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Twisted quantum interference in photoelectron holography with elliptically polarized fields
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We perform a systematic analysis of how ultrafast photoelectron holography is influenced by an elliptically
polarized field, with emphasis on quantum interference effects. We find that the interplay of the external field and
the binding potential leads to twisted holographic patterns for low ellipticities and recover well-known angular
offsets for high ellipticities. Using the Coulomb quantum-orbit strong-field approximation, we assess how the
field ellipticity affects specific holographic patterns, such as the fan and the spider. The interplay of the external
field and the binding potential leads to twisted holographic patterns in the fan and to loss of contrast in the spider.
This behavior can be traced back to interfering electron trajectories and unequal changes in tunneling probability
due to nonvanishing ellipticity. We also derive tunneling times analytically using the strong-field approximation,
provide estimates for ellipticity ranges for which interference is expected to be prominent, and discuss how to
construct continuous electron momentum distributions exploring the rotation symmetry around the origin.
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I. INTRODUCTION

When matter interacts with a laser field whose intensity
is of the order of 1014 W/cm2, valence electrons can absorb
more photons than necessary for ionization. This phenomenon
is called above-threshold ionization (ATI) [1] and has been
researched intensely in theory and applications [2,3]. It is
explained by a physical picture of an electron being released
through strong-field quantum tunneling or multiphoton ion-
ization, accelerated by the field in the continuum, and finally
captured by the detector [4]. Since it propagates to the detector
via many possible pathways after ionization, an interference
pattern is present in the photoelectron momentum distribution
(PMD). These interference patterns are related to a wealth
of information, such as the molecular structure and orbital
geometries, essential for ultrafast imaging [5–9]. This has
led to the inception of photoelectron holography [10–12], in
which phase differences between distinct electron pathways
lead to several types of structures (for a review see [13]). Pho-
toelectron holography has been widely explored in linearly
polarized fields, although there are studies in orthogonally
polarized two-color [14–17] or elliptical fields [16,18].

In particular, tailored fields are a powerful tool for control-
ling both electron ionization and continuum propagation and
thus phenomena such as ATI (for reviews see [3,19,20]). Com-
plicated electron dynamics induced by a tailored field provide
intricate interference patterns that could be used for reveal-
ing detailed internal orbital structures or focusing on specific
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electronic wave-function evolution paths. Various tailored
fields, such as orthogonal two-color fields [14–17,21–28],
bicircular fields [29–44], parallel two-color fields [45–51],
and elliptically polarized fields (see, for example, [52–56]),
have been studied extensively. In particular, ATI with ellipti-
cally polarized fields has been widely investigated in circular
streaking approaches, using the numerical solution of the
time-dependent Schrödinger equation (TDSE) [57–60], clas-
sical orbit theories [4,61–63], the strong-field approximation
(SFA) [64], and the Coulomb eikonal approximation [65].
These studies considered, and sometimes even required, the
field to be almost circularly polarized. In contrast, the low-
ellipticity regime is comparatively less studied. Thereby, a key
question is how to disentangle and interpret the holographic
patterns that appear in the photoelectron spectra in terms of in-
terfering electron orbits. This information is difficult to extract
using the TDSE, in which specific quantum pathways cannot
be switched on and off as one wishes. Furthermore, in its
standard form, the SFA does not include the residual Coulomb
potential in the electron’s continuum propagation (for reviews
see, e.g., [66,67]). This potential will influence ionization,
continuum propagation, and consequently the shapes of the
photoelectron momentum distributions.

Substantial progress in this direction has been made us-
ing the Coulomb quantum-orbit strong-field approximation
(CQSFA) for linearly polarized fields [13]. The CQSFA has
allowed explicit investigation into how holographic patterns
form, through the isolation of interfering pairs of orbits.
This includes the fan-shaped pattern close to the ionization
threshold [68–70], spiderlike fringes along and near the field-
polarization axis [10,11,71–73], and a spiral-like structure
recently identified in experiments [74,75]. Multipath interfer-
ence [76] and phase differences that can be used to probe
orbital parity [77] have also been explored in conjunction
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with experiments. The CQSFA, however, has not yet been
applied to fields with elliptical or circular polarization. As it is
a nonadiabatic, fully Coulomb-distorted orbit-based method,
the CQSFA is a powerful tool to assess photoelectron holog-
raphy in this context.

Therefore, in this work we perform an analysis on the
effect of the Coulomb potential in ATI with an elliptically
polarized field based on quantum-orbit methods. We provide
the fully analytic form of the SFA solutions with an elliptically
polarized field and classify the orbits based on these solutions.
Subsequently, we focus on the low-ellipticity regime, with
emphasis on photoelectron holography. We show that the field
ellipticity, together with the residual potential, modifies holo-
graphic structures, leading to changes in contrast or twisted
spiral-like interference patterns. These features can be traced
back to the quantum interference of specific pairs of orbits,
which are affected in different ways. In the high-ellipticity
regime, we recover the angular offsets known from previous
angular streaking studies [58,62,63].

This paper is organized as follows. Section II offers an
overview of the theoretical background upon which the work
presented in this paper is based. Section III introduces saddle-
point solutions for the ionization times, the formal extension
of the CQSFA method for arbitrary ellipticity, and estimates
for the maxima of the distributions and the ellipticity range for
which interference is prominent. Subsequently, in Sec. IV we
present the photoelectron momentum distributions computed
for several field ellipticities, which are analyzed in terms of
interfering electron trajectories. Finally, in Sec. V we state the
main conclusions to be drawn from this work. We use atomic
units throughout, unless otherwise stated.

II. BACKGROUND

The Hamiltonian H in strong-field ionization can be split
into the atomic Hamiltonian Ha and the interaction Hamilto-
nian HI as H = Ha + HI , where

Ha = p̂2

2
+ V (r) (1)

is the atomic Hamiltonian. The interaction with the field is
given by

HI (t ) = −r̂ · E(t ) (2)

in the length gauge and assuming the dipole approximation
[78]. The parameters used in this article are for helium,
which is a widely used target in attosecond angular streaking
studies (see, e.g., the reviews in [79,80]), although we work
within the single-active-electron approximation. Theoretical
models using effective single-active-electron potentials have
been widely employed to describe attoclock experiments and
are able to highlight their main features successfully. Further
studies show that multielectron effects only play a secondary
role in this context [81,82].

For the CQSFA methods, we consider the binding potential
to be

V (r) = − 1√
r̂ · r̂

, (3)

which can be used to describe helium in a single-active-
electron computation asymptotically. In our SFA and CQSFA
computations we choose the ionization potential Ip = 0.97
a.u. to be that of helium.

The semianalytic results are compared against a one-
electron TDSE computation performed with the freely avail-
able software Qprop [83] using the pseudopotential

VT (r) = −1 + (α1e−α2r + α3re−α4r + α5e−α6r )

r
f (r, r0), (4)

with α1 = 1.231, α2 = 0.662, α3 = −1.325, α4 = 1.236,
α5 = −0.231, and α6 = 0.480 [84]. This potential is con-
structed such that its ground-state energy matches that of
helium in a single-active-electron framework. Unless oth-
erwise stated, f (r, r0) = 1 throughout so that the binding
potential is of Coulomb type and agrees with Eq. (3) asymp-
totically. However, in Fig. 3 we consider it to be of the form

f (r, r0) =
⎧⎨
⎩

1 for r < r0

cos7
(
π r−r0

2(L−r0 )

)
for r0 � r < L

0 for r � L,

(5)

truncating the Coulomb potential smoothly starting at r0 and
leaving only the Coulomb-free laser potential outside L. In
the present work the distance r0 is chosen as a multiple m
of the radius defined by the estimated tunnel exit Ip/Emax

[85], which is the coordinate at which the electron reaches the
continuum by tunneling through the potential barrier, while L
is chosen as r0 plus half an excursion amplitude. Explicitly,
these parameters read

r0 = m
Ip

Emax
(6)

and

L = r0 + Emax

2ω2
, (7)

where Emax is the field amplitude and relates to the pon-
deromotive energy Up, field ellipticity ε, and frequency ω as

Emax = 2ω
√

Up√
1+ε2 .

