
PHYSICAL REVIEW A 106, 043108 (2022)

Thomas–Reiche–Kuhn correction for truncated configuration-interaction spaces:
Case of laser-assisted dynamical interference
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The Thomas–Reiche–Kuhn sum rule is used to form an effective potential that is added to the time-dependent
configuration-interaction singles (TDCIS) equations of motion in velocity gauge. The purpose of the effective
potential is to include virtual coupling from singles to doubles, which is required for size-consistent velocity-
gauge TDCIS results. The proposed method is compared to length-gauge TDCIS results for laser-assisted
photoionization. Finally, a dynamical interference effect controlled by two-color fields is predicted for atomic
targets.

DOI: 10.1103/PhysRevA.106.043108

I. INTRODUCTION

There are several frontiers of research in attosecond
physics [1], including studies of charge migration in biorel-
evant molecules [2], generation of attosecond pulses in
solid-state targets [3], and atomic delay measurements in
laser-assisted photoionization [4]. It has been shown that
attosecond precision measurements can be performed by pho-
toelectron interferometry, using various forms of extreme
ultraviolet (XUV) and infrared (IR) pulses, in atoms [4–8],
molecules [9,10], and solids [11,12]. While this type of non-
linear interferometry can be qualitatively understood using the
strong-field approximation, as we have recently reviewed in
Ref. [13] for numerous experiments with light from high-
order harmonic generation (HHG) and free-electron laser
(FEL) sources, a more detailed interpretation requires the use
of advanced many-body theory. In cases where the interaction
with the fields is weak it is possible to employ perturbation
theory to interpret attosecond delays from atoms [14,15],
molecules [16–18], and laser-stimulated transitions via au-
toionizing states [19–24]. However, when the interaction with
fields increase in strength, time-dependent simulations are
essential to understand the correlation effects that accompany
the laser-driven dynamics. Brute force approaches for pho-
toionization studies are possible only in two-electron systems,
such as He and H−, where the Schrödinger equation can be
directly propagated [25,26]. In other systems, time-dependent
simulations of multielectron dynamics are more costly and
one must rely on approximations that balance precision
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against the numerical cost. A few examples include the time-
dependent configuration-interaction singles (TDCIS) [27,28],
R-matrix [29,30], X-CHEM [24,31], and self-consistent field
theories [32–34]. The latter theories rely on time-dependent
Slater determinants, which form eigenstates of approximate
time-dependent Hamiltonians. The simplest such example is
the time-dependent Hartree–Fock (TDHF) theory, where a
single Slater determinant is constructed from time-dependent
occupied orbitals.

In addition to the level of electron correlation included
in the simulations, care must also be given to the ques-
tion of gauges that describe the electromagnetic interaction
with the electrons. If no approximations were made, the
Schrödinger equation could have equivalently been expressed
in either gauge. However, the truncation of the basis makes the
physical observables gauge-dependent [35–37]. This raises
the question of which gauge happens to give (i) the best
correspondence to experiment and (ii) the most convenient
numerical properties. While the Hartree–Fock equations (HF)
have been shown to be gauge invariant [38], such a formula-
tion requires the occupied orbitals to be gauge-transformed
dynamically in the presence of time-dependent fields. This
implies that self-consistent field theories [32–34] are highly
desirable in this regard, but unfortunately such theories are
costly to propagate numerically. According to Kobe’s gauge
theory [39], the length gauge is unique with expansion coeffi-
cients that are genuine probability amplitudes. This implies
that dynamic gauge transformations are less essential and
that more efficient basis truncations can be performed in the
length gauge, as compared to any other gauge. However,
the length gauge is notorious for being difficult to converge
for strong-field processes with low-frequency laser pulses
[40–43]. Indeed, a relatively low number of angular momenta
is required for convergence of TDCIS [27,28] in veloc-
ity gauge to describe laser-assisted photoionization [13,44].
On the other hand, length-gauge TDCIS calculations have
empirically proven better than velocity-gauge calculations
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[45], in agreement with the gauge theory of Kobe [38,39].
This means that when numerical convergence within the
configuration-interaction singles (CIS) subspace is reached,
the length-gauge results are more accurate than the velocity
gauge results. To overcome this gauge problem in TDCIS,
Sato et al. have developed a modification to TDCIS in ve-
locity gauge by successively rotating the orbitals in each time
step, effectively defining time-dependent orbitals, which are
necessary for gauge invariance with the length-gauge TDCIS
results [38,45].

In this article, we investigate the gauge-dependence prob-
lem in TDCIS, from a different perspective than Sato et al.
[45], by bridging the space of single excitations to that
of virtual double excitations. This is done by systemati-
cally adjusting for the lack of core polarization of excited
states in TDCIS. In Sec. II, a review of polarization ef-
fects in N-electron atoms is presented by usage of the
Thomas–Reiche–Kuhn (TRK) sum rule (see, e.g., Ref. [46]).
We then introduce an effective potential of the TRK-type
to the equations of motion for velocity-gauge TDCIS in
Sec. III. In Sec. IV, results for laser-assisted photoionization
are presented for velocity-gauge TDCIS and the proposed
TDCIS-TRK theory. It is shown that TDCIS-TRK provides
accurate results where velocity-gauge TDCIS fails. We also
revisit dynamical interference in photoionization [47–49] and
predict that the phenomenon is experimentally feasible in a
new setting with two-color fields. Finally, in Sec. V we con-
clude our findings.

