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Rydberg atomic antenna in strongly driven multielectron atoms
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We study the role of intermediate excitations of Rydberg states as an example of Kuchiev’s “atomic antenna”
in above-threshold ionization of xenon, in particular their effect on the coherence between the spin-orbit-split
states of the ion. We focus on the case of a laser frequency close to resonant with the spin-orbit splitting, where
a symmetry (parity) argument would preclude any coherence being directly generated by strong-field ionization.
Using ab initio simulations of coupled multielectron spin-orbit dynamics in strong laser fields, we show how
field-driven rescattering of the trapped Rydberg electrons introduces efficient coupling between the spin-orbit-
split channels, leading to substantial coherences, exceeding 10% for some photon energies.
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I. INTRODUCTION

Spin-orbit effects are usually neglected in the interaction
with strong infrared (IR) fields. A few exceptions include
the development of consistent treatment within the R-matrix
method [1], recent experiments [2,3] on imaging the spin-orbit
breathing of a hole created by strong-field ionization, and
the generation of spin-polarized photoelectrons [4] following
the proposal of [5,6]. In all these cases [2–6], the dipole
approximation holds, ensuring that no transitions between
the spin-orbit-split states were induced by the incident IR
field.

In this article we show that, even in the dipole ap-
proximation, strong IR fields trigger transitions between the
spin-orbit-split states of the ion via a mechanism resembling
the “atomic antenna” of Kuchiev [7]. In our case, an active
electron driven by a strong IR field is trapped in a long-lived
Rydberg orbit. Oscillating in the IR field, it transfers the
energy to the core via nondipole electron-electron interaction.
This atomic antenna breaks the dynamic symmetry with re-
spect to the polarization of the linearly polarized driving laser
field [8]. It thereby induces coherence between the spin-orbit-
split states of the ion, reduces the entanglement between the
ion and the photoelectron, and manifests itself in the photo-
electron spectra.

This article is arranged as follows: in Sec. II, we introduce
the degree of coherence between ionic states and discuss why
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parity-conservation arguments require the coherence to vanish
when the photon energy matches the spin-orbit splitting; in
Sec. III, we present the main computational results that con-
tradict these expectations, as well as our explanation. Finally,
Sec. IV concludes the article.

II. THEORY

We consider a xenon atom, initially in the ground state,
interacting with an IR pulse with carrier photon energy
h̄ω close to the spin-orbit splitting of the cation, �Eso ≈
1.3 eV, η

def= h̄ω/�Eso ∼ 1 (atomic units h̄ = e = a0 = me =
1 are used in the following). Our calculations include all
relevant electronic excitations (i.e., single excitations or
ionizations from 5s1/2, 5p1/2, or 5p3/2 are allowed) and
account for spin-orbit coupling effects. We solve the time-
dependent Schrödinger equation in the dipole approximation
and the length gauge for a configuration-interaction sin-
gles (CIS) ansatz that allows single excitation or ionization
from a Hartree–Fock reference [9–14]. The spin-orbit in-
teraction is treated using an energy-consistent relativistic
effective-core potential [15] (see [16] for an alternative option
based on the four-component Dirac equation). Ion-resolved
above-threshold ionization (ATI) photoelectron spectra are
computed [14] using the surface flux techniques with Volkov
asymptotics [17–22]. From these spectra, we compute the
reduced density matrix {ρIJ}, obtained by tracing over the
photoelectron degrees of freedom. We then form the normal-
ized degree of coherence:

ρ̃IJ
def= ρIJ√

ρIIρJJ
, (1)

where ρIJ is the coherence between I and J and ρII and ρJJ

are the populations in ion states I and J , respectively. Further
details are given in Appendix A.
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FIG. 1. Sketch of the energy diagram for ATI from xenon for

η
def= h̄ω/�Eso = 0.9; the numbers indicate the number of photons

necessary to reach a certain final energy. The three most important
pathways are (i) direct ionization into the 5p−1

3/2 channel including
elastic rescattering, (ii) direct ionization or elastic rescattering in
the 5p−1

1/2 channel, and (iii) indirect contributions due to inelastic
rescattering from 5p−1

3/2 to 5p−1
1/2 (this dominates over rescattering in

the other direction). (a) Total energy (photoelectron + ion), relative
to the field-free neutral atom. In this picture, the energy conservation
in inelastic scattering is easily seen. (b) Energies of the photoelec-
trons in each channel. Nonzero photoelectron overlap is necessary for
coherence between the ion cores to exist. For η ∼ 1, photoelectrons
with similar kinetic energies are due to the absorption of a different
number of photons.