The physical reason for using this kind of potential,
where the truncation starts beyond the tunnel exit, is to
alter the Coulomb tail, but not the potential barrier. This
allows us to keep the tunneling process and the subbarrier
dynamics unaltered, but change the continuum propagation.
One-dimensional counterparts have been used by us in [86]
to investigate resonant enhancements in high-order harmonic
generation and in [87] to highlight the nonlocality of Bohmian
trajectories using time-frequency analysis. Using more con-
ventional short-range potentials would have influenced the
tunneling dynamics, whose study is outside the scope of the
present paper (see, e.g., [58,60]).

From the Schrödinger equation with the Hamiltonian
above, we can calculate the transition amplitude of an electron
from the bound state |ψ0〉 to a final continuum state |ψp〉 with
momentum p. The transition amplitude is defined as

M(p) = −i lim
t→∞

∫ t

−∞
dt ′〈ψp(t )|U (t, t ′)HI (t ′)eiIpt ′ |ψ0〉, (8)
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where Ip is the ionization potential and U (t, t ′) is the time-
evolution operator associated with the full Hamiltonian Ha +
HI (t ). This integral equation is a general formal solution and
a good starting point for developing quantum-orbit-based ap-
proaches. Throughout, we assume that the initial state |ψ0〉 is
the ground state 1s of helium.

A. Strong-field approximation

The strong-field approximation is a useful and often ap-
plied way to evaluate (8) analytically. The SFA consists in
approximating the continuum by field-dressed plane waves
and in neglecting the influence of the external laser field when
the electron is bound, although continuum-to-continuum con-
tributions may be incorporated perturbatively (for a recent
review see [67]). In its standard form, it also neglects bound-
to-bound transitions and considers only the ground state and
the continuum, although one may also modify it to incorporate
excitation [88,89].

In the SFA computations performed in this work, we
will focus on the direct electrons, which reach the detector
after tunnel ionization without further interacting with the
core. This approximation corresponds to replacing the full
time-evolution operator U (t, t ′) by the Volkov time-evolution
operator U (V )(t, t ′) in Eq. (8). This is also known as the
Keldysh-Faisal-Reiss approximation [90–92]; for the specific
formulation used here see also [93]. Then the semiclassical
action corresponding to the propagation after tunnel ionization
time t ′ can be calculated analytically as

S(p, t ′) = − 1
2

∫ ∞

t ′
[p + A(τ )]2dτ + Ipt ′. (9)

Here Ip is the ionization potential and A denotes the vector po-
tential. The SFA transition amplitude may be associated with
the coherent superposition of electron orbits in the continuum
using saddle-point methods. Therefore, we seek values of t ′
for which Eq. (9) is stationary. This gives the saddle-point
equation

∂S(t ′)
∂t ′ = [p + A(t ′)]2

2
+ Ip = 0 (10)

and (8) can be approximated by the coherent sum of orbits

M(p) ∼
∑

s

C(t ′
s )eiS(p,t ′

s ), (11)

where the prefactor C(t ′
s ) is given as

C(t ′
s ) =

√
2π i

∂2S(p, t ′
s )/∂t ′

s
2 〈p + A(t ′

s )|HI (t ′
s )|ψ0〉 (12)

and t ′
s are the saddle-point solutions. Since more than one orbit

is related to a single final momentum, interference patterns
will appear in the photoelectron momentum distributions. Due
to the residual binding potential being neglected in the contin-
uum propagation, the momentum p is conserved throughout.

B. Coulomb quantum-orbit strong-field approximation

The Coulomb quantum-orbit strong-field approximation
also starts from Eq. (8), but instead of approximating
the full time-evolution operator by its Volkov counterpart,

time-slicing techniques and path-integral methods are used.
Correspondingly, the Coulomb potential and the external
field are treated on equal footing. We use the CQSFA ac-
tion integrated over a two-pronged contour, first along the
imaginary-time axis from t ′ to its real part and subsequently
along the real-time axis from Re(t ′) up to t → ∞ [94], and
make the further approximation that the orbits are real in
the continuum. A full treatment requires complex coordinates
throughout and will lead to branch cuts; it has been discussed
in [95]. Within the CQSFA, the Coulomb-distorted transition
amplitude within the saddle-point approximation reads

M(p f ) ∝ −i lim
t→∞

∑
s

{
det

[
∂ps(t )

∂rs(t ′
s )

]}−1/2

× C(t ′
s )eiS(ps,rs,t,t ′

s ),

(13)

where the semiclassical action is given by

S(p, r, t, t ′) = Ipt ′ −
∫ t

t ′
[ṗ(τ ) · r(τ ) + H (r(τ ), p(τ ), τ )]dτ.

(14)
The full Hamiltonian reads

H (r(τ ), p(τ ), τ ) = 1
2 [p(τ ) + A(τ )]2 + V (r(τ )). (15)

The variables t ′
s, ps, and rs are the solutions of the saddle-point

equations

[p(t ′) + A(t ′)]2 = −2Ip, (16)

ṙ(τ ) = p(τ ) + A(τ ), (17)

ṗ(τ ) = −∇rV (r(τ )) (18)

for energy conservation at tunnel ionization and the elec-
tron’s intermediate momentum and position, respectively. One
should note that, in Eq. (16), an additional approximation
was made, namely, that the momentum in the first part of
the contour is constant and equal to p0 = p(t ′), and that,
in contrast to the SFA transition amplitude, one must take
into consideration the intermediate variables r(τ ) and p(τ ),
t ′ < τ < t , in the continuum propagation equations (17) and
(18). The momentum at the detector is p(t ) = p f . The term
C(t ′

s ) is given by Eq. (12), but with p replaced by the initial
momentum p0. For details about the CQSFA, refer to [94,96].

In the present work we consider ionization times within
up to four cycles and the continuum propagation extends to
roughly 20 cycles of the field. Since the laser field is periodic
and no pulse envelope is considered in the CQSFA method,
restricting ionization times to a single cycle leads to some am-
biguity with regard to where the cycle starts and finishes. This
ambiguity will influence the intracycle interference patterns
and could be removed by considering distributions incoher-
ently averaged over the offset phases marking the start of
these unit cells, but this method will not be employed here.
For details see [76].

III. ANALYTICAL ESTIMATES AND IONIZATION TIMES

In the following we consider an elliptically polarized field
approximated by two orthogonally polarized monochromatic
waves of frequency ω. This approximation holds for long
enough pulses. The vector potential and corresponding elec-
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tric field are given by

A(t ) = 2
√

Up√
1 + ε2

[cos(ωt )êz + ε sin(ωt )êx],

E(t ) = 2ω
√

Up√
1 + ε2

[sin(ωt )êz − ε cos(ωt )êx], (19)

where ε is the field ellipticity and êz and êx are the unit vectors
along the major and minor polarization axes, chosen as ẑ
and x̂, respectively. We keep the ponderomotive energy Up

constant for varying ellipticity. Equation (19) implicitly states
that we define a unit cell starting at a phase φ = 0. Other
unit cells could be chosen by setting ωt → ωt + φ, where
φ is an offset phase used to define the beginning of the unit
cell. For a coherent sum of ionization times over many cycles,
this will not play a role, but for a single-cycle photoelectron
momentum distribution this will lead to some ambiguity in
the patterns [76]. Both the CQSFA and SFA are solved in
the polarization plane pz px, which qualitatively describes the
dynamics we are interested in. Quantitatively, however, there
will be differences in the positions and strengths of the fringes
in these two-dimensional models and the three-dimensional
calculation of the TDSE we are employing, including due
to electron trajectories crossing focal points leading to Gouy
phase shifts. This effect has been discussed in [97] for fields
with linear polarization, but it is a general property of scatter-
ing trajectories. Furthermore, CQSFA and SFA calculations
use a monochromatic field while the TDSE requires a pulse
envelope, resulting in a larger spectral width, and the ef-
fective binding potentials are different close to the core.