II. THEORY

An atom subject to an external laser field will have its
dynamics ruled by the minimal coupling Hamiltonian

Ĥ (r, t ) = Ĥ0 + V̂1(r, t ) + V̂2(r, t ), (1)

where the zeroth term Ĥ0 is the atomic Hamiltonian, which
accounts for the kinetic energy and the Coulomb interaction
with the nucleus and among the electrons. For a wavelength
substantially larger than the atom, λ � a0, the spatial depen-
dence of the field can be neglected. This is referred to as
the dipole approximation, and when applied to the minimal
coupling Hamiltonian, we refer to it as the velocity gauge. The
interactions with the electromagnetic field are hence given by
a term linear in the time-dependent vector potential,

V̂1(t ) = − q

m
A(t ) ·

∑
i j

pi j ĉ
†
i ĉ j, (2)

and a term quadratic in the vector potential,

V̂2(t ) = q2A2(t )

2m
n̂. (3)

Here, q = −e is the electronic charge and pi j = 〈i|p̂| j〉
denotes the matrix element for momentum between the canon-
ical orbitals i and j, which are eigenstates of the mean-field
(Fock) operator f̂ |i〉 = εi|i〉. The operators ĉ†

i and ĉi, create
and annihilate an electron in the canonical orbital i, respec-
tively. The V̂2 operator acts as a scalar, due to any N-body
state being an eigenstate to the number operator n̂ = ∑

i ĉ†
i ĉi,

such that n̂|�〉 = N |�〉.

A. Energy shifts in an oscillating potential

Consider a monochromatic vector potential A(t ) =
A0 cos(ωt ), polarized linearly along the z axis. The potential
term linear in the vector potential is given by

V̂1(t ) = V̂ (+)
1 exp(−iωt ) + V̂ (−)

1 exp(iωt ), (4)

with

V̂ (+)
1 = V̂ (−)

1 = − q

2m
A0

∑
i j

(pz )i j ĉ
†
i ĉ j, (5)

where the superscripts (+) and (−) correspond to interactions
that induce absorption and emission of a photon, respectively.
The quadratic potential amplitude is given by

V̂2(t ) = q2A2
0 cos2(ωt )

2m
n̂. (6)

The second-order energy correction to any N-electron
state, |�0〉, due to V̂1(t ) is given by

〈
�E (2)

1 (ω)
〉 = lim

η→0+

∑∫
n �=0

( 〈�0|V̂ (+)
1 |�n〉〈�n|V̂ (−)

1 |�0〉
E0 − h̄ω − En + iη

+ 〈�0|V̂ (−)
1 |�n〉〈�n|V̂ (+)

1 |�0〉
E0 + h̄ω − En + iη

)
, (7)

which can be interpreted as a level shift of the state averaged
over time [50]. The TRK sum rule states that the sum of all
oscillator strengths, fnn′ , from a particular atomic eigenstate,
|�n〉, is equal to the number of electrons:

∑
n′

fnn′ =
∑

n′

2m

h̄2 (En − En′ )|〈�n′ |ẑ|�n〉|2 = N. (8)

The application of TRK theory to Eq. (7) requires that the
commutation between the atomic Hamiltonian and the dipole
operator equals the momentum operator, [Ĥ0, ẑ] = −ih̄ p̂z/m,
(see, e.g., Eq. (61.1) in Ref. [51]). Since this condition is
satisfied for any local potential, the TRK sum rule can be used
to perform exact calculations in N-electron atoms, where all
interactions are inherently local. The time-averaged energy
shift to second order in V̂1(t ) is derived from the TRK sum
rule in Eq. (8) with a Taylor expansion of the denominators in
Eq. (7) with h̄ω � |En − E0| to yield

〈
�E (2)

1 (ω)
〉 = −A2

0

4

(
q2

m
N + ω2α0

)
+ O(ω4), (9)

where

α0 = q2h̄2

m

∑
n �=0

fn0

(E0 − En)2
(10)

is the atomic polarizability, as defined in Ref. [52]. The time-
averaged energy shift of the first-order energy correction due
to the quadratic term V̂2(t ) is simply given by

〈
�E (1)

2 (ω)
〉 = q2〈A2(t )〉

2m
N = q2A2

0

4m
N. (11)

This shows that, in the case of a monochromatic field, the
energy corrections due to V̂1(t ) + V̂2(t ) to second order in the
vector potential cancel such that the explicit N dependence in
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the energy shift disappears. The remaining energy shift in the
velocity gauge is

〈�E (2)(ω)〉 = −ω2A2
0α0

4
+ O(ω4) = −E2

0 α0

4
+ O(ω4),

(12)
which can be found more easily in the length gauge with the
electric field E (t ) = − dA

dt = E0 sin(ωt ) by second-order per-
turbation theory with the dipole operator V̂ (len.)