Let us first consider coherence between the spin-orbit-split
states of the ion generated by ionization [3,6,23–26]. The final
state of the system “ion + photoelectron” is

|�〉 = |I〉|χI〉 + |J〉|χJ〉
= (|I〉 + |J〉w)|χI〉 + |J〉(|χJ〉 − w|χI〉), (2)

where we choose w
def= 〈χI |χJ〉 as a measure of the factor-

izability of the wave function and antisymmetrization with
respect to the coordinates of the photoelectron is implied.
Coherent spin-orbit dynamics in the ion requires nonzero
overlap between the continuum electron wave packets cor-
related to the ionic states |I〉 and |J〉, respectively: w �= 0.
Perfect overlap |w| = 1 corresponds to a 100% degree of
coherence since (2) factorizes into

|�〉 = (|I〉 + eiφ|J〉)|χ〉
for some phase φ. Perfect electron–ion entanglement corre-
sponds to w = 0.

By a symmetry argument, zero coherence and perfect en-
tanglement are expected for η = 1: nonzero coherence and
hence w �= 0 require that the two photoelectron wave packets
overlap in energy. After absorption of q photons of energy ω,
the photoelectron energy is

Wk = qω − Ip,I − Up − δαI

4
F 2

= qω − Ip,I − Up(1 + ω2δαI ), (3)

where ω is the driving laser frequency, Ip,I is the ionization
potential in ionization channel I , Up = F 2/4ω2 is the pon-
deromotive potential of the electric field with peak amplitude
F , and δαI is the difference between the polarizabilities of
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FIG. 2. Calculated ATI spectrum of xenon using 4.4 ×
1013 W/ cm2 with η ≈ 0.96 and a pulse duration of 30 fs. The dashed
blue line is the photoelectron spectrum ρ3/2;3/2 correlated with the
5p−1

3/2 ionization channel; the dot-dashed red line is the corresponding
spectrum ρ1/2;1/2 for the 5p−1

1/2 channel, and the black solid line is
the energy-resolved coherence ρ3/2;1/2 between the two channels.
Above approximately 4Up, the spectrum in 5p−1

1/2 and the coherence
exhibit structures which are very similar to the spectrum in 5p−1

3/2; we
infer that the 5p−1

1/2 channel is populated almost exclusively through
rescattering in this energy region [see (iii) in Fig. 1].

the ground state of the neutral and the state of the ion. For
η ∼ 1, the photoelectron peaks correlated with the 5p−1

3/2 and

5p−1
1/2 ion cores coincide in energy when one extra photon is

absorbed in the 5p−1
1/2 channel (see Fig. 1). Thus, the pho-

toelectron associated with 5p−1
3/2 would have opposite parity

compared to 5p−1
1/2, while the 5p−1

3/2 and 5p−1
1/2 ion cores have

the same parity. The overall parity would thus be opposite be-
tween the channels, implying w = 0 by symmetry, precluding
any coherence. If very short, broadband pulses are used, a
nonzero coherence can, nonetheless, result due to the ener-
getic overlap of two successive ATI peaks belonging to the
two thresholds. This is the mechanism behind the coherence
observed by Goulielmakis et al. [3], who use pulses of 3.8-fs
duration. This coherence diminishes when longer pulses are
used and is expected to disappear entirely for the much longer
pulses (� 15 fs) used in the present work.