Consequently, we expect the agreement between the methods
employed here to be only of qualitative nature.

Next we will use the action associated with the direct
SFA transition amplitude to provide analytic estimates for
the centers of the electron momentum distributions, as well
as the parameter range for which quantum interference is
expected to be significant. We will also employ the tunnel
ionization equation (10) to derive analytic solutions for the
ionization times. Although such estimates are approximate in
the presence of residual potentials, they give valuable insight
and can also be used as initial guesses for the CQSFA.

The SFA action for the elliptically polarized fields (19)
reads

Sd (p, t ′) =
(

p2
z + p2

x

2
+ Ip + Up

)
t ′

+ Up

2ω(1 + ε2)
[sin 2ωt ′ − ε2 sin 2(ωt ′)]

+ 2
√

Up

ω
√

1 + ε2
[pz sin ωt ′ − εpx cos(ωt ′)], (20)

where p = (pz, px ). The corresponding tunnel ionization
equation (10) then reads(

pz + 2
√

Up√
1 + ε2

cos(ωt ′)
)2

+
(

px + 2ε
√

Up√
1 + ε2

sin(ωt ′)
)2

+ 2Ip = 0. (21)

Equation (21) is a superposition of circles of complex radii
centered at

(p(c)
z (t ′), p(c)

x (t ′)) =
(

− 2
√

Up√
(1 + ε2)

cos ωt ′,−ε
2
√

Up√
(1 + ε2)

sin ωt ′
)

, (22)

which can be used to estimate the maxima of the distributions and the region for which quantum interference is significant.

A. Widths and maxima of the distributions

The preceding section dealt with the centers of momentum
distributions (or most probable final photoelectron momenta).
However, in order to see interference patterns in the PMD we
must consider the widths of photoelectron wave packets and
whether or not they overlap. Here we provide estimates for
the ellipticity range for which prominent intracycle interfer-
ence patterns are expected. The estimates below assume that
ionization is most probable at the peak of the field, which lies
along the z axis, and is valid for small or medium ellipticities.
They have also been performed within the SFA, for which the
field-dressed momentum is conserved in the continuum. For
linear and elliptical polarization, p(c)

z = 0 is expected since
ωt ′ = (2n + 1)π/2 are the peaks in the electric field E(t ′),
which points along the major axis and Az(t ′) = 0 for those
specific times [see Eqs. (19) and (22)]

(p(c)
z , p(c)

x ) =
(

0,−ε
2
√

Up√
1 + ε2

(−1)n

)
. (23)

For events displaced by half a cycle, p(c)
x will always have

opposite signs, so the distance between the center of the

distributions yields

p(c)
x1 − p(c)

x2 = ε
4
√

Up√
1 + ε2

. (24)

In this work we are investigating interference patterns and
hence require wave packets ionized at opposite half cycles to
still overlap to some degree in the final momentum distribu-
tion. We can find an estimate of the interference width, starting
from Delone and co-workers’ [98,99] description of the width
of the wave packets approximated to Gaussian shapes

σ⊥ =
√√√√ ω

√
Up√

1 + ε2
√

2Ip

. (25)

Requiring that the two centers are a maximum of 5σ⊥ apart
from each other such that there is still a significant enough
overlap between them to show interference patterns originat-
ing from different half cycle orbits, we find

p(c)
x1 − p(c)

x2 = 5σ⊥,
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FIG. 1. Schematic representation of the classification of orbits used in this paper. The colors of the orbits give orbits 1–4, according to
the classification criteria introduced in [96,103] of the CQSFA with a linearly polarized field. Orbits A and B (C and D) correspond to the
times t1,n (t2,n) in Eq. (29), solved asymptotically in the counterclockwise and clockwise directions, which are marked as red circular arrows.
Classification of orbits a−d are used for calculating PMDs. The curves indicated in the figure are not actual electron trajectories but schematic
illustrations of the orbit’s overall behavior.

ε
4
√

Up√
1 + ε2

= 5

√√√√ ω
√

Up√
1 + ε2

√
2Ip

. (26)

Although somewhat arbitrary, this limiting shift of 5σ⊥ has
been chosen as an educated guess, by assuming that an overlap
of at least 1σ⊥ may occur within a 3σ⊥ range from each of the
peaks such that some interference pattern is still visible (on a
logarithmic scale such as presented in Fig. 2). Solving for ε

yields

εc = 5
√

ω

32
√

Ip
√

Up

√
52ω +

√
2048IpUp + 54ω2, (27)

an estimate for a critical value of ellipticity, beyond which
interferences are expected to vanish. We can further justify the
choice of 5σ by performing the derivation of the equation for
εc for arbitrary sσ⊥ distance between the two centers

εc(s) = s
√

ω

32
√

Ip
√

Up

√
s2ω +

√
2048IpUp + s4ω2. (28)

Evaluating the above equation with the same laser parameters
but for s = 4, we find ε(4) = 0.26, while for s = 6 it predicts
εc(6) = 0.4, and in general the scaling behaves as εc(s) =
0.333 924 + 0.070 311 7(s − 5) + O((s − 5)2). The choice of
s = 5 is appropriate for our calculations and gives us an idea
of how the range of ellipticity with intercycle interference
depends on various laser parameters such as the frequency.
However, we also expect that in different circumstances (for

example, depending on the signal-to-noise ratio of particular
experiments) this s parameter would have to be adapted.

Equation (27) scales proportionally to
√

ω + O(
√

ω
3) for

constant ponderomotive energy Up and all other parameters.
This scaling is consistent with the parameter range employed
in this work. Evaluating (28) for the laser parameters typically
used in our study (see, for example, Fig. 2), we find a critical
value of around εc = 0.33, comparable to the results of our
calculations in that same figure.

B. SFA ionization times

With the elliptically polarized field as given in Eq. (19),
we obtain the analytic form of the ionization time by solving
the SFA saddle-point equation (10) for tunnel ionization in
the whole pz px plane. This goes beyond the work in [100],
which proved that the ionization time with elliptically po-
larized fields has two solutions, but only provided analytic
expressions along the major polarization axis. In the present
paper we calculate the ionization times analytically and deter-
mine the regions in the momentum plane for which they are
valid.