1 = −qE (t )ẑ.
While the length gauge is simpler in this regard, because it
does not rely on a detailed cancellation effect of two different
perturbation terms, the energy shifts are found to be equivalent
in both gauges. We stress that this exact result is general,
as it applies to any state in atomic or molecular targets, but
it fails in cases where the considered state resonates with
another state at the applied frequency: h̄ω ≈ |En − E0|. Thus,
as pointed out by Bucksbaum et al. [53], it is typically an
excellent approximation for the ground state of an atom, or
molecule, subject to a low-frequency laser field, h̄ω � |En −
E0|, but it is a bad approximation for excited states, where
other Rydberg states are likely to be close in energy. We
note that the TRK rule has been used in solids to reduce the
necessary number of energy bands in the velocity gauge while
ensuring convergence [54]. In the present work, however, we
make use of the TRK sum rule in the numerical propagation
to correct for size inconsistency in virtual excitations that are
missing due to truncations of the many-body configuration-
interaction expansion.

B. Configuration interaction (CI)

Many-body effects can be described by time-dependent
configuration-interaction (TDCI) methods, where the total
electron wave function is expanded as

|�(t )〉 = α0(t )|	0〉 +
∑
ap

αp
a (t )

∣∣	p
a

〉

+
∑
abpq

α
pq
ab (t )

∣∣	pq
ab

〉 + · · · , (13)

where |	0〉 denotes the HF reference Slater determinant,
while |	p

a〉 and |	pq
ab〉 denote single and double excitations,

respectively. The labels a, b, . . . index the occupied orbitals,
and the labels p, q, . . . index the unoccupied orbitals in the
initial reference state. While the orbitals are found variation-
ally, without the laser-action part of the Hamiltonian, the
expansion coefficients α(t ) are time-dependent quantities in
TDCI methods. The expansion in Eq. (13) can be truncated
in several ways. If the expansion is truncated so that the CI
space is limited to the level of single excitations it is known
as TDCIS [27,28]. The singly excited states |	p

a〉 are in the
nonrelativistic case restricted to the spin-singlet state charac-
ter constructed using second quantization as

|	p
a〉 = 1√

2
{ĉ†

p+ĉa+ + ĉ†
p−ĉa−}|	0〉. (14)

The operator ĉ†
pσ creates an electron in the virtual orbital

p with spin σ and the operator ĉaσ creates a hole in the
core orbital a with spin σ . While TDCI methods imply that

occupied orbitals are static eigenstates of a laser-free mean-
field Hamiltonian, electronic excitations at the TDCIS level
can be interpreted as time-dependent wave packets in the
form of superpositions of initially unoccupied orbitals [27].
Recently, implementations of TDCIS that are not restricted to
spin-singlet configurations have been realized, e.g., one in the
form of two-component orbitals from relativistic pseudopo-
tentials [55,56], and another based on the four-component
orbitals from the Dirac-Fock equation [57]. In the follow-
ing work we consider only the spin-singlet configurations
and linearly polarized fields, such that the magnetic quantum
number is conserved: mp = ma, where in addition the gerade
symmetry of TDCIS can be utilized to further reduce the num-
ber of correlated channels [58]. Further truncation in CI can
be performed to limit the allowed excitations, e.g., freezing
occupied orbitals corresponding to tightly bound electrons (cf.
Refs. [32–34,59,60]).

C. Application of TRK sum rule to TDCIS

Truncation of the Hilbert space implies that the TRK sum
rules will not hold. Nonetheless, we consider the CI space to
be truncated at the level of single excitations (CIS), where the
states in Eq. (7) are given by the space spanned by the HF
ground state and the CIS singly excited states, {|�0〉, |�n〉} →
{|	0〉, |	p

a〉}, respectively. We denote the space of no excita-
tions by P0, single excitations by P1, and double excitations
by P2. In Fig. 1, we illustrate some processes from pertur-
bation theory, represented as Goldstone diagrams, that give
rise to energy shifts due to the second-order action of V̂1(t ).
Figure 1(a) can be interpreted as an uncorrelated (bare) energy
correction of the HF ground state, |	0〉 in P0, due to a virtual
transition via the singly excited state |	p

a〉 in P1. Since in
TDCIS theory both P0 and P1 are contained in the truncated
Hilbert space, the polarization of the HF ground state will
be reasonably well described. The singly excited states can
also shift their energies due to second-order action with V̂1(t )
within P1 and via P0. These effects are described in TDCIS
theory, as shown in Figs. 1(b)–1(d). However, some perturba-
tive processes that also change the energy of the singly excited
states are missing, since they require a virtual transition via the
doubly excited states in P2, as shown in Figs. 1(e)–1(g). Fig-
ure 1(e) shows that the laser field can polarize the core of the
atom, similar to how the ground state was excited [Fig. 1(a)],
which leads to an energy shift of ∼N , in accordance with
Eq. (9). However, the atomic core is missing one-electron
exchange processes [Figs. 1(f) and 1(g)] that impose the Pauli
exclusion principle, which will reduce the core energy shift
to ∼N − 1. Additionally, the reversed time order of Fig. 1(d)
is also missing in CIS and further many-body polarization
effects, induced by Coulomb interactions, must be carefully
considered by many-body perturbation theory (MBPT) for
accurate energy shifts.

