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Environment-modified three-body energy transfer
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Resonant energy transfer from a donor to an acceptor is one of the most basic interactions between atomic
and molecular systems. In real-life situations, the donor and acceptor are not isolated but in fact coupled to

their environment and to other atoms and molecules.

The presence of a third body can modify the rate of

energy transfer between donor and acceptor in distinctive and intricate ways, especially when the three-site
system is itself interacting with a larger macroscopic background such as a solvent. The rate can be calculated
perturbatively, which ordinarily requires the summation of very large numbers of Feynman-like diagrams. Here
we demonstrate a method based on canonical perturbation theory that allows us to reduce the computational
effort required, and use this technique to derive a formula for the rate of three-body resonance energy transfer in
a background environment. As a proof of principle, we apply this to the situation of a dimer positioned near a
dielectric interface, with a distant third molecule controlling the rate, finding both enhancement or suppression

of the rate depending on system parameters.

DOI: 10.1103/PhysRevA.106.043107

I. INTRODUCTION

The transport of energy between atoms and molecules is
important in many diverse areas of science. It is present as
a fundamental process in the transport of energy in plants
and has applications in, for example, artificial light har-
vesting [1] and the “spectroscopic ruler,” a technique used
to estimate intermolecular distances within macromolecules
[2]. A closely related process, interatomic Coulombic decay
(ICD) [3], could also be relevant in radiation biology [4].
The mechanism that governs the transfer of energy from
one atom or molecule (donor) to another (acceptor) depends
chiefly on the strength of the light-matter coupling and the
interatomic or intermolecular distance. When the distances
are ultrashort, the resulting energy transfer is governed by
Dexter theory [5], where electronic orbitals overlap allow-
ing the electrons to migrate between molecules. For longer
distances where the electronic orbitals no longer overlap,
energy transfer is instead mediated by a photon, with elec-
trons of the donor and acceptor remaining bound to the
nuclei. For near field interactions where light-matter cou-
pling is weak relative to the intramolecular (e.g., vibrational)
coupling, this energy transfer is governed by Forster the-
ory [6], leading to the well-known R~® dependence on the
separation distance R. For far field interactions, relativistic
properties of the mediating photon become significant, lead-
ing to an R~2 distance dependence [7]. When intramolecular
couplings are comparable to (or weaker than) intermolecular
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ones, completely different approaches must be taken (see, e.g.,
Refs. [8-10]).

The weak-coupling interactions are described by molecular
quantum electrodynamics (QED), which can be most easily
understood using Feynman diagrammatic techniques. This is
a unified, fully quantum theory, which produces the R~% and
R~2 dependence of the short- and long-range interactions,
respectively, as limiting cases [11-13].

Describing the interaction between a single two-level
donor dipole and similar acceptor is relatively straightforward,
even in the presence of a background environment [14,15].
However, the complexity increases significantly with the ad-
dition of other levels, additional atoms or molecules [16-21],
and higher multipole moments [22]. Calculations which ac-
count for a third interacting body have only been done for the
simplest case of a homogeneous environment [23,24]—here
we will generalize these to arbitrary environments. In order
to describe energy transfer within an external environment
(see Fig. 1), the molecular QED framework can be combined
with macroscopic QED [25,26], allowing interactions in the
presence of arbitrarily shaped dispersive and absorptive media
to be described.

In this paper, a three-body system of a donor, acceptor, and
a polarizable mediator is studied within macroscopic QED.
In Sec. II, we will use canonical perturbation theory to elim-
inate some of the computational complexity arising from the
presence of the third body and, in Sec. III, use macroscopic
QED to model the effects of the external environment. Similar
calculations have been carried out for three-body ICD in a
vacuum by considering the mediator as part of the environ-
ment of the two-body system [21], but this makes it awkward
to extend the calculations to complex geometries. We obtain
a general formula for the rate of three-body resonance energy
transfer in an arbitrary environment and, in Sec. IV, we apply
this to a situation of experimental interest, namely a dimer
trapped near a surface controlled by a distant mediating agent
(e.g., Ref. [27]).
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FIG. 1. System of three atoms or molecules (donor, mediator,
and acceptor) in the presence of an arbitrary external environment.