Since the ionization times’ analytic form is complicated,
we introduce t11,n, t12,n, t21,n, and t22,n in Eq. (29), where n
denotes the cycle number and the variables ζ and η are defined
in Appendix A. These expressions are the candidates for the
ionization time. The solutions t11,n and t21,n are both valid
in the first and third quadrants in the momentum plane and
t12,n and t22,n both hold in the second and fourth quadrants.
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FIG. 2. Photoelectron momentum distributions calculated for helium in a field of intensity 2.5 × 1014 W/cm2 and wavelength λ = 735 nm,
whose ellipticity increases from ε = 0 to ε = 0.3. The left and the right columns have been calculated with the CQSFA and the Schrödinger
equation solver Qprop [83], respectively. For Qprop, we have used an envelope with a 1 − cos16 shape for a pulse with a total duration of four
cycles, creating a near-flattop pulse, and the final PMDs have been calculated with the i-SURFV option [83]. Each panel has been normalized
to its maximum value and plotted in logarithmic scale.
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We group t11,n, t12,n and t21,n, t22,n as t1,n and t2,n to render
a solution valid in the full pz px plane [Eq. (29)]. We will
refer to the ionization quantum trajectory associated with the
ionization time t1,n as an orbit a and one with t2,n as an orbit
b (see Sec. III C for more details on orbit classification). The

necessity of specifying domains in the pz px plane stems from
the fact that Eq. (29) is obtained from a quartic equation.
This implies that two solutions become spurious in specific
domains. This derivation is sketched in Appendix A:

t11,n = 2π (n + 1)

ω
− 1

ω
arccos

[−pz + ζ + i
√

(1 − ε2)(2Ip + p2
x ) + ε2 p2

z + 4ζ 2 + η

2(1 − ε2)
√

Up

]
,

t12,n = 2π (n + 1)

ω
− 1

ω
arccos

[−pz − ζ + i
√

(1 − ε2)(2Ip + p2
x ) + ε2 p2

z + 4ζ 2 − η

2(1 − ε2)
√

Up

]
,

t21,n = 2π (n)

ω
+ 1

ω
arccos

[−pz + ζ − i
√

(1 − ε2)(2Ip + p2
x ) + ε2 p2

z + 4ζ 2 + η

2(1 − ε2)
√

Up

]
,

t22,n = 2π (n)

ω
+ 1

ω
arccos

[−pz − ζ − i
√

(1 − ε2)(2Ip + p2
x ) + ε2 p2

z + 4ζ 2 − η

2(1 − ε2)
√

Up

]
, (29)

t1,n =
{

t11,n if pz px � 0
t12,n if pz px < 0,

t2,n =
{

t21,n if pz px � 0
t22,n if pz px < 0.

(30)

Further to that, the two orbits given by the times in (29)
are not always physically significant. Depending on the pa-
rameter range, one of the saddle-point solutions may become
inaccurate and lead to divergencies in the PMDs. This is due
to the presence of Stokes transitions, which are directly related
to topological changes in the contours introduced by nonzero
ellipticity. For high ellipticities, a single ionization time will
be associated with a specific final momentum or angle. This
behavior makes the attosecond angular streaking method, the
attoclock, possible [101,102]. These Stokes transitions were
first identified in [64] for a restricted parameter range and in
[100] it was stressed that for elliptically polarized fields there
is always a Stokes transition. However, for low ellipticity they
are outside the physically relevant parameter range. Details
about Stokes transitions and the high ellipticity limit for Re(t ′)
are provided in Appendixes B and C, respectively.

C. CQSFA ionization times and orbit classification

In contrast to the SFA, the saddle-point solutions for the
CQSFA cannot be directly expressed analytically; thus, we
have to solve the saddle-point equations (16)–(18) numeri-
cally. Nevertheless, we can expect that the SFA and CQSFA
solution dynamics are most similar in those orbits whose final
momentum is the same as its ionization direction. Therefore,
we can use the SFA solution as a first guess at some point in
the momentum space. Then we can asymptotically solve other
points by using a solved neighbor point as an initial guess. In
this method, because of the core in the center, clockwise and
counterclockwise solved solutions are different; therefore, we
can obtain two CQSFA solutions from one SFA solution. As
shown in Fig. 1, we named the counterclockwise (clockwise)
solved solution derived from t1,c as solution class A (B) and
that derived from t2,c as C (D).

Each solution class A−D contains a single orbit 1–4, whose
criteria are its ionization direction and final momentum. This
classification into orbits 1–4 is robust for the linearly polarized
case because orbits in each classification A−D show similar
dynamics. For linear polarization, orbit 1 reaches the detector
directly, orbits 2 and 3 are field-dressed Kepler hyperbolae,
and orbit 4 goes around the core. This classification was
introduced in [103] and employed by us in previous publi-
cations (see, e.g., [94,96]) and one can understand how such
orbits interfere by piecing them together. For instance, orbit
A1 reaches the detector directly in the first quadrant of the
figure and interferes with orbits C3 and D2, which both start
on the “wrong” side half a cycle later, but differ in their
transverse momentum behavior. Finally, orbit B4 starts on the
same side as A1 (meaning it is born in the same half cycle), but
goes around the core before eventually reaching the detector.
The orbits in this example form interference patterns in the
first quadrant of the momentum plane.

For an elliptically polarized field, on the other hand, the
reflection symmetry about both major and minor polarization
axes breaks down. Therefore, this symmetry breaking makes
the PMD of each orbit with the classification employed in
the linear case discontinuous in both the major and minor
polarization axes. Instead, the final PMD typically shows a
point symmetry about the origin. Therefore, we introduce a
new generalized orbit classification a−d , according to the
bottom panels in Fig. 1. Orbits whose tunnel exits are lo-
cated at z > 0 (z < 0) and whose momentum components px

do not change sign during continuum propagation are desig-
nated as a (b), while orbits c (d) start at z < 0 (z > 0) and
switch half planes during continuum propagation. Note that
this classification respects the fact that a nonvanishing field
ellipticity introduces a preferential rotational direction, which
must be taken into consideration. For clarity, in Table I we
provide the correspondence between both labeling systems.
For the first and fourth quadrants, the classifications 1–4
and a−d coincide, but this is not the case in the other two
quadrants.

In this paper we will use this new heuristic classification
for orbits a−d as outlined in Fig. 1 and specified in Table I.
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TABLE I. Orbit classification compared to the linearly polarized
case. In the CQSFA calculation with a linearly polarized field, the
labeling 1–4 classifies the orbit with two different conditions, the
sign of z0 pf z and pf x p0z. However, with an elliptically polarized
field, because of the broken reflection symmetry, orbits 1–4 could not
directly be matched with orbits a−d . For convenience, we provide a
relation between orbits 1–4 and a−d here. The first column gives
the orbit classification 1–4 used in our previous work for linearly
polarized fields, the second column provides the conditions upon
the tunnel exit and momentum components for each orbit, and the
remaining columns yield the classification a−d in each quadrant
(quad.) of the pz px plane.

Orbit z0 pf z p f x p0z 1st quad. 2nd quad. 3rd quad. 4th quad.
1 + + a b b a
2 − + b a a b
3 − − c d d c
4 + − d c c d

Two main points considered in this classification are grouping
the orbits with similar dynamical behaviors and minimizing
discontinuity issues in the single-orbit PMDs. Since a and b
are less affected by the Coulomb potential, their action is more
similar to the SFA case than c and d . This difference is more
conspicuous with higher ellipticity. However, it is impossible
to create fully continuous PMDs only with orbits a and b (c
and d). Most of the significant interference patterns appear
near the minor polarization axis, not the major axis; we choose
the classification which makes PMD continuous on the minor
axis. Note that the method of classification does not affect
the complete PMD calculation, whose outcome is displayed
in Figs. 2 and 4.

IV. PHOTOELECTRON MOMENTUM DISTRIBUTIONS

Below we discuss photoelectron momentum distributions
and provide interpretations for the features encountered in

terms of the saddle-point solutions for the ionization time t ′.
Throughout, unless necessary, p refers to the final momentum,
measured at the detector. Due to the presence of the Coulomb
potential in the continuum, for the CQSFA and TDSE com-
putations this will not be the momentum p0 at the instant
of ionization. For the SFA, the final and initial momenta are
identical.

A. Comparison of the CQSFA with other methods

We will start by comparing the photoelectron-momentum
distributions calculated with the CQSFA with the outcome
of other approaches, such as the full TDSE solution and
the standard SFA. Figure 2 shows photoelectron-momentum
distributions computed with the CQSFA and the one-electron
time-dependent Schrödinger solver Qprop [83,104], for a
range of driving-field ellipticities (left and right columns, re-
spectively).