III. RESULTS

We begin by considering ionization by a 30-fs pulse, tuned
just below the spin-orbit splitting (η = 0.96). As can be
seen from the simulation results in Fig. 2, there is nonzero
coherence between 5p−1

3/2 and 5p−1
1/2, where the ATI peaks

in the respective channels overlap energetically. Figure 3
shows the calculated degree of coherence (1) between the
5p−1

3/2 and 5p−1
1/2 ion cores as a function of η. Contrary to

the symmetry-based expectation, we see substantial coher-
ence, even exceeding 10% for some η. We trace its origin
to frustrated tunneling [27–29]—trapping of the electron into
Rydberg states after optical tunneling from the ground state.
Once the neutral atom is “parked” in the intermediate, excited
state for an extended amount of time, there is an opportunity to
undergo multiple successive (Stokes-)Raman transitions that
each increase the system energy by a small amount while
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FIG. 3. Ionic coherence in xenon. Top: the degree of coherence
[Eq. (1)] between ionization channels 5p−1

3/2 and 5p−1
1/2 as a function

of the ratio η between the photon energy and the spin-orbit splitting,
resolved on the mj quantum number of the ion and the spin σz of
the photoelectron. Due to the cylindrical symmetry of the ionization
process, there is a mirror symmetry in the combinations of mj and
σz. Additionally, tracing out σz leads to the final degrees of coherence
for mj = ±1/2, which coincide. Bottom: the degree of coherence for
two different pulse durations (solid black line: τ = 15 fs, dot-dashed
red line: τ = 30 fs).

conserving the parity. After multiple such Raman transitions
have occurred, the energy may increase enough to bridge the
energy gap to the next ATI order. Upon subsequent ionization
and rescattering into the other ion channel, the overlap of
photoelectrons of the same parity and energy explains the
observed coherence.

In the frequency domain, frustrated tunneling followed
by ionization corresponds to the so-called Freeman reso-
nances [30] imprinted on top of the photoelectron peaks. The
apparent “parity violation” is a manifestation of the dynamic
symmetry being broken due to the simultaneous presence of
the Freeman resonances and the spin-orbit interaction. The
Freeman resonances introduce memory in the time evolution,
breaking time-reversal symmetry, or, equivalently, spatial-
inversion symmetry between the responses of the system to
two successive half cycles. Simultaneously, the spin-orbit cou-
pling leads to the mixing of the ionic spin-orbit channels.
Together, these two effects demote the photoelectron parity
from a selection rule to a propensity rule [8]. We stress that
parity conservation of the whole wave function may not be vi-
olated, whereas there is no such guarantee for the constituent
parts. That parity with respect to the 
 quantum number of the
photoelectron is only a propensity rule has also been observed
in an analogous example in single-photon spectroscopy of
xenon [31,32], where it has also been linked to the interaction
with the core electrons.

The atomic antenna by Kuchiev [7] lends a complementary
perspective: the intermediate excited Rydberg states of the
neutral are, in some aspects, very similar to free electrons. A

TABLE I. Some dipole-allowed transitions in xenon [33] which
are likely candidates for the antenna transition, given their energies
and compositions.

�Eki (eV) i Configuration Term k Configuration Term

1.353 5p5(2Po
3/2)6s 2[3/2]o

1 5p5(2Po
3/2)6p 2[3/2]1

1.332 5p5(2Po
1/2)6s 2[1/2]o

1 5p5(2Po
3/2)7p 2[1/2]1

1.265 5p5(2Po
3/2)6s 2[3/2]o

2 5p5(2Po
3/2)6p 2[1/2]1

1.249 5p5(2Po
3/2)6s 2[3/2]o

1 5p5(2Po
3/2)6p 2[5/2]2

resonance structure is built up in the (Stark-shifted) quasicon-
tinuum of the Rydberg states, which, similar to an antenna,
can be used to channel energy into the system and thereby
drive transitions in the ion core. It is, of course, necessary
that the antenna is “sensitive” to the radiation h̄ω impinging
on it, such that it may efficiently couple the energy into the
system; this is the case if a pair of Rydberg states is separated
by h̄ω. Furthermore, one or both of the states involved in the
transition must bridge the ion manifold, i.e., have components
in both the 5p−1