II. HAMILTONIANS

We consider a system of a donor, acceptor, and mediator,
as seen in Fig. 1. Energy from the donor is released and
transferred to the acceptor, either directly [Fig. 2(a)] or via
the mediator [Fig. 2(b)]. We model this via the following
Hamiltonian:

H = Hy + HA + HY. + HM, (1)

int
where

Hy = Hyg + H))

mol

+H2, +HM (2)

H,.q is the Hamiltonian of the radiation field, Hfml is the
Hamiltonian of the molecule & for which we assume that the
eigenstates are known, and

HE

nt =

—d; - E(ry), (3)

where d; is the transition dipole moment of molecule £ and
E (r¢) is the electric field at the position, r, of the molecule &.

Donor Acceptor
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FIG. 2. System of three two-level atoms or molecules trans-
mitting energy through the electromagnetic field due to resonance
energy transfer. The donor begins in an excited energy state, the
acceptor in the ground state, and the mediator in its lower state.
(a) Direct interaction. Energy is emitted from the donor, transmit-
ted through the field, and absorbed by the acceptor which excites.
(b) Mediated interaction. Energy emitted from the donor is absorbed
by the mediator causing it to become temporarily excited. The me-
diator releases this energy again and it is absorbed by the acceptor
which then becomes excited.

(a) Before (b) After
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FIG. 3. Three-body resonant interaction diagrams (a) before and
(b) after the reduction of the order of perturbation theory.

The initial and final states of the system are

|f) = 1&g, sm, ea; 0), €]

where gp(ga) denotes the ground state of the donor (accep-
tor), ep(ea) the excited state of the donor (acceptor), sy is
an arbitrary state of the mediator, and O is the ground state
of the electromagnetic field. We need to take into account the
mediated interaction between the donor and acceptor, which
involves all three molecules. Figure 3(a) shows the resonant
interaction, where the excitations are transmitted through the
field as a result of molecular relaxation from excited to ground
states. Likewise, we must also consider the other time order-
ings that lead to off-resonant contributions (where molecular
excitations are accompanied by emission of a photon) and
the half-resonant contributions (where one set of interacting
molecules are excited while the photon is transmitted and
the other set are in their ground states). All of these contri-
butions have to be considered when calculating rates for the
whole process, which confusingly is also known as resonant
energy transfer (RET). Figure 3(a) shows us that this process
would involve four emission or absorption events, meaning
that fourth order perturbation theory would be required. The
complexity of such a calculation means that it is useful to sim-
plify the Hamiltonian as much as possible before proceeding.

|l> = |eD7 SM» gAsO)s

A. Reducing the order of perturbation theory

The fourth-order calculation consists of contributions from
four one-photon vertices. This can be simplified by “collaps-
ing” the two one-photon vertices at the mediator into one
two-photon vertex, therefore lowering the perturbation theory
required to third order (see Fig. 3) as applied at lower orders
in [28].

We are aiming to create a new effective Hamiltonian that
encodes the information for the two one-photon interactions
at the mediator into one term, so this new coupling term will
be second order in the electric dipole moment. To this end,
we consider just the interaction at the mediator and not at the
donor and acceptor, and perform a unitary transformation on
the Hamiltonian,

oo

A : 1
HM — oSgMeiS — Z ;[iS, [iS, ..., H]]

new
n=0 "
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=Hy + H\\ + [iS, Hol + [iS, H}y}]

1

where S is a generator that is assumed later to be first order
in the electric dipole moment and we have made use of the
Baker-Campbell-Hausdorff formula. We seek a Hamiltonian
of second order in HM (and thereby &M), so we eliminate

nt
the first-order HM term by choosing [iS, Hy] = Hlﬁ’{ This

nt
leaves, up to second order in the electric dipole moment,

HY\, = Hy + 1[iS. Hy]. (6)

nt

where, from our chosen definition of the generator, for initial
state |M) and final state |N) we have

(V] mt|M>
Ey—Ey

We now calculate the expectation value of the new second-
order interaction term using the definition of generator S given
above:

(N|iSIM) = )

JIm)

nt

1
5<N|[zS HM

1 1
= 5 SN | g+

1
Er — Ex EI_EMi|

S Z NIHMHEM M)

nt” “1int

1 1 1 1
+ + + ,
% |:ErS +hcp Es—hcp Es+ hcp  Ei— hcp’]
3

where E,, is the transition energy of the mediator going from
the excited r state to its lower s state.