The PMDs exhibit ATI rings stemming from intercycle
interference and, for vanishing and low ellipticity, holographic
patterns resulting from interfering intracycle events. These
patterns are clearly identifiable for linearly polarized fields
(top row in Fig. 2), as the spiderlike fringes near the polariza-
tion axis (θ = 0), a fan-shaped structure close to the ionization
threshold, and a carpetlike structure around the angle θ = 90◦.
Besides minor issues associated with the finite pulse length,
the patterns are symmetric with regard to reflections around
θ = 0◦ and 90◦. For nonvanishing ellipticity, these symmetries
are lost and the patterns start to twist in the counterclockwise
direction, following the rotational sense of the driving field.
Furthermore, the centers of the distributions start to split and
the interference fringes become more and more blurred for
increasing ellipticity. These features are observed throughout,
although there are quantitative differences.

If one considers a binding potential such that its effective
barrier remains the same but its tail is truncated by multiplying
a smooth function f (r, r0) to the Coulomb potential as de-
scribed in Eqs. (5) [86], the rotational shifts in the holographic

FIG. 3. Photoelectron momentum distributions calculated for helium in a field of ellipticity ε = 0.1 and the same parameters as in Fig. 2
using the Schrödinger solver Qprop, but considering a truncated potential according to Eq. (5). We have used an envelope with a 1 − cos16

shape for a pulse with a total duration of four cycles, creating a near-flattop pulse, and the final PMDs have been calculated with the i-SURFV
option [83]. Each panel has been normalized to its maximum value and plotted in logarithmic scale. White dots represent selected interference
maxima from the full Coulomb tail calculation, light red dots from truncation with m = 2, and dark red dots with m = 1.5; the shift between
the dots highlights the rotation of the interference pattern.
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FIG. 4. Photoelectron momentum distributions computed for ellipticity values higher than that specified in Sec. III. For the Qprop
calculation in the top row and the CQSFA results in the middle row, all other field and atomic parameters are the same as in Fig. 2. For
the CQSFA in all cases, we have only employed orbits a and b as the remaining orbits are strongly suppressed in this ellipticity range [see
the Appendixes and the discussion of Im(t ′)]. The bottom row shows the single-cycle CQSFA result; thus no intercycle ATI rings are visible
anymore. We have chosen to plot the PMDs in linear scale in order to facilitate the comparison with the existing literature and highlight the
doubly peaked structure that exists in these distributions.

patterns are reduced. This is shown in Fig. 3, for which the
potential started to be altered at m = 2 and 1.5 in Eq. (6),
respectively, corresponding to r0 being 2 or 1.5 times the
approximate tunnel exit. The dots of different hues highlight
the rotation of the interference pattern between different cal-
culations. White dots highlight selected interference maxima
in the calculation with the full Coulomb tail, included in
Fig. 2. Light red dots highlight the position of those same
interference maxima in the case of the Coulomb tail being
truncated with m = 2 and dark red the same maxima again
for the truncation even closer to the binding potential with
m = 1.5.

Interestingly, the fan-shaped pattern near the ionization
threshold is also considerably altered, which is expected due
to it being caused by the Coulomb tail [94,105]. There is still
some residual twisting, possibly associated with under-the-
barrier dynamics.

The behavior described above is markedly different from
that observed for high ellipticities, which we illustrate in

Fig. 4. Both for the CQSFA and TDSE computations, the
figure shows sickle-shaped distributions with an angular
offset. This is the shape of the photoelectron distribution
typically used in angular streaking attoclock measurements
[60,63,106,107]. The holographic patterns have practically
faded and the only visible interference patterns are the ATI
rings, resulting from intercycle rather than intracycle interfer-
ence. The rings are quite prominent in the top and middle row
of Fig. 4, which were computed for four-cycle pulses. In order
to highlight the shapes of the distributions and the angular
offsets, in the bottom row we plot CQSFA results for a single
cycle. The single-cycle distributions confirm that the intracy-
cle patterns are either very faint (see the plot for ellipticity
0.4 on the left-hand side) or absent (see the remaining plots).
For high ellipticity, the blurring of the holographic patterns
is predominantly caused by a reduction in the number of
interfering orbits, which coalesce close to Stokes transitions
(see Appendix B and [100]). The PMDs obtained with the
CQSFA exhibit maxima at lower momenta than those of
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Qprop. This is likely to be due to the differences in dimension-
ality, pulse shapes, and binding potentials used (see Secs. II
and III for details).

In Fig. 5 we perform a direct comparison of the CQSFA
with the interference from the direct SFA pathways, within a
single cycle. This facilitates the study of holographic intracy-
cle interference due to the absence of ATI rings. By making
these choices, the role of the Coulomb potential becomes
even clearer, and the CQSFA plots show superimposed sets of
twisted fringes in the counterclockwise direction for elliptical
polarization. These fringes are more visible in the high-energy
region, but are present in a broad range of momenta. An-
other noteworthy feature is that the spider loses its dominance
around ellipticity ε = 0.2 (left-hand side, second row from the
bottom) and all patterns become increasingly blurred. For the
largest ellipticity in the figure (left-hand side, bottom row), the
PMD exhibits a typical splitting, with offset phase shifts due
to the presence of the Coulomb potential.

This behavior is markedly different from that of the SFA
PMDs, shown in the right column of Fig. 5, which display near
vertical fringes and no angular offset. For increasing elliptic-
ity, the PMDs in the SFA split, but the fringes remain roughly
the same. The quantum interference fades around ε = 0.3, in
agreement with our estimates in Sec. III. Furthermore, for
intermediate ellipticities, the CQSFA maxima are closer to
the major polarization axis than the SFA estimates, which is
evidence of Coulomb focusing.

B. Quantum-orbit analysis of holographic patterns

In Fig. 6 we analyze specific holographic structures by
looking at how pairs of trajectories interfere. Here we employ
the orbit classification in Sec. III, which keeps the distribu-
tions continuous along the minor axis. There may be, however,
discontinuities along the major axis. Throughout this section,
our analysis will focus on the low- and intermediate-ellipticity
regimes, for which all orbits are present in the momentum
regions of interest and the loss of contrast occurs mainly due
to increasingly different ionization probabilities associated
with the contributing orbits. This is a different scenario than
that occurring for high ellipticities, for which orbits coalesce.

In the left column of Fig. 6 we see the PMDs resulting
from the interference of orbits a and b. For linear polarization,
they give rise to a fan-shaped structure near the ionization
threshold, displayed in the top left corner of the figure. This is
expected from our previous studies of holographic structures
in linearly polarized fields [94,105]. Once the polarization
increases, the fan starts to lose contrast until the interfer-
ence pattern ultimately fades. The loss of contrast takes place
away from the major polarization axis, with the peaks of the
distributions moving further apart. This happens because the
fan stems from interfering trajectories that start half a cycle
apart, whose momentum component px parallel to the minor
polarization axis does not change sign during the continuum
propagation. Hence, the final momentum distributions result-
ing from such orbits will be peaked at opposite half planes
and will overlap less and less as the ellipticity increases.
The remainder of the fan occurs where the overlap is still
significant.

This behavior is very distinct from that of the spider, which
is shown in the middle column of Fig. 6 and results from
the interference of orbits b and c. For linear polarization, the
spider is located in the region of positive pz. According to
the classification in Fig. 1, it is formed by the interference of
orbits D2 and C3 (D3 and C2) in the upper (lower) half plane
starting in the same half cycle. The structure forming in the
region of negative pz also stems from the interference of orbits
starting in the same half cycle, namely, D1 interfering with C4
and C1 interfering with D4, although it is not known as “the
spider.” For linear polarization, the spider is symmetric upon
reflection with regard to the pz = 0 axis. For nonvanishing
ellipticity, this symmetry is lost, with the whole structure
undergoing a counterclockwise rotation and becoming more
prominent in the lower momentum half plane. There is also
a blurring in the spider fringes, initially close to the major
polarization axis (second and third rows) and subsequently
throughout (bottom row).