3/2 and 5p−1
1/2 manifolds. A few of the likely

candidates for the antenna transitions are listed in Table I. This
is the frequency-domain perspective of the inelastic rescat-
tering. To confirm the antenna picture, we have investigated
transitions for which η ∈ [0.85, 1.15] and their strengths. The
details are given in Appendix B, along with alternative expla-
nations that we have considered, such as depletion, envelope
effects, and single-state coherence. To further investigate the
role of the Rydberg states excited via the Freeman resonances,
we perform a Fourier transform of the degree of coherence
along the η axis. This analysis reveals quantum beat periods of
the excited wave packet, which constitute a fingerprint of the
atomic antenna. By inverting the quantum beat periods, we in-
stead get the energy separation between neighboring antenna
transitions, which is shown in Fig. 4. As is evident from Fig. 4,
the very complex coherence patterns in Fig. 3 are, in fact,
due to a small number of individual antenna transitions. These
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FIG. 4. Fourier transform of the degree of coherence depicted
in Fig. 3 for the two different pulse durations (solid black line:
τ = 15 fs, dot-dashed red line: τ = 30 fs). Since h̄ω ≡ η�Eso has
the dimension of energy, the conjugate variable has the dimension of
time. Here, we instead plot the peaks as a function of the quantum
beat energy EQB, i.e., the energy separation between neighboring
antenna transitions. The vertical lines indicate the spectral width
of the driving pulse, δE = h̄

√
4 ln 2τ−1, which is ∼73.1 meV for

τ = 15 fs and ∼36.5 meV for τ = 30 fs.
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transitions occur for energy separations close to the bandwidth
of the driving pulse. This is not an accident: transitions at
these energies reach an optimal balance between the available
photon fluence (decreasing away from the carrier frequency,
making the transition less likely) and the number of photons
needed to be emitted or absorbed to close the spin-orbit gap,
which decreases for larger energy separations (increasing the
transition probability). When the pulse duration increases, the
spectral bandwidth decreases. This imposes stricter require-
ments on which antenna transitions are in resonance with the
driving field with photon energy h̄ω. It is more likely that
we will find such transitions among the higher-lying states in
the Rydberg quasicontinuum, which are more closely spaced
energetically. This explains why, for the longer pulse duration,
we observe in Fig. 4 quantum beat components of the wave
packet with comparatively smaller EQB, corresponding to the
more tightly spaced peaks in Fig. 3.

This circumstance also helps us understand why the longer
pulse duration can produce larger degrees of coherence when
we might have expected the opposite; decreasing spectral
bandwidth leads to narrower photoelectron peaks [34], which
in turn lead to smaller energetic overlap between the ATI
progressions. However, as long we are in resonance with the
antenna, a longer pulse is beneficial since we can transfer
population into the different pathways while maintaining co-
herence. This is reminiscent of the previously studied case
of weak-photon ionization of xenon [35], where longer pulse
durations also led to increased ionic coherence, albeit for a
simpler resonance condition.

We emphasize that, although the electron-electron interac-
tion is crucial for the effectiveness of the antenna mechanism,
the initial asymmetry is created by the laser field, which
imposes the natural quantization axis on the system. The
asymmetry is then transferred to the electron spin through
the spin-orbit interaction (electron spins do not couple to the
laser field in the dipole approximation). Finally, the electron-
electron interaction provides very efficient coupling between
the Rydberg electron (the antenna) and the ion core. Thus, all
three interactions are essential, with each playing a distinct
role in the process.

IV. CONCLUSIONS

We have shown that through the intermediate Rydberg-
state dynamics, we can introduce coherence between ioniza-
tion pathways that would otherwise have opposite parity by
symmetry. The coherence is sensitive to the frequency and du-
ration of the ionizing laser pulse and allows us to identify the
effect of the Rydberg atomic antenna essentially background
free.
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APPENDIX A: METHODS

We employ Hartree atomic units and implied summation
and integration over indices, orbitals, momenta, and/or spins
appearing on only one side of an equation.

1. Grid-based time-dependent configuration-interaction singles

The derivation of the equations of motion (EOMs) and a
detailed description of the propagator are given in [14]; the
EOMs agree with those of Rohringer et al. [12], Greenman
et al. [13], apart from the fact that spin restriction is not
imposed in the present work, i.e., we are solving the two-
component Schrödinger equation.