Since in three-body RET, the mediator responds at the
frequency of the donor decay transition [16], we can replace
hep = hck = Eeg and hicp’ — —hck = —Eg, giving

%(N|[IS Hy M)

nt

=— Z (N|HMEM M

nt 1nt

1 1
+ .9
|:Ers + Eeg Ers - Eeg]

We can therefore define a new coupling term as given below:

Hy, = 2[zs Hyl ==Y aM®Ei(rm, p) Ejrm. p), (10)
14
where
dasrd’s dsrdrs
M [ Jj i
Mk) = 11
o (k) Z:[Ers+hck+Em—hck] (b

is identified as the dynamic polarizability of the mediator.
This means that, when considering three-body RET, instead
of fourth-order perturbation theory being required, now only
third order is needed. This reduces the usual 24 time-ordered
diagrams required for this calculation to just six, as shown
in Fig. 4. This process is, of course, equivalent to using a
polarizability-based Hamiltonian, as done in [29] for example.

(a) (b) (c)
D M D M A D M A
(d) (e) ()
D M D M A D M A

FIG. 4. Six time ordered diagrams for three-body RET once the
two one-photon vertices have been collapsed into one two-photon
vertex.

We now go one step further and use the same techniques to
create an effective fourth-order term that describes the entire
interaction including all three bodies. We begin with the new
Hamiltonian,

Hyew = Ho + Hy + Ha, (12)

where H, is the defined as in Eq. (10) and, for convenience,
the acceptor and donor interaction terms have been condensed
into a single term, H, = HA, + HP, which is linear in the
electric dipole moment. Introducing the dimensionless con-
stant A which is proportional to the electric dipole moment, so

that

Huew = Ho + MHy + *H, (13)
we perform a series of unitary transformations:
Héé& — lx*s3eixzszeixslHnewe—ms,e—ixzsze—i;ﬁs}, (14)
with generators defined as follows:
[iS1, Hol = —H,,
[iS2, Hol = —Ha,
[iS3, Hol = —[iS1, Ha] — [iSy, [iS1, Hy]l. (15)

These are chosen such that any donor-mediator-acceptor in-
teractions are eliminated to order A>.

We are able to drop any terms that do not contribute to
the interaction. This includes any second-order terms that do
not contain donor and acceptor contributions, as these do
not allow the donor and acceptor to change state. Also, any
fourth-order terms that do not contain mediator contributions
will contain intermediate states equal to the initial state, which
are excluded from the sum in the perturbation theory. We
then arrive at our new interaction Hamiltonian, the mediator-
dependent parts of which are fourth order in the electric dipole
moment as required:

Hin = 5([iS1, Hi1+ [iS, [iSy, Hall + [iS2, [iS1, HilD).
(16)
This will form the basis of our perturbative treatment of me-
diated resonance energy transfer.
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B. Perturbation theory

We now model our three-body system using the Hamilto-
nian (16) and perform perturbation theory to find the matrix
element of the interaction that will eventually lead to a RET
rate via Fermi’s golden rule. Considering both the direct and
indirect interactions, we find the matrix element to be

HpH, HpH
R i
ok CP — Leg cp+ Eeg
N HpHA\H, HyHpH
(hep + Eeg)(hcp/ — Eeg) (ficp — Eeg)(ficp’ + Eeg)
n HpH)Hp + HxH,Hp B
(ficp + Eeg)(hcp/ + Eeg) (ficp — Eeg)(hcp/ - Eeg) '
(17)
where, using Eq. (3),
Hp = HY' = —d, - E(rp),
HA = Hll)m = _&A ~E(I'A),
Hy = —a} (K)Ei(rv. P)Ej(r. p). (18)

This matrix element contains the information from all of the
different time orderings, meaning we no longer have any ex-
plicit intermediate states. As a result, the order of perturbation
theory is further reduced to first order. The first two terms in
(17) are the direct (two-body) interaction terms, with the first
corresponding to the resonant time ordering and the second
to the off resonant. The other terms describe different time
orderings of the mediated interaction. The third and fourth
terms are the half-resonant contributions, where the third term
corresponds to (d) and (e) in Fig. 4 and the fourth term to (a)
and (b). The fifth term describes the completely off-resonant
interaction, shown in (c), and the sixth is the completely
resonant interaction (f). We can then use this matrix element
to calculate the rate of interaction.