Finally, in the right column of Fig. 6 we plot the PMDs
resulting from the interference of orbits a and c. Those or-
bits start at different half cycles, but the final momenta will
populate the same half plane. This is due to the momentum
component px along the minor polarization axis changing sign
during the electron’s continuum propagation. With increasing
ellipticity, the fringes start to exhibit blurring in the vicinity
of the pz axis or, by inspecting the upper half plane, close to
the maximum associated with orbit a. Contrast is retained for
higher values of px. There is also a difference in strength in
the upper and lower half plane. By inspection, one can see that
many twisted patterns in Figs. 2 and 5 in high photoelectron
momentum regions can be attributed to the remnants of the
spider and of the fringes associated with the interference of
orbits a and c. A summary of how specific holographic struc-
tures behave with increasing ellipticity is provided in Table II.

Next we will have a closer look at the blurring that occurs
for the spider and the patterns due to the interference of orbits
a and b, among other effects. A loss of contrast may be due to
changes in ionization probabilities, to orbit 3 being suppressed
due to rescattering being hindered as the ellipticity increases,
or to both effects.

The changes in the ionization probability can be inferred
from the imaginary parts of the ionization times, as the ion-
ization probabilities roughly scale as exp[−2 Im(t ′)]. Hence,
the larger Im(t ′) is, the more suppressed a specific orbit will
be. In Fig. 7 we plot Im(t ′) along the minor polarization axis
pz = 0 for the ellipticities used in Fig. 6. Our analysis will
focus on the CQSFA orbits, but, in the top panels of Fig. 7,
we also provide Im(t ′) for the SFA orbits a and b. Figure 7
displays Im(t ′) as functions of the final and initial electron
momentum component px along the minor polarization axis,
that is, p f x and p0x (top and bottom rows, respectively). In
order to cover a larger range for the initial momentum, in the
bottom panels of Fig. 7 the orbits were selected such that all
values of the parallel momenta are allowed. This is relevant as,
strictly speaking, an electron cannot escape if p0x = p0z = 0
and will cause the divergencies discussed below.

For linearly polarized fields (left column in Fig. 7), Im(t ′)
is symmetric with regard to the reflection px → −px for all
orbits. This behavior mirrors that observed for the PMDs
in Figs. 2, 5, and 6, which exhibit this symmetry for linear
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FIG. 5. Photoelectron momentum distributions calculated for helium in a field of intensity 2.5 × 1014 W/cm2 and wavelength λ = 735 nm,
whose ellipticity increases from ε = 0 to ε = 0.3, considering a single cycle and a unit cell with φ = 0. The left and right panels display the
outcome of the CQSFA and SFA, respectively. For the SFA, we have employed the direct orbits a and b, while for the CQSFA orbits a to d
were included. All panels have been normalized to their maximum values and a logarithmic scale was used.
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FIG. 6. Photoelectron momentum distributions calculated for helium in a field of intensity 2.5 × 1014 W/cm2 and wavelength λ = 735 nm,
whose ellipticity increases from ε = 0 to ε = 0.3, considering a single cycle and a unit cell with φ = 0. The left column shows the interference
between orbits a and b, the middle column orbits b and c, and the right column orbits a and c. The orbit characterization is provided in
Sec. III C. All panels have been normalized to their maximum values and a logarithmic scale was employed.

polarization. For the CQSFA orbits a and b, Im(t ′) displays a
behavior similar to its SFA counterparts, with a minimum at
p f x = 0 (top left corner of Fig. 7). This minimum indicates

that, for an electron along orbit a or b, the probability that the
electron reaches the detector with final momentum component
p f x = 0 is largest.

TABLE II. Behavior of known holographic structures for increasing driving-field ellipticity, together with contributing orbits.

Structure Interfering orbits Behavior
fan a and b sharper near the pz axis, blurring for high px

spider b and c counterclockwise rotation, blurring, prominence in lower half plane
fishbone a and c blurring near the pz axis, contrast retained for high px , prominence in upper half plane
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FIG. 7. Imaginary parts of the ionization times t ′ for the CQSFA and the SFA as functions of the final and initial momentum components
pf x and p0x taken along the fixed final pf x axis, with pf z = 0 (top and bottom rows, respectively). The calculation was done for helium in a
field with an intensity of 2.5 × 1014 W/cm2 and wavelength of 735 nm. The left and right columns correspond to ellipticities ε = 0 and 0.1,
respectively. The remaining field and atomic parameters are the same as in the previous figures.

For the SFA, this is related to the effective potential barrier
being narrowest, as a nonvanishing px will effectively raise
the ionization potential (for a discussion of this shift see, e.g.,
[88]). For the CQSFA, however, the interpretation is subtler,
as suggested by Im(t ′) plotted against the initial momentum
p0x (bottom left corner of Fig. 7). For the CQSFA orbits a
and b, the figure shows that Im(t ′) → ∞ for p0x = 0. This is
due to the presence of the Coulomb potential and means that
an electron along orbits a and b cannot escape with vanishing
perpendicular momenta. This is clear as the Coulomb poten-
tial essentially decelerates an electron along orbit a and a field
dressed hyperbola starting half a cycle later, namely, orbit b,
requires p0x �= 0. Therefore, there will be a minimal escape
momentum for the electron, in order for it to reach the detector
with final momentum p f x = 0. This also holds for the other
CQSFA orbits, as the maxima for Im(t ′) at p0x = 0 indicate.
For large absolute values of p0x, the imaginary parts Im(t ′)
associated with the CQSFA orbits a and b tend to their SFA
counterparts. This is expected as, in this limit, they behave as
SFA direct orbits and the Coulomb potential does not play a
critical role [94]. For the CQSFA orbits c and d the curves are
much flatter throughout. This flatter behavior of Im(t ′) stems
from the real parts of the ionization times being restricted to

narrower time ranges, closer to the peak of the field (for a
recent discussion for linearly polarized fields see [108]).

Finally, Fig. 7 is also a good indicator of the momentum
regions for which the holographic fringes will show high
contrast. Similar Im(t ′) for different trajectories at a specific
final momentum means that their contributions to the whole
transition amplitude are comparable, so their interference will
exhibit sharp fringes. According to the figure, this would
happen for orbits a and b, or orbits c and d for a wide range
of perpendicular momenta px. An inspection of the PMDs
along the pz = 0 axis shows indeed that the fan, caused by
the interference orbits a and b, and the carpet, caused by the
interference of orbits c and d , exhibit high contrast for the
linearly polarized case regardless of px. On the other hand,
the spider, coming from the interference of orbits b and c,
is only expected to be prominent near px = 0, that is, the
field-polarization axis.

This overall behavior changes even for a small ellipticity
(see the right column of Fig. 7), for which the px → −px

reflection symmetry is broken. Nonvanishing ellipticity leads
to a tilting of Im(t ′) with regard to px = 0 for orbits a and b,
for both the SFA and CQSFA. For all CQSFA orbits, there is
a stepwise behavior for Im(t ′) around the origin, if plotted as
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FIG. 8. Imaginary parts of the ionization times t ′ for the CQSFA orbits a, b, c, and d as functions of the electron’s final momentum px

along the minor polarization axis, for increasing driving-field ellipticities. The orbits are classified according to Sec. III C and the remaining
parameters are the same as in the previous figures.

a function of the final momentum p f x (see the top right panel
of Fig. 7). This feature is absent for the SFA.

The tilting in Im(t ′) is caused by the field components par-
allel to the minor polarization axis, which either help or hinder
the electron ionization along orbits a and b. For instance, for
orbit a the tilt to the right indicates that the field component
along the minor polarization axis helps ionization for positive
momenta, but hinders it for negative momentum. A similar
line of reasoning can be used for orbit b tilting to the left, with
the difference that in this case the curve will be the mirror
image of that observed for orbit a.