The time-dependent CIS EOMs describe the time evolution
of the amplitude c0 for the Hartree–Fock reference state and
the particle orbital |k̃〉 emanating from the occupied (time-
independent) orbital |k〉. The different particle-hole channels
can couple via either the laser interaction or the Coulomb
interaction:

i∂t c0 = 〈k|V̂L|k̃〉,
i∂t |k̃〉 = (−εk + f̂ )|k̃〉 + c0V̂L|k〉 − 〈l|V̂L|k〉|l̃〉

− (Ĵlk − K̂lk )|k̃〉 − λk̃i|i〉, (A1)

where εk is the field-free energy of the occupied orbital |k〉,
( f̂ − V̂L − εk )|k〉 = 0; the Fock operator is defined as f̂

def=
ĥ + Ĵii − K̂ii, with the one-body Hamiltonian containing the

interaction with the external laser field, ĥ
def= p2/2 + V̂C (r) +

V̂L; V̂L
def= F(t ) · r; and the direct and exchange interaction

potentials are given by their action on an orbital,

Ĵcd |e〉 def= χe(ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χd (ς2),

K̂cd |e〉 def= χd (ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χe(ς2) ≡ Ĵce|d〉,

where ς1,2 refer to both spatial and spin coordinates of the
orbitals. As we consider atoms in the present work, the par-
ticle orbitals |k̃〉 |l̃〉 · · · are conveniently expanded in a tensor
product basis formed from spinor spherical harmonics (i.e.,
n
 jm j ; see Sec. 7.2 of [36]) and finite differences for the
radial dimension [37,38]. Finally, the Lagrange multiplier λk̃i
ensures that |k̃〉 remains orthogonal to the occupied orbital |i〉
at all times.

Because we are working in the dipole approximation,
V̂L includes only E1 transitions. As discussed in the main
text, 5p−1

3/2 and 5p−1
1/2 have the same parity, which means

〈5p−1
3/2|V̂L|5p−1

1/2〉 = 0. However, even if the dipole-forbidden

(E2 and M1) transitions between 5p−1
3/2 and 5p−1

1/2 were to
be included, they would be so minuscule [39,40] that the
resulting coherence would be ∼10−7 to ∼10−9. Instead, in our
simulations we find coherence of ∼10−2 for all η ∼ 1.
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TABLE II. Calculated ionization potentials of the 5{s, p} elec-
trons of xenon, compared with their experimental values. The
corresponding Keldysh parameters, for the range of photon energies
used, indicate that ionization is in a regime intermediate between the
multiphoton and tunneling limits.

Hole Ip (eV) Expt. [33] (eV) � (eV) Keldysh γ

5s−1
1/2 27.927 23.397 4.530 1.84–2.25

5p−1
1/2 13.483 13.436 0.047 1.28–1.73

5p−1
3/2 12.026 12.130 −0.104 1.21–1.63

2. Atomic structure and pulse parameters

The EOMs (A1) as formulated would yield the same result
as a one-component calculation; that is, there would be no
effect due to the spin of the electrons. To implement spin-
orbit coupling (as well as corrections due to scalar-relativistic
effects) and at the same time reduce the number of electrons
we need to treat in the calculation, we replace the scalar
potential V̂C by the relativistic effective core potential (RECP)
of Peterson et al. [15], which models the nucleus and the
1s–3d electrons according to

V̂PP(r) = −Q

r
+ Bk


 j exp
( − βk


 j r
2
)
P̂
 j,

where Q = 26 is the residual charge, P̂
 j is a projector on
the spin-angular symmetry 
 j, and Bk


 j and βk

 j are numeric

coefficients found by fitting to multiconfigurational Dirac-
Fock all-electron calculations of the excited spectrum. For a
thorough introduction to RECPs, see, e.g., the review by Dolg
and Cao [41].

The radial grid consists of 527 points extending to 90.4
bohrs with the spacing smoothly varying according to [38]

r j = r j−1 + ρmin + (1 − e−αr j−1 )(ρmax − ρmin),

with r1 = ρmin/2, ρmin = 0.1154 bohr, ρmax = 0.1768 bohr,
and α = 0.3. The spin-angular grid is limited to �mj = 0
since we consider only linearly polarized light. For pulses
with a duration of 15 fs we use 
max = 40, and for a 30-fs
duration we use 
max = 60.