III. DERIVATION OF THE RATE

So far, we have not considered the environment that the
three-body system is in. To do this, we employ macroscopic
QED [26,30], which introduces macroscopic objects into the
quantum description. This means that the effects of an envi-
ronment near the system can be accounted for more readily
than the atomistic approach in [31], since the macroscopic
media can be described by their effective properties, such as
overall permittivity and permeability. This environment can
include arbitrarily shaped, dispersing, and absorbing material
bodies.

In macroscopic QED, the electric field is expressed as

Er) = Z/ dwfd3r’ G,(r.¥,w) f,(r,0)+Hc.,
Y 0

(19)
where f,(r,®) is an annihilation operator for a polari-
tonic excitation at position r and with frequency w and its

Hermitian conjugate is the corresponding creation operator.
These operators obey bosonic commutation relations

(7.0, 0), F, (¢, o)] = [}I(r, o), Fl, w’)] —0, (20)
[}A(r, o) Fl, a/)] —8r—r)(w—o), (1)

where 8(r — ') = diag(1, 1, 1)8(r — r’). The matrix G, obeys
the integral relation

Z /d3s Gx(r,s,a))-Gjr(r/,s,a))

A=e,m
FZ,LL() 2 /
= —o' ImG(r,r, w), (22)
T

where G satisfies

1 wz ] 4
V x Vx——xer w)|Grr,w)=5r—r).
[ u(r, w) c? }
(23)

Known as the Green’s tensor or Green’s dyadic, G encodes
all of the information about the environment, including dif-
ferent geometries [32]. In particular, G(r, ¥, w) describes an
excitation that is propagating out from point r’ and then being
observed at point r.

By making use of the integral relation (22), we can write
each of the terms in the matrix elements as frequency integrals
of the form

00 21 G , /’
/ do IO T, ©) 24)
0

wp o

For example, the first term of the matrix element becomes

HxHp .
ngfﬂm
k
o0 o0
= Z/ da)/ dw//d3r/d3r’ d:.G)\.ik(rAvrv (1))
o Jo 0 '
Or | A r, o Fh (', 010
o (Ol fa(r, o) f;, (', ")l F)Gj{,r,(rp,r',w’)dz)
hwp — ho g !

1 o0 3
=£Z/O da)/drdji
X

T
" G ik(ra,r, 0) Gy (rp, 1, ®)

D;
wp — W

[ee) 21 Gi' , ,

=@ﬁ/¢mwmﬂ“mm@w (25)
T w — wp !
where we have defined

hick = hw, Ee = lwp, (26)
d=(gldle), d*=(eldlg). 27)

Since the frequency integrals have real axis poles, we let
the eigenenergies of the atom take on a small imaginary part,
€. This means that the poles become +(wp + i€) and we then
evaluate the integrals by closing the contour in the upper half
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plane [13,33]. We find that

. o O ImG(r, ¥, w)
lim dop ——=
e—0+ Jo wp +w + 1€
/ TGy, ie (28)
= - r,r,i —_—
0 wp + &2
and
. o o*ImG(r, ¥, w)
lim | do——""2 "
e=0+ Jo wp — w + 1€
- —/oo dEG(r, 7, i) =22 _ 202G, ¥, wp)
0 ’ ) w]z) +%_2 D I ’ D).