The stepwise feature is caused by the Coulomb potential
and can be understood by inspecting how Im(t ′) behaves as a
function of p0x (see the bottom right panel of Fig. 7). Similarly
to what happens for linearly polarized field, the electron can-
not escape if its perpendicular momentum component p0x is
vanishing and there is a minimum momentum value for which
it may escape. Nonetheless, due to the field’s nonvanishing
ellipticity, the escape momenta will be different for the posi-
tive and negative momentum half planes. This will lead to the
step in Im(t ′) near the origin, if plotted as a function of the
final momenta p f x. Orbits c and d also exhibit the stepwise
behavior mentioned above and for the very same reasons.

An inspection of the top right panel of Fig. 7 also provides
valuable insight into the momentum regions for which specific

holographic patterns are blurred or sharp. For instance, the
structure stemming from interference of orbits a and c be-
comes sharper away from the major polarization axis because
the imaginary parts of the times cross each other for p f x =
0.5. This can be confirmed by looking at the corresponding
PMD in Fig. 6 (see the right column, second row from the
top). Similarly, one expects the spider to be sharper in the
lower momentum half plane as Im(t ′) for orbits b and c are
much closer for p f x < 0. The corresponding PMD, located in
the second row and middle column in Fig. 6, shows that this
is indeed the case.

In Fig. 8 we illustrate more thoroughly how Im(t ′) behaves
for increasing field ellipticity. We consider the final electron
momentum component px along the minor polarization axis
and plot each CQSFA orbit separately. The tilting for orbits
a and b becomes more extreme for increasing ellipticity. This
sheds light on the blurring of the fan-shaped fringes, caused by
discrepant imaginary parts in the same momentum half plane,
and on the shift of the maxima in the PMDs towards larger
momentum values, caused by the changes in the minima of
Im(t ′). For orbits c and d , instead of a tilt, we see a marked
increase in Im(t ′) with the ellipticity. This hints at both orbits c
and d becoming suppressed for larger values of ε, which is not
surprising, given that these orbits are associated with rescat-
tering and will become rarer in the high-ellipticity regime.
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V. CONCLUSIONS

In this work we investigated quantum interference in
strong-field ionization in elliptically polarized fields, with em-
phasis on holographic patterns. We interpreted the features
encountered using the Coulomb quantum-orbit strong-field
approximation, which was compared to the numerical solution
of the time-dependent Schrödinger equation and the standard
strong-field approximation, for which the binding potential
is absent in the continuum propagation. The CQSFA is an
orbit-based method that accounts for tunneling, quantum in-
terference, and the presence of the binding potential in the
continuum [94,96,105]. So far, it had only been applied to
photoelectron holography in linearly polarized fields. We fo-
cus on the low- and intermediate-ellipticity regime, for which
intracycle holographic interference is present. This differs
from typical studies of photoelectron emission in elliptical
fields, whose main objective is to map a single-ionization
time to an offset angle. This mapping requires a high ellip-
ticity so that intracycle interference is strongly suppressed
[80]. In the low-ellipticity regime, there are many possi-
ble ionization times which can be associated with electron
orbits.

We find that a nonvanishing ellipticity leads to twists in
the holographic patterns. The twists are absent in the plain
strong-field approximation, which neglects the residual bind-
ing potential, but have been identified in the CQSFA and in
TDSE computations. This suggests that they are caused by
the interplay of the elliptical field and the central potential.
Further support of this is provided by a TDSE computation
which truncates the tail of the Coulomb potential, but leaves
the effective potential barrier intact. There is a decrease in
the twists due to the removal of the Coulomb tail. However,
a residual twist is present, which means that there is also
a contribution from the barrier. Twists have been observed
experimentally in the spider [18] and angular shifts for ATI
peaks of increasing order have been reported in [109,110].
However, most studies in the low- to intermediate-ellipticity
regime concentrate on Coulomb focusing [111,112], or the
maxima and width or the photoelectron momentum distribu-
tions [113,114].

As the ellipticity increases, the contrast of the holographic
fringes fades and the maxima of the PMDs move further apart.
This is due to the transverse components of the momenta upon
ionization and during continuum propagation. Estimates for
the ellipticity range in which quantum interference is relevant
have been provided in this work and agree with the outcomes
of the TDSE and CQSFA computations.

The twisting and the blurring are then understood in terms
of interfering electron orbits, whose ionization times are first
derived analytically in the SFA framework, in a generalization
of the expressions in [64,100] to a broader parameter range.
These SFA expressions are then used as first guesses for
the CQSFA ionization times. A noteworthy issue is that the
orbit classification used in the CQSFA is highly dependent
on the driving-field shape and existing symmetries. In fact,
because the reflection symmetry with regard to the major
polarization axis is broken, we have altered the classification
in terms of orbits 1–4 [96,103], with regard to the linearly
polarized case. Other examples of modified CQSFA orbits

have been used in the study of two-color linearly polarized
fields [115]. A very useful tool to understand the loss of
contrast in the holographic patterns is the imaginary part of
the ionization time, which one may relate to the ionization
probability associated with a specific type of orbit. Compara-
ble Im(t ′) for a pair (i, j) of orbits means that there will be
sharp fringes, while Im(t ′

i )  Im(t ′
j ) means that blurring will

occur. For a specific orbit, nonvanishing ellipticity will break
the reflection symmetry of Im(t ′) for the lower and upper half
planes.

Although the loss of contrast in the holographic patterns is
an overall feature, it occurs for different reasons, depending
on the types of orbit which create the patterns. If a specific
holographic pattern results from the quantum interference
of events starting at different half cycles whose momentum
components px do not change signs, with increasing ellip-
ticity their contributions will mainly populate different half
planes. Therefore, their maxima will move further apart and
quantum interference will only be significant close to the
major polarization axis. This can be observed, for instance,
in the fan-shaped fringes. If, on the other hand, the holo-
graphic pattern results from events in the same half cycle
or px changes during propagation, the contribution of such
orbits to the PMDs will move to the same momentum half
plane. However, those orbits interacting more closely with
the core, such as orbits c and d , will become rarer as the
ellipticity increases. Consequently, the transition amplitudes
associated with those specific pathways will be suppressed
and the patterns will blur. This is the case of the spider and
of the patterns stemming from the interference of orbits a
and c. The widely studied high-ellipticity regime is reached
when some of the solutions cease to exist and some merge.
Methodologically, this involves Stokes transitions, which,
for the field parameters considered in this work, happen
outside the parameter range of interest (see Appendixes B
and C).

In summary, the twisted patterns reported in this paper
are another manifestation of the interplay of the Coulomb
potential and the elliptically polarized field: Instead of a single
offset angle in the PMD, which can be modeled classically, the
long-range potential leads to offsets in holographic patterns,
which can be understood in terms of interfering orbits. The
present studies may be useful for a wide range of scenarios
in which quantum interference is important, such as diatomic
molecules in elliptically polarized fields [116].
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FIG. 9. Contours with the same real part of the action with saddle-point solutions and imaginary part of the action in the background,
computed for the SFA. Blue (red) lines are contours with the same real part of the action with the solution t1 (t2) and the yellow (blue)
background represents the large negative (positive) imaginary part of the action. To calculate the transition amplitude with Eq. (1), the
integration should be done along these contours and the integrand is proportional to the exp i Im(t ). Therefore, while calculating the transition
amplitude, only the contours which do not pass the yellow area should be selected. The top and bottom panels represent an ellipticity of 0.2
and 0.7, respectively. The left, middle, and right panels represent the perpendicular momentum pz that is smaller than, the same as, and larger
than the critical momentum pz,crit , respectively. From the left panel to the right panel, the topology of the contour changes. This causes the
Stokes transition. The remaining field and atomic parameters are the same as in the previous figures.