Finally, since the calculation is performed in a finite com-
putational domain, we use Manolopoulos’s [42] transmission-
free complex-absorbing potential covering the last 12.57
bohrs at the far end of the box, with a design parameter
δ ≈ 0.21; this choice gives <1% reflection for photoelectrons
with kinetic energies above 3.4 eV ( ⇐⇒ kmin = 0.5 a.u.).

With these grid parameters, the ionization potentials for the
xenon model (only 5s and 5p orbitals are allowed to ionize)
are given in Table II; the calculated spin-orbit splitting is
approximately �Eso ≈ 1.46 eV. The deviation from the ex-
perimental ionization potential is much larger for 5s−1

1/2; this is
to be expected at the CIS level of theory, where the ion is not
allowed to relax. This is, however, immaterial for the present
work since its ionization fraction is negligible.

The driving-field frequency is scanned across the range

η
def= h̄ω/�Eso ∈ [0.85, 1.15] ⇒ h̄ω = 1.24 to 1.68 eV,

and its intensity I0 = 4.4 × 1013 W/ cm2 ⇒ Up = 4.12 to
2.25 eV is chosen such that the ionization remains at the

level of a few percent. The pulse duration is 15 or 30 fs,
and the pulse shape is a smoothly truncated Gaussian [43],
with t1 = 25.5 fs, t2 = 38.2 fs and t1 = 51.0 fs, t2 = 76.4 fs,
respectively. The time propagator is second order accurate,
and 2000 steps per carrier cycle are taken, which yields a time
step τ varying from 1.67 to 1.23 as for the range of values of
η quoted above.

3. Photoelectron spectra and ion coherences

Photoelectron spectra are computed using a multichannel
extension [14] of the surface flux techniques with Volkov
asymptotics [17–22], yielding the familiar close-coupling [44]
decomposition of the wave function, resolved on final ion state
I , and photoelectron momentum k and spin σz (it is assumed
that the ion and photoelectron are sufficiently separated, such
that antisymmetrization can be safely omitted):

|�〉 = cIkσz |I〉|kσz〉.
From this long-range ansatz, we can form the density matrix
of the total system

ρ̂Ik′σ ′
z ;Jk′′σ ′′

z

def= |�〉〈�| = cIk′σ ′
z
|k′σ ′

z〉|I〉〈J|〈k′′σ ′′
z |c∗

Jk′′σ ′′
z

and, by subsequently tracing out the photoelectron, the re-
duced density matrix, expressing the coherence between ion
states,

ρIJ = 〈kσz|〈I|ρ̂|J〉|kσz〉 = cIkσz c
∗
Jkσz

(the population for the ion state I is ρI ≡ ρII ). These quantities
are used to compute the degree of coherence as shown in
Eq. (1).

APPENDIX B: CONFIRMING THE ATOMIC ANTENNA

Below, we will discuss various aspects of the atomic an-
tenna [7] and avenues we have pursued to confirm that this
proposed mechanism is, indeed, responsible for the observed
symmetry breaking and nonvanishing coherence.

1. Influence of depletion

Since the degree of coherence is on the order of a few
percent, similar to the level of ionization for the intensity
chosen, an alternative explanation could be depletion-induced
residual coherence. This would be a memory effect, similar
to hole burning, deviating from the cycle-to-cycle adiabaticity
and breaking the time-translation symmetry [45,46]. To rule
out this possibility, we artificially prevented the depletion of
the ground state by renormalizing the ground-state amplitude
after every time step, which did not appreciably change the
final coherence.

2. Dynamical effects due to the envelope

We also investigated whether the dynamical ac Stark shift
of the Rydberg states due to the envelope of the laser field
had any influence on the coherence. Substituting the Gaussian
envelope with a flattop pulse removes most of the dynamical
shifts, leaving only a constant ac Stark shift. The degree of
coherence was mostly unaffected by this change, increasing
by only a few percent.
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FIG. 5. Effect on the degree of coherence from removing
5p−1

3/2 6s from the calculation [see Eq. (B1)]; the black solid line
shows the degree of coherence for a 15-fs pulse (the same as seen
in Fig. 3 in the main text), and the red dot-dashed line shows the
degree of coherence for the same pulse, but with 5p−1

3/2 6s projected
out.