(29)

Applying this method to each of the terms in the matrix
element, and assuming that all media involved are reciprocal,
so that Lorentz reciprocity G’ (r,r, w) = G(r', r, ) can be
used, we find that the surviving term for the direct contribution
[see Fig. 2(a)] to the matrix element is

MY = powhd; Gijra. rp. wp)dp, (30)
and for the indirect contribution [see Fig. 2(b)]
M}[}dir = —M(z)wngiGij(l‘A, M, @p)

x o (k)G (r. 1. @p)dp, 31)

Summing these contributions to find the total matrix ele-
ment My; = M;}}r + M}‘}d“, we calculate the rate from Fermi’s
golden rule as

2w
I'=Y = |M;*$(E;— Ef
D G Mil*o(E; — Ep)
f
_27T[L(2)a)4D
h
2 M
+ wowpG(ra, rv, wp) - o (k)

- G(rw, rp, p)] - dp|*, (32)

|d} - [G(ra, rp, wp)

which reduces to the three-body ICD formula found in [21] if
the Green’s tensor is replaced by its vacuum counterpart and
the transition dipole moment of the acceptor is reexpressed
in terms of an ionization cross section. Equation (32) is the
main result of our work, describing resonant energy transfer
mediated by a third polarizable body in the presence of an
arbitrary environment. The first term of (32) describes the
direct interaction between the donor and acceptor, where the
field propagates from the donor at position rp and is observed
at the acceptor at ra, therefore corresponding to the resonant
interaction. The second term describes the mediated interac-
tion, where the field propagates from the donor to the mediator
and then from the mediator to the acceptor. We can see there-
fore that, while all diagrams in Fig. 4 contribute, the result is
what one would have obtained from the pole contributions to
the resonant diagram only (as was assumed without rigorous
justification in [21]), with all the remaining diagrams serving
to cancel the nonpole parts of this.

A

]fU

Y
A
Y
A

“NR | NR
|
|

N I \

ootz

FIG. 5. Collinear system made up of three bodies and a semi-
infinite dielectric half space. The donor and acceptor are assumed
close enough together and to the surface to apply the nonretarded
(NR) limit to their direct interaction and the mediator is assumed far
enough away from both that the retarded (R) limit can be applied.

IV. EXAMPLE APPLICATION; EXTERNAL CONTROL OF
A MOLECULAR DIMER

Formula (32) allows calculation of the rate of mediated en-
ergy transfer in an arbitrary external environment. As a proof
of concept, we demonstrate the use of the formula for the
simplest inhomogeneous environment, namely a semi-infinite
half space. We will specialize to some asymptotic distance
regimes in order to be able to write down simple Green’s ten-
sors in position space (i.e., without using an angular spectrum
representation), verifying these against full results at the end.
However, we emphasize that the formula (32) is applicable to
any external environment and could be used to calculate inter-
actions within far more complex systems using numerically
calculated Green’s tensors. These could include proteins and
other biological systems [34], in which the dipole moments
are often randomly oriented, necessitating calculating the rate
averaged over all possible dipole alignments. The procedure
for this is well known (see, for example, Ref. [35]); in par-
ticular, it amounts to making the replacement for the outer
product of a dipole moment with itself:

dip ®dap — 5ldapl’L, (33)

where ® denotes the outer product and I is the 3 x 3 identity

matrix. Multiplying out Eq. (32), applying this rule, and again

taking advantage of Lorentz reciprocity, we find

27 udawd,
Oh

X Tt[F (ra,rv, rp) - F*(rp, rv, 7a)],  (34)

r = daldn |

where
F(ra,rm,rp) = G(ra, rp, wp)

+ oM wpG(ra, rv, wp) - Glrv, rp, @p)  (35)
and we have let ™ — oMI
mediator.

For simplicity we will initially look at a collinear system,
where all three bodies are positioned along the z axis, as
shown in Fig. 5. Inspired by schemes that aim to control
enhancement of light-harvesting efficiency (e.g., Ref. [27]),
we choose to look at the case where the donor and acceptor
are positioned very close to each other and also to the half
space, but with a distant mediator. This means that we can

in order to effect an isotropic
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make further simplifications, namely that the donor and ac-
ceptor are close enough to each other and the surface that
the environment-dependent direct interaction between them
is in the nonretarded limit, where the intermolecular distance
between the donor and acceptor is significantly less than the
characteristic wavelength of the transition. The other limit we
impose is that the mediator is far enough away from the donor,
acceptor, and surface that the opposite, retarded limit can be
used there.