Since the diagrams in Figs. 1(e)–1(g) are nonexistent in
TDCIS, the time evolution will be subject to spurious effects.
While the polarization effects are reasonably accounted for in
the ground state, the excited states in CIS have an unbalanced
polarization that lacks size consistency. Since transitions be-
tween the ground state and the excited states are essential
in TDCIS theory, this inconsistency will result in largely
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FIG. 1. Goldstone diagrams of the energy contributions within CIS [panels (a)–(d)] and CID [panels (e)–(g)]. The diagram in panel
(a) describes the energy shift of the core, while the diagrams in panels (b)–(g) describe the energy shift of an excited CIS state. The background
shading color indicates the CI space where the atom resides. Time flows upwards in these Goldstone diagrams.

overestimated relative energy shifts for excitations, with an
unphysical dependence on the number of active electrons.
These types of relative energy shifts are usually avoided in
MBPT, by the linked diagram theorem (see, e.g., Ref. [61]),
but in time-dependent simulations such as TDCIS the problem
must be treated in a different way. We introduce an effective
potential that corrects the relative energy shifts based on TRK
theory. In order to understand this better we first consider the
energy shifts computed for the HF ground state of neon with
various approximations using MBPT.

Due to the nonlocality of the Hartree–Fock exchange po-
tential, the second-order energy correction is not exactly given
by Eq. (9) when static or frozen occupied orbitals are used.
Instead, we define the ground-state energy shift

〈
�Ẽ (2)

1 (ω)
〉 = −A2

0

4

(
q2

m
Ñ + ω2α̃0

)
+ O(ω4), (15)

where Ñ and α̃0 denote the corresponding values of N
and α0 for a given approximation: lowest-order perturbation
(LOP), CIS, and random-phase approximation with exchange
(RPAE). The effective number of active electrons, which is a
frequency-independent quantity, is computed as

Ñ ≡ −
(

8m

A2
0q2

) occ.∑
a

〈a|V̂1|ρ (+)
0,a 〉, (16)

where a label all occupied orbitals in the HF ground state
and |ρ (+)

0,a 〉 is the associated perturbed wave function after one
interaction with the field that depends on the level of approxi-
mation. In the case of RPAE, the perturbed wave functions are

(in atomic units) constructed as (see Ref. [62])

|ρ (±)
ω,a 〉 =

exc.∑
p

|p〉
εa − εp ± ω

[
〈p|V̂1|a〉 −

occ.∑
b

(〈b, p|r−1
12 |a, ρ

(±)
ω,b 〉

− 2〈b, p|r−1
12 |ρ (±)

ω,b , a〉 + 〈ρ (∓)
ω,b , p|r−1

12 |a, b〉

− 2〈ρ (∓)
ω,b , p|r−1

12 |b, a〉)
]
, (17)

where the superscripts (+) and (−) denote forward- and
backward-propagating perturbed wave functions. Note that it
is the (+) function at zero frequency, ω = 0, that is inserted
into Eq. (16). The first (+) term on the right-hand side of
Eq. (17) corresponds to uncorrelated (bare) excitation, which
we label as LOP. Including also the second and third (+) terms
corresponds to forward-propagating electron-hole correla-
tions, which we label CIS, because it is the level of correlation
obtained by solving TDCIS (also known as Tamm–Dancoff;
see, e.g., Ref. [62]). The fourth and fifth terms are exclusive to
RPAE and they correspond to ground-state correlation effects
(direct and exchange) by self-consistent solution of both (+)
and (−) terms. More details about the use of perturbed wave
functions in attosecond physics, and how they correspond
to dressing of the lower vertex in Fig. 1(a), are found in
Refs. [14,15]. In Table I the numerically obtained values of
Ñ for LOP, CIS, and RPAE are presented together with the
number of active electrons in the core of neon atoms. RPAE is
exceptional since it corresponds to the linear response of the
TDHF approximation, which is a self-consistent field theory
and therefore does obtain the correct number of electrons.
However, when the active core is truncated to NA < N , RPAE
does not provide the correct number of active electrons. It is
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TABLE I. Effective number of active electrons Ñ within LOP,
CIS, and RPAE, for the neon atom (1s22s22p6) given the number of
electrons in the active core: NA.

Active ÑLOP ÑCIS ÑRPAE NA

2p 5.4091 6.1758 7.2461 6
2s, 2p 6.2712 7.2558 8.3022 8
1s, 2s, 2p 7.8528 8.8858 10.0000 10

interesting to note that, when only 2p orbitals are active, the
CIS approximation outperforms the RPAE approximation in
this aspect.

D. Energy shifts in a static potential

Alternatively, static energy shifts of the HF ground state,
|	0〉, in response to an external potential, V̂1, can be obtained
by diagonalizing the Hamiltonian Ĥ0 + V̂1 expressed within
CIS. In this case a constant static vector potential, A(stat.) =
A0, in the linear interaction term in Eq. (2) is used. Since the
action of the quadratic term is trivial in this case it is omitted
in the following discussion. This approach has the advantage
that it is not restricted to the second-order interaction, but
includes all higher-order corrections with the field directly.
Diagonalization of the CIS Hamiltonian can also be used to
study nonlinear DC Stark shifts of excited (Rydberg) states.
This feature is, however, of limited use since laser fields with
finite frequencies will induce AC Stark shifts that differ signif-
icantly from the DC results due to resonances in the Rydberg
series.