3. Removing one Rydberg state

We next consider the effects of specific Rydberg states;
we begin by confirming that the Rydberg states, populated
via frustrated tunneling, are important in the formation of the
antenna. To test this hypothesis we repeated the calculation
while preventing the 5p−1

3/2 6s state from being intermediately
excited via the laser interaction. The propagator UL for the
laser interaction V̂L is replaced according to

UL → P̂ULP̂ + Q̂, (B1)

where Q̂ is the projector onto the 5p−1
3/2 6s state and P̂ ≡

1̂ − Q̂ is the projector onto the orthogonal complement. In
this way, the 5p−1

3/2 6s state is still present in the calculation,
but it will not be coupled via the laser field; we can do
this since in the length gauge, the field-free excited state re-
mains a good approximation of the time-dependent eigenstate.
The state chosen has an ∼0.979 contribution from the 5p−1

3/2

manifold, an ∼1.95 × 10−2 contribution from 5p−1
1/2, and an

∼1.82 × 10−3 contribution from 5s−1
1/2 through configuration

interaction, which makes it a likely candidate for the antenna
mechanism.

As we see in Fig. 5, the degree of coherence is strongly
altered by the removal of 5p−1

3/2 6s, confirming the importance
of the Rydberg states in the formation of the antenna. The
exact influence of individual states on the antenna efficiency
and the final coherence is a topic for future investigations.

4. Antenna transition strength

We now investigate whether there is a correlation between
the transitions in the Rydberg manifold that constitute our
antenna and the observed variation of the degree of coherence
ρ̃3/2;1/2 with the photon energy. The weight of the antenna
transition between states a and b is estimated as

wab = |zab|2
[

min
(∣∣c(a)

3/2

∣∣2
,
∣∣c(a)

1/2

∣∣2) + min
(∣∣c(b)

3/2

∣∣2
,
∣∣c(b)

1/2

∣∣2)]
,

(B2)

where c(s)
J is the complex amplitude of state s in channel J .

Diagonalizing the field-free Hamiltonian [(A1) with V̂L = 0],
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FIG. 6. Antenna transitions: The left ordinate corresponds to the
degree of coherence for 15 and 30 fs, shown by the solid black and
dot-dashed red lines, respectively. The right ordinate corresponds
to the antenna strengths, computed using (B2) and shown as sticks
and convoluted with a Lorentzian spectral shape (B3), shown as the
dashed blue line.

we obtain the first 150 excited states and compute (B2) for all
dipole-allowed transitions. Those that fall within the energy
interval we consider are shown as a stick spectrum in Fig. 6,
alongside the degree of coherence. By convoluting the stick
spectrum with a Lorentzian

�(ω) = 1

1 + x2
, x = 2ω

�
, (B3)

where � is the FWHM, a continuous distribution is acquired;
we use � = 5 × 10−4 Ha and h/� ∼ 48 fs. The similarity
of the convoluted spectrum to the degree of coherence is
very suggestive, apart from the very strong peak at ∼1.56 eV,
which is due to a very strong dipole moment for that tran-
sition. Exact agreement cannot, however, be expected for a
variety of reasons. Equation (B2) considers dipole transitions
between field-free states, i.e., disregarding any Stark shifts in
the strong field, which means the transitions might not occur at
the positions indicated. More important, however, is the fact
that we completely disregard the relative populations of the
constituent states, which, when prepared through frustrated
tunneling, depend strongly on the laser parameters [27].

5. Antenna size

We now wish to estimate the effective size of the antenna
structure and relate that to the driving wavelength. In classi-
cal electromagnetic theory, a dipole antenna will exhibit the
largest gain if the length is 5λ/4; λ/2 is also very common.
Naturally, electron excursions on that scale would far exceed
the applicability of the dipole approximation; however, this
gives a clear motivation for why large electronic structures
are desirable to efficiently couple the external electric field
into the atom.

