P1 = g21g31 + �2

c .
The second-order two-body density-matrix elements in q obeys the following equations:

⎡
⎣

2ig21 0 2�∗
c

0 2ig31 − V 2�c

�c �∗
c ig21 + ig31

⎤
⎦

⎡
⎢⎣

ρ
(2)
21,21

ρ
(2)
31,31

ρ
(2)
31,21

⎤
⎥⎦ = −i

|�p|2
P∗

1

⎡
⎣

2g31

0

�c

⎤
⎦, (A3)

⎡
⎢⎢⎢⎣

2iγ21 0 −�c �∗
c

0 2iγ31 �c −�∗
c

−�∗
c �∗

c ig13 + ig21 0

�c −�c 0 ig12 + ig31

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ρ
(2)
21,12

ρ
(2)
31,13

ρ
(2)
21,13

ρ
∗(2)
21,13

⎤
⎥⎥⎥⎥⎦ = �2

p

⎡
⎢⎢⎢⎣

ig13(P∗
1 )−1 − ig∗

13P−1
1

0

�∗
c (P∗

1 )−1

−�cP−1
1

⎤
⎥⎥⎥⎦.

At last, equations for relevant second-order one-body density-matrix elements are
⎡
⎢⎢⎢⎣

−�21 �32 −i�c i�∗
c

0 −�32 i�c −i�∗
c

i�c −i�c 0 −g32

−i�∗
c i�∗

c −g23 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ρ
(2)
22

ρ
(2)
33

ρ
(2)
23

ρ
(2)
32

⎤
⎥⎥⎥⎥⎦ = −�2

p

⎡
⎢⎢⎢⎣

g31P−1
1 + g13(P∗

1 )−1

0

i�cP−1
1

−i�c(P∗
1 )−1

⎤
⎥⎥⎥⎦. (A4)
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