In Fig. 2, we plot half-static energy shifts, E (stat.)
1 /2, as a

function the ponderomotive energy of an electron, Up = q2A2
0

4m ,
in an oscillating vector potential with the corresponding am-
plitude A(osci.)(t ) = A0 cos(ωt ). The half-static energy shifts
of the HF ground state follow the time-averaged energy shifts,
predicted by Eq. (9) with N substituted by ÑCIS from Table. I,
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FIG. 2. Calculated polarization of the HF ground state of neon
with an applied static vector potential in the velocity gauge with
truncated space and full CIS space. Perturbation theory results are
included as guiding lines.

as shown by solid lines, −ÑCISUp. There is a factor of 2
difference between the static energy shifts and those predicted
by Eq. (7) for monochromatic pulses because energy conser-
vation is respected only by acting once with V̂ (−)

1 and once
with V̂ (+)

1 , in any time order, but not with twice the action
of the same V̂ (±)

1 . In the limit ω → 0, however, conservation
of energy is fulfilled for all four cases, yielding a factor of 2
compared to the time-averaged energy shift,

�E (stat.)
1 ≈ 2

〈
�Ẽ (2)

1 (ω → 0)
〉
. (18)

At high ponderomotive energies, higher-order interactions
with the static field lead to a slight disagreement with the
perturbative results, −ÑCISUp, as can be observed in Fig. 2.
Energy shifts equal to −NAUp are shown as dashed lines
for reference. The significant discrepancy between the diag-
onalized ground-state energy shift in CIS and the exact TRK
theory, −NAUp, originates from the truncations performed
in the CI expansion, which leads to a nonlocal potential in
TDCIS theory.

III. METHOD

A. Effective potential

Effective potentials have found several important applica-
tions in atomic, molecular, and optical physics. The key point
is to reduce the complexity of a problem by replacing some
degrees of freedom with a potential that depends on energy.
Effective potentials can be employed to perform self-energy
correction to holes, due to virtual Auger or shake-up processes
or, more generally, to include virtual many-body interactions
into a subspace P from a complement space Q [61,62].
Similarly, optical potentials are used in scattering theory to
include virtual processes in the target that are induced by the
impinging particle [63]. Effective potentials can also be used
to include laser dressing effects, such as AC Stark shifts into
a two-level system (P), due to virtual interactions with the
complement of the truncated Hilbert space (Q) [64,65]. In
this work, we introduce an effective potential that corrects
for the lack of core polarization effects in the velocity-gauge
formulation of TDCIS theory. We do this by adapting the TRK
theory, discussed in Sec. II, to a time-dependent form where
nonresonant virtual couplings to double excitations are incor-
porated to second order in the field. We make the following
postulates for the core of N − 1 electrons that remain after a
single excitation from the ground state.

(i) Markovian process. The excitations from singles to
doubles are virtual processes that only depend on the instan-
taneous value of the vector potential: A(t ), with no lasting
memory effects in the state of the core over time.

(ii) Nonresonant dynamics. The energy shift of the core is
described by nonresonant dynamics that can be evaluated by
TRK theory as −(N − 1)q2A2(t )/2m, at each given time t by
virtual coupling from P = P1 to Q = P2.

(iii) Nonlocal correspondence. The effects of exchange
interactions in TDCIS are adopted into the core energy shift
using the following substitution: N − 1 → Ñ − 1, where Ñ
is the effective number of active electrons in the HF ground
state.
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(iv) Uniform action. The core polarization energy affects
all singly excited states in the same way independent of their
individual energy and symmetry.

Using this set of assumptions, we postulate an effective
potential for singles (S):

V̂ (S)
TRK(t ) = VTRK(t )P̂1 = − q2

2m
(Ñ − 1)A2(t )P̂1, (19)

where

P̂1 =
virt.∑

p

occ.∑
a

∣∣	p
a

〉〈
	p

a

∣∣ (20)

is a P1 projector that acts on the singly excited states. The
effective potential in Eq. (19) could be further improved by
adding the polarization energy of the core, −α

(N−1)
0 E2(t )/2,

from Eq. (12) for the N − 1 subsystem. We have not done
this because that type of correction requires knowledge of
the core system at a level that is beyond the CIS framework.
We stress that such core polarization effects are also missing
in the length-gauge formulation of TDCIS [see Fig. 1(e)].
We mention that it is straightforward to widen the present
concept for generation of effective potentials that correct for

virtual triples from doubles (D), V̂ (D)
TRK(t ), etc., but since such

potentials are beyond TDCIS they are not considered in the
present work.

B. Equations of motion

We define the CIS-TRK Hamiltonian as

ĤTRK ≡ ĤCIS + V̂ (S)
TRK, (21)

where ĤCIS is the original CIS Hamiltonian for the velocity
gauge [28,66]. Due to the closure of the CIS space, ÎCIS =
P̂0 + P̂1, the effective potential can be moved to instead act
exclusively on the ground state. This is done by subtracting a
time-dependent term from the CIS-TRK Hamiltonian:

Ĥ ′
TRK ≡ ĤTRK − VTRK(t )ÎCIS = ĤCIS − VTRK(t )P̂0,

where P̂0 = |	0〉〈	0|. This substitution, ĤTRK → Ĥ ′
TRK, can

formally be interpreted as a time-dependent gauge transforma-
tion that will modify the phase of the wave functions, but not
alter any physical observables generated from the CIS-TRK
theory.