An excited state can, in the CIS ansatz, be written as∑
k

�̃k,

with the particle orbital |k̃〉 containing all information about
the electron in the channel associated with excitation or
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ionization from the occupied orbital |k〉. We estimate the size
of the state as

s1
def=

√∑
k

〈k̃|r2|k̃〉, s2
def=

∑
k

√
〈k̃|r2|k̃〉.

The size of the antenna is then estimated as the geometric
mean of the sizes of the two states:√

s(a)s(b).

For the transitions in Fig. 6, the estimates fall in the range of
1 to 3 nm, and with a driving wavelength of λ ∼ 900 nm, this
corresponds to λ

900 − λ
300 antenna structures. This is, of course,

far from the optimum 5λ
4 but a lot better than what could be

expected from the orbitals of the ground state; 5{s, p} have a
size of ∼0.1 nm, which would yield a λ

9000 antenna.

6. Coherence due to single Rydberg states

Through resonant excitation, it is possible to generate high
degrees of coherence since some Rydberg states have large
mixing fractions in 5p−1

3/2 and 5p−1
1/2. If an excited state has

equal amplitudes in the two channels, tracing out the excited
electron would yield an ionic superposition with a 100% de-
gree of coherence. By choosing the excited state judiciously,
we can thus achieve any desired degree of coherence from 0%
to 100%. In Fig. 7, we show the mixing coefficients of the
first 500 excited states of xenon. Below the 5p−1

3/2 threshold,
the J = 3/2 component is dominant, with only a few states
achieving large fractions of J = 1/2. Between the thresholds,
the J = 1/2 component becomes more important. It is pre-
cisely the latter states that Dill [31] considered, studying the
importance of the spin-orbit interaction in photoionization.

Can resonant excitation of an intermediate state with high
mixing between 5p−1

3/2 and 5p−1
1/2 explain our observed degree

of coherence in Fig. 3? Let us first consider weak-field ioniza-
tion, where through one-photon absorption we populate the
intermediate state with energy En, which we may write as

|�n〉 = A(cI |I〉|nI〉 + cJ |J〉|nJ〉), (B4)

where A is the antisymmetrization operator. Subsequent
single-photon ionization will lead to a final state in the form
of (2). However, even if cI and cJ in (B4) are both significant,
w = 〈χI |χJ〉 in (2) will still vanish due to energy conserva-
tion; the photoelectron peaks will appear at Wk = ω − (Ip,I −
En) and Wk = ω − (Ip,J − En), respectively. This is not the
case in the process considered by Dill [31] since the final
state involves only one ion channel, namely, 5p−1

3/2, which is
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n
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5p−1
3/2

5p−1
1/2

|c n
J
|2 J = 3/2

J = 1/2

FIG. 7. Rydberg-state channel decomposition for the 500 first
excited states of xenon; the top panel shows the populations of state
n in 5p−1

3/2 (blue circles) and 5p−1
1/2 (red diamonds) as a function

of its excitation energy En. The 5s−1
1/2 contributions are negligible

for these states. The vertical lines indicate the positions of the
ionization thresholds. The bottom panel shows the mixing angle

φn
def= arctan(|cn;1/2|/|cn;3/2|); φn = 0 indicates a state purely in 5p−1

3/2,
φn = π/2 indicates a state purely in 5p−1

1/2, and φn = π/4 indicates an
even mixture. The lines show the average mixing angle as a function
of excitation energy when convolving with a Gaussian corresponding
to 15-fs duration (solid blue line) and 30-fs duration (dashed red
line).

populated through direct ionization, as well as autoionization
of the intermediately excited states below the 5p−1

1/2 threshold.
Thus, energy conservation is automatically fulfilled.

We next consider strong-field ionization. In this case, it
is difficult to address a single state. Instead, we access the
average coherence of the state manifold, which remains low;
see the average mixing angle in the bottom panel of Fig. 7.
Furthermore, subsequent ionization and generation of ATI
progressions would still face the same predicament as stated
earlier: for η ∼ 1, photoelectron peaks with similar kinetic
energy would result from absorption of different numbers of
photons, and thus by parity, their overlap would vanish. The
atomic antenna, which repeatedly accesses parts of the excited
spectrum with high mixing fractions, allows us to amplify this
small, average mixing coefficient.
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