APPENDIX A: ANALYTIC EXPRESSIONS
FOR IONIZATION TIMES

In this Appendix we briefly sketch the procedure to obtain
the analytic solutions for the ionization times obtained with
the strong-field approximation, which are given in Sec. III.
The saddle-point solutions giving the ionization times are
obtained from Eq. (21). By substituting ξ = cos(ωt ) and by
replacing sin2(ωt ) = 1 − ξ 2 in Eq. (21), we can derive a quar-
tic equation for ξ as

ξ 4 + 4 p̄zξ
3 + [2Ū + 4(1 + ε2) p̄z

2]ξ 2

+ 4 p̄zŪξ + (Ū 2 − 4 p̄x
2ε2) = 0, (A1)

where p̄z, p̄x, and Ū are defined as

p̄z =
√

1 + ε2

2(1 − ε2)
√

Up
pz, p̄z =

√
1 + ε2

2(1 − ε2)
√

Up
pz,

Ū = 1

(1 − ε2)

(
1 + ε2

4Up

(
2Ip + p2

z + p2
x

) + ε2

)
. (A2)

Since the analytic form of the solutions of the quartic
equation exists, we can obtain four solutions of the quartic
equation as Eq. (29). The explicit form of ζ and η is given as

�0 = A2
2 − 3A3A1 + 12A0,

�1 = 2A3
2 − 9A3A2A1 + 27A2

3A0 + 27A2
1 − 72A2A0,

Q =
(

�1 + i
√

4�3
0 − �2

1

2

)1/3

,

ζ = 1

2

√
−2

3
(2Ū + 4ε2 p̄z

2 − 2 p̄z
2) + 1

3

(
Q + �0

Q

)
,

η = −8p̄z
3ε2

ζ
, (A3)

where Ai are the coefficients of ξi in the quartic equation (A1).
Note that not all four solutions of the quartic equation are the
solution of the original saddle-point equation (21). However,
by comparing the sign of Eq. (21), we can find the two valid
solution sets as Eq. (29). Furthermore, we have checked that
both ζ and η go to zero at zero ellipticity, which makes our
solutions consistent with the linearly polarized solution.

APPENDIX B: STOKES TRANSITIONS
AND DIVERGENCIES

Within the present formalism, obstacles towards comput-
ing PMDs for fields of arbitrary ellipticity are coalescent
saddles and Stokes transitions. Coalescent saddles mean that
uniform asymptotic expansions that treat them collectively
will be required [117]. Stokes transitions lead to the asymp-
totic expansion becoming inaccurate due to a change of
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FIG. 10. Critical momenta for different field ellipticities, com-
puted with the SFA. If the perpendicular momentum is larger than
the critical momentum indicated by solid lines, a Stokes transition
happens. The red dashed circled area shows the relevant momentum
range of the PMDs used in this paper. The remaining field and atomic
parameters are the same as in the previous figures.

contour. This will result in divergent contributions, which
must be discarded (for a detailed discussion and regularization
methods see [118]). In this Appendix we will highlight how
coalescing saddles and Stokes transitions lead to divergencies
in the PMDs and explore in what momentum ranges this hap-
pens. This will be illustrated with the SFA. We will go beyond
the studies in [64,100], which have been performed along
the major polarization axis pz, and look at how the PMDs
are affected as a whole. The CQSFA will present further
challenges, such as branch cuts associated with rescattering.
Preliminary studies in this direction already exist [95,119], but
its full solution is beyond the scope of this article.

In Fig. 9 we illustrate the change in the contour that occurs
around a critical value of pz, called here pz,crit , for which
its topology changes. For simplicity, we keep the momentum
component py parallel to the minor axis fixed. To calculate
the transition amplitude we must integrate from t = −∞ to
t = +∞ along some contours in the figure, in the upper com-
plex time half plane.1 Since the action is periodic, it suffices
to reduce our problem to a single field cycle. One should note
that the contributions from the contours integrating from 0 to
i∞ and from 2π + i∞ to 2π cancel each other.

The blue regions represent areas for which the imaginary
part of the action causes the yield to vanish when the imagi-
nary part of ωt tends to infinity, while the green areas depict
regions for which it will diverge. The dots illustrate two saddle

1The lower half plane would lead to unphysical results associated
with diverging contributions inside a potential barrier [95,119]; for a
review on saddle-point methods in strong fields see [120].

points, which will lead to key contributions to the PMDs. The
contours passing through the saddle points are illustrated by
the thick lines in the figure.

For pz < pz,crit (left column), the relevant contours encom-
pass the two saddle points. Hence, there are two quantum
trajectories engaged in the ionization process, with the saddle
S1 being dominant, as seen from its closeness to the real-
time axis. At pz = pz,crit (middle column), the real parts of
the action associated with saddles S1 and S2 become equal,
which characterizes a Stokes transition [118]. For pz > pz,crit

(right column), the contour passing through S2 will lead to
divergencies, so the saddle must be discarded.

Figure 10 displays the critical momenta for different field
ellipticities, together with the region for which the PMDs are
physically relevant (red dashed circle). This is the scale used
in the remaining figures of this article. The figure shows that
there is always a Stokes transition. However, the absolute
value of pz,crit decreases for increasing ellipticity. For small
and moderate ellipticity, the Stokes transitions occur for mo-
mentum ranges far away from the regions of interest and thus
can be ignored, while for large ellipticities they encroach more
and more into the physically relevant momentum regions.
Nonetheless, the Stokes transitions always seem to occur in
the half plane opposite to the physically relevant region. Thus,
matching the solutions in the physically relevant momentum
ranges leads to sickle-shaped distributions, as expected. In-
cluding the Coulomb potential will lead to angular offsets,
which are absent in the plain SFA (see, for instance, Figs. 2–4
in the main text).

APPENDIX C: CIRCULAR POLARIZATION LIMIT
FOR IONIZATION TIME

For circularly polarized fields, there will be a single-
ionization time, which can be associated with a specific angle
in the PMDs. This is the key idea upon which the attosecond
angular streaking, also known as the attoclock, is based. Be-
low we show how this time can be inferred analytically, using
the SFA solution for the tunnel ionization time.

For circular polarization (ε = 1), the saddle-point equa-
tion for t ′ becomes

(pz + √
2Up cos ωt ′)2 + (px + √

2Up sin ωt ′)2 = −2Ip.

(C1)
This is the equation of a circle with complex radius centered
at

(px, pz ) = (−√
2Up sin ωt ′,−√

2Up cos ωt ′), (C2)

which will lead to a ring-shaped distribution, due to the rota-
tional symmetry. One may also show that, in this limit, Re(t ′)
will be step functions. Thus, for each angle, the electron will
escape at the time for which the field will have an extremum.
The step happens when switching to different momentum half
planes.

Below we show that this holds for specific angles, but
due to the symmetry of the problem this can be extended
to an arbitrary axis using a rotation matrix. If we choose a
momentum along the pz axis (px = 0), Eq. (C1) becomes

p2
z + 2Up + 2pz

√
Up cos ωt ′ = −2Ip (C3)
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so that

cos ωt ′ = −1

pz
√

2Up

[
Ip + Up + p2

z

2

]
. (C4)

Setting t ′ = t ′
r + it ′

i in Eq. (C4) gives

cos ωt ′
r cosh ωt ′

i = −1

pz
√

2Up

[
Ip + Up + p2

z

2

]
(C5)

and

sin ωt ′
r sinh ωt ′

i = 0. (C6)

Since t ′
i cannot vanish because tunneling is classically forbid-

den, sin ωt ′
r = 0, which means that ωt ′

r = nπ . Similarly, along
the px axis we find

sin ωt ′ = −1

px
√

2Up

[
Ip + Up + p2

x

2

]
, (C7)

so

ωt ′
r = (2n + 1)π

2
, (C8)

which corresponds to an extremum for the other component
of the field.
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