The TDCIS-TRK′ equations of motions are (in atomic
units) written as

iα̇0(t ) =
√

2A(t )
∑
ap

〈a| p̂z|p〉αp
a (t ) + Ñ − 1

2
A2(t )α0(t ),

iα̇p
a (t ) = (εp − εa)αp

a (t ) +
∑

bq

[
2〈bp|r−1

12 |qa〉 − 〈bp|r−1
12 |aq〉]αq

b (t )

+ A(t )

(√
2〈p| p̂z|a〉α0(t ) +

∑
q

〈p| p̂z|q〉αq
a (t ) −

∑
b

〈b| p̂z|a〉αp
b (t )

)
, (22)

which differ only by the addition of the effective potential
in the ground-state amplitude equation, when compared with
the original TDCIS formulations [28,66]. In writing Eq. (22)
we have omitted the V̂2(t ) operator, because it will affect all
CIS states in the same way within the dipole approximation.
As a result, it is possible to remove it without affecting any
physical observable generated from the theory. We stress that
the cost of implementing the TDCIS-TRK′ theory in Eq. (22)
is only one scalar multiplication per time step in the numerical
propagation. In Sec. IV, we show that this seemingly minor
correction to the equations of motion have important implica-
tions for the TDCIS theory.

IV. RESULTS

In order to validate the action of the effective potential
in Eq. (19), we perform truncated TDCIS simulations for
laser-assisted photoionization for neon atoms with realistic
pulse parameters corresponding to an XUV pulse and an IR
laser pulse, as defined in Eq. (A1). The pulse duration is set to
τ = 35 fs, which is a typical value for XUV pulses generated
by HHG or FEL. The properties of the IR field are chosen
to correspond to a Ti:sapphire laser system. In general, the
photoelectron peak position depends on the detailed pulse

forms of both the IR and XUV fields in laser-assisted pho-
toionization. This is because the ponderomotive energy,

Up(t ) ≡ U 0
p f 2(t ) ≈ q2A2

ω,0(t )/4m, (23)

with Aω,0(t ) = Aω,0 f (t ), is dominated by the IR field, while
the probability of one-photon ionization by the central XUV
photon, 
, depends on time through the squared envelope of
the XUV field:

Ṗ ∼ |A
,0(t )|2 = |A
,0 f (t )|2. (24)

In this way, the two fields have clearly defined roles: the IR
field controls the dressing of the continuum, while the XUV
field controls the flux of ejected electrons.

A. Energy shift of the photoelectron

In this subsection we consider the case where both the
XUV and IR pulses have flat-top envelopes as defined in
Eq. (A2). In Fig. 3(a), we show photoelectron probability
distributions for absorption of one XUV photon from the neon
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FIG. 3. Normalized photoionization spectra using velocity-gauge TDCIS in neon with the 2p orbitals active [panels (a)–(c)] and with the
2s and 2p orbitals active [panels (d)–(f)]. The solid lines show the measured peak position and the dashed lines show the expected peak position
given by �Ekin = −Up. The middle column [panels (b) and (e)] displays the velocity-gauge TDCIS-TRK with the effective potential V̂ (S)

TRK and
the rightmost column [panels (c) and (f)] displays the velocity-gauge TDCIS-TRK with the substitution Ñ − 1 → Ñ .

ground state. Truncated TDCIS theory is used with only the
2p orbitals active. The intensity of the IR field is kept in
the range I = 1011 W/cm2 to I = 1012 W/cm2, such that
its main consequence is to assist the XUV photoionization
process with the formation of sidebands (not shown), but also
to shift the photoelectron structure to lower kinetic energies
due to an increased ponderomotive potential [53]. A classical
estimate for the kinetic energy of the photoelectron is given
by 〈Ekin〉 ≈ h̄
 + ε2p − U 0

p (dashed sky blue line), where
ε2p < 0 is the energy of the 2p orbitals. As will be shown,
this estimate is valid provided that both IR and XUV fields
are flat-top pulses of the same duration, but with truncated
TDCIS we instead observe a shift of the peak position of
roughly Ekin ≈ h̄ω + ε2p − NAU 0

p (solid orange line), where
NA ≈ 6 because only the 2p orbitals are open. Obviously, this
TDCIS shift is much too large when compared to the classical
estimate. In order to understand the convergence properties of
TDCIS, we expand the active space to include both 2s and
2p orbitals. This leads to an even stronger effect, as shown
in Fig. 3(d), and thus worse agreement with the classical
estimate. Finally, in the case where all orbitals are active, we
find that the agreement with the classical prediction is further
worsened (not shown). This proves that extending the active
core of TDCIS to full TDCIS does not resolve the issue, but
rather confirms that the major issue with the velocity-gauge
TDCIS is a synthetic AC Stark shift due to size inconsistency.

In Figs. 3(b) and 3(e), we show the results of TDCIS-TRK
theory, with the equation of motion defined in Eq. (22), for
the truncated active cores: {2p} and {2s, 2p}, respectively. It is

observed that the photoelectron peak for single XUV absorp-
tion follows the expected classical prediction closely (dashed
line). Furthermore, the two sets of simulations yield graph-
ically equivalent results, which implies that the addition of
the active 2s orbital was not essential to describe the physical
process.

In order to study the role of the effective potential fur-
ther, we make the substitution Ñ − 1 → Ñ in Eq. (22) and
present the corresponding photoelectron peaks in Figs. 3(c)
and 3(f), with active cores {2p} and {2s, 2p}, respectively.
Quite remarkably, it is found that the photoelectron peak now
remains fixed at the same kinetic energy independent of the
laser intensity. This (unphysical) substitution corresponds to
neglecting that one electron is removed from the atom in the
process of photoionization and it shows that the exact value of
the effective number of active electrons, Ñ in Table I, is crucial
to understand the ponderomotive shift of photoelectrons. In
this way we have verified that the assumption of nonlocal
correspondence between the (N − 1)-body ionic core and the
N-body atom is correct.

B. Comparison with length gauge

In this subsection we consider the case where the
pulses have more realistic time-dependent envelopes, specif-
ically given by the truncated Gaussian envelopes defined
in Eq. (A3). Photoelectron probability distributions for one-
photon ionization by an XUV field with an assisting laser field
are shown using TDCIS-TRK theory in Fig. 4. A classical
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FIG. 4. One-photon peak of laser-assisted photoionization with a
truncated Gaussian envelope using both TDCIS-TRK velocity gauge
and length gauge. The expected classical energy shift for a Gaussian
envelope is shown with an arrow labeled Up/

√
2.

estimate of the mean kinetic energy shift of the photoelectron
gives 〈�Ekin〉 ≈ −�U 0

p /
√

2, provided that both IR and XUV
fields are Gaussian pulses of the same duration. The classical
estimate for the photoelectron shift is marked with an arrow
and shows good agreement with the numerical simulations.
As expected from the classical estimates, the photoelectron
peak shifts less when Gaussian pulses, instead of flat-top
pulses, are employed. The quantum mechanical result shows
a slightly smaller shift than the classical Gaussian estimate.
Finally, we have verified that the photoelectron spectra from
length-gauge TDCIS simulations (dashed lines) are in excel-
lent agreement with the corresponding TRK results for the
normalized yield. On the blue side of the high-intensity peak
(Iω = 1012 W/cm2), we observe an interference ripple in both
gauges. We propose that this phenomenon is the onset of
dynamical interference due to ionization at the rising and the

falling sides of the field, which is discussed in more detail in
the following section.

C. Laser-assisted dynamical interference

In Ref. [48] two criteria to observe dynamical interference
are put forward: (i) the relative AC Stark shift between the
initial and final states needs to be larger than the bandwidth
of the pulse, and (ii) the ionization rate should not be so
large that the initial state is depleted on the rising side of the
field. In practice, this makes the experimental observation of
dynamical interference very challenging, as it must rely on
atomic stabilization mechanisms, due to the inherently small
ponderomotive shifts of short-wavelength radiation [47,49].
Here, we propose that the usage of two-color fields, composed
of XUV and IR parts, make the study of dynamical inter-
ference experimentally feasible with XUV fields from HHG
or FEL sources. The reason for this is that the flux and the
ponderomotive shift of photoelectrons are not constrained by a
single field, as previously considered in Refs. [47–49,67], but
rather separately controlled by tuning the IR and XUV fields
independently. In Fig. 5(a) we show that strong dynamical
interference is observed when the IR intensity is increased
from 1 × 1011 to 5 × 1012 W/cm2. At the high intensity, both
TDCIS-TRK (solid black) and length-gauge TDCIS (dashed
orange) are in good agreement with the classical estimated
energy shift: Up/

√
2. The energy difference between the peak

maxima of the two numerical results is 3.9% of the classical
estimated energy shift.

The laser-assisted dynamical interference pattern can be
studied further by choosing two different envelopes for the
XUV and IR pulses, as shown in Fig. 5(b), with a peak IR
intensity of 5 × 1012 W/cm2. The dramatic change of the in-
terference pattern is the result of the different ponderomotive
potentials of the IR field and the time-dependent photoion-
ization triggered by the XUV field. The case with a flat-top
XUV and Gaussian IR field, shown as a dotted red line in
Fig. 5(b), gives an interference pattern that is rather similar
to the usual dynamical interference phenomenon, shown in
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0.8
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FIG. 5. Numerical demonstration of laser-assisted dynamical interference. (a) Single XUV pulse and IR pulse using truncated Gaussian
envelopes. (b) Mixing flat-top and truncated Gaussian envelopes of the XUV and IR fields with Iω = 5 × 1012 W/cm2. The expected classical
energy shift is shown with an arrow and labeled Up and Up/

√
2 for a flat-top envelope and a Gaussian envelope, respectively.
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Fig. 5(a), with peaks on the blue side that decrease mono-
tonically in magnitude and increase in oscillation rate with
kinetic energy. The case with a Gaussian XUV and flat-top IR
field, shown in blue in Fig. 5(b), displays a more significant
shift of the main peak, as expected for flat-top IR fields using
classical arguments. The interference fringes on the higher
kinetic energy side, however, exhibit a qualitatively different
behavior with nonmonotonic peaks. We interpret this effect
as Ramsey-like fringes from unshifted photoemission by the
XUV pulse before and after the flat-top IR field is present.
The observed Ramsey fringes are h̄�ωR ≈ 60 meV; given
2π = �ωRT , this implies a time separation of T ≈ 64 fs. We
note that this separation is larger than the pulse duration of
the flat-top IR field (35 fs), by almost a factor of 2, which
we interpret as a result of the temporal spread of the XUV
Gaussian flank distributions (from ±17.5 fs to ±∞) with
mean values at ±29 fs.

V. CONCLUSIONS

In this article, we discussed the velocity-gauge problem
of TDCIS theory. It was shown that the velocity gauge is
size inconsistent, with respect to the number of active core
orbitals, due to the lack of virtual transitions to doubles. An
effective potential was introduced to account for nonresonant
core polarization by usage of TRK theory. The simulated
photoelectrons from TDCIS-TRK theory were found to agree
well with those from length-gauge TDCIS, with a low number
of angular momenta being required for numerical convergence
of laser-assisted photoionization. Formally, there is no justi-
fication to claim that gauge invariance is achieved, but the
TDCIS-TRK theory seems to perform at a level comparable
to the length-gauge TDCIS, with reasonable energy shifts
obtained for photoelectrons. Contrary to previous attempts to
achieve full gauge invariance in TDCIS between the length
gauge and the velocity gauge of TDCIS [45], the present
correction can be implemented with negligible numerical cost
in propagation with a spectral representation of the wave func-
tion, which may prove important for efficient implementations
of TDCIS for more complex targets, such as molecules or
heavy atoms.

Interestingly, the TDCIS-TRK simulations were essen-
tially converged with the active core space limited to {2p}
in neon atoms at the considered field parameters. While this
may seem reasonable at first glance, because laser-assisted
photoionization processes from 2p are known to be weakly
correlated with 2s in the length gauge [14], the present theory
was derived from the velocity gauge, where the convergence
of many-body effects in laser fields are much more subtle [15].
As an example, we showed that convergence of the effective

number of active electrons, Ñ → N , was only reached for the
full active core within RPAE (Table I).

In summary, the TDCIS-TRK theory allows for a reduced
number of angular momenta and an efficient frozen space in
time-dependent simulations of laser-assisted photoionization.
The theory was used to predict an alternative type of dynami-
cal interference phenomenon for atoms, under experimentally
viable conditions, by separately controlling the flux and the
ponderomotive shift by two-color fields. In future works, the
TDCIS-TRK theory may prove useful for studies of other ob-
servables, such as attosecond time delays in photoionization
with strongly driven resonant transitions, HHG with multiple
active channels, interferometric above-threshold ionization
processes, and photoionization dynamics by intense attosec-
ond pulse trains generated by seeded FELs.
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APPENDIX: NUMERICAL SPECIFICATIONS

Our calculations of laser-assisted photoionization are per-
formed using the vector potential

A(t ) = [A0,
 sin(
t ) + A0,ω sin(ωt )] f (t ), (A1)

with h̄ω = 1.530 67 eV and h̄
 = 27.211 386 eV. To main-
tain the notion of a constant ponderomotive energy, while
alleviating the spectral profile of the electric field, we use a
flat-top pulse with smooth but sufficiently rapid truncation,
given by

f (t ) =
⎧⎨
⎩

1, |t | � τ
2 ,

exp
[ − tan

(
π

|t |− τ
2

tmax−τ

)2]
, τ

2 < |t | � tmax
2 ,

0, otherwise.
(A2)

This envelope is equal to unity for a width of τ and is
smoothly suppressed between |τ |/2 and |tmax|/2. The width of
the pulses is set to τ = 33.88 fs and the smooth suppression
starts at tmax = 35 fs.

In our last example, we, however, make use of more realis-
tic truncated Gaussian pulses, adapted from Ref. [68]. In this
case, the vector potential envelope is given by

f (t ) =
⎧⎨
⎩

exp [−αt2], |t | � toff ,

exp
{ − α

[
toff + 2

π
(tmax − toff ) tan

(
π
2

|t |−tf
tmax−tf

)]2}
, τoff < |t | � tmax

0, otherwise,
, (A3)

where α = 2 ln 2/τ 2 is chosen such that the pulse length,
expressed as full width at half maximum, is specified for

the intensity profile of the pulse. This is valid in the long-
wavelength limit. The vector potential follows a Gaussian
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profile within the width, specified in terms of standard de-
viations of the intensity profile, σ = T/(2

√
2 ln 2), of |t | �

toff = 4σ , and is truncated at tmax = 6σ .
To resolve the photoelectron spectra we use the

time-dependent surface flux [44,69] (t-SURFF) and the
infinite-time surface flux [55,70] (iSURF) methods. A
limiting assumption of t-SURFF is that the total wave

function be separable into a bound ionic part and a free
electronic part. This assumption breaks due to the long-
range Coulomb potential, which scales with the inverse of
the radial distance in space. However, the photoelectrons
are recorded at R0 = 100 bohr, where the effect of the
Coulomb potential is sufficiently small to not affect our re-
sults.
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