We can therefore write an approximate rate I”CSE for our
collinear system as

. 27 plwt
FISO — 0*D d 2d 2
L= Ton ldal”ldp]
X Tt[F cr.(ra, rm, o) - F&L(rp, rv, )], (36)
where

FcL(ra,rm, rp) = GNr(Fa, I'p, @p)
+ noaMwpGr(ra, rv, op) - Gr(rm, rp, wp).  (37)

In order to explicitly calculate the approximate collinear
rate TS° defined in (36), we note that Green’s tensors in
inhomogeneous environments can in general be split into the
sum of a translation-invariant bulk part G and a “scattering”

part G, so that each of the Green’s tensors shown in (37) are

GrrR(r. . ) = GQRp (1.1, ©) + G g (r.F. ). (38)
For our chosen system (dielectric material in the region z < 0
and vacuum otherwise), the bulk part of the Green’s tensor is
that of the vacuum, which is known analytically in closed form
(see, e.g., Ref. [25] or [32]), but due to the physical system
we have chosen we will only quote its short and long distance
forms. In the nonretarded limit (with noncoincident position
arguments r # r’), the vacuum Green’s tensor reads [25]

2

GO r w=——-
N ) 47 w? p3

(I -3e,®e,), (39)

where p =r —r', p = |p|,and e, = p/p. In the retarded limit
it becomes

C2€iw,o/c
4 p

GO, v, w)=— I —e,®e,). (40)

Moving onto the scattering contribution, we note that the
full expression of the scattering Green’s tensor for a gen-
eral dielectric half space can only be written in terms of
Fourier-transformed quantities (see, e.g., Ref. [25] or [32]),
necessitating one or more frequency integrals before results
can be obtained. Fortunately, due to our choice of physical
situation we can again use the short and long distance special
cases, which can be written as simple expressions in position
space. The nonretarded limit of the scattering Green’s tensor
on the positive z axis for an environment containing a non-
magnetic (relative permeability of unity), semi-infinite half
space in the region z < 0 is [36]

C2

(1) / —
GNR(r,r,a)) = m

(41)

N OO

1 0
FNR 0 1
0 0

and the retarded limit is

0 ei(z+z’)w/c 1 0 0
G, r,r,0) = — |0 1 0], 42
T i LA 42)
where
e(w)—1 1 —e(w) 43)
INR=—"", IR=——"7—
M e@+17 T 1+ Ve

are the reflection coefficients of the half space for the nonre-
tarded and retarded limits, z and 7’ are the z components of
the distances r and »’, and e(w) is the frequency-dependent
relative permittivity of the half space. Equations (36)—(42)
together constitute an analytic formula for the donor-acceptor
transfer rate in the situation shown in Fig. 5. Substituting
Egs. (37)—-(42) into (36) and simplifying, we find

pictldal?ldp|?

Fiso —
cL 187h
2 2
INR 1 |C|
x + + , (44)
H(ZA +zp)  (za— zD)J 3272c4 ]
where

C =4nc? < ! — INR )
(za —z0)  (za +20)°

{ Lowd e iopGatin=2an/c

(za — zm)(za + z2m)(zm — zp) (2D + 2m)

2izawp/c

x [rr(za — zm)e —za — 2M]

x [rr(zm — 20)e” ™/ + zp + zv] }, 45)

with zp < za < zm, as indicated in Fig. 5. In the limit of
vanishing mediator polarizability ay, all terms depending on
the retarded reflection coefficient rg vanish (as is expected
from the assumption that the mediator is at a retarded distance
from all other bodies), and one is left with
c*udldal*|dp|? 3ri
(za +2p)°

Ty =T&(am — 0) = T

2rNR 3
. 46
(za —20)3(za + 20)? * (za — ZD)6] (46)

To the best of our knowledge, this formula for the two-body
isotropically averaged rate near a dielectric interface does not
appear anywhere in the literature, the closest known result
being that for oriented (nonrandom) dipoles near a perfect
reflector reported in Eq. (20) of [15]. In the Appendix we
demonstrate that the result in [15] is exactly reproduced by
the relevant special case of Eq. (32). Finally, taking the limit
of (46) where the surface becomes transparent (ryg — 0), one
finds

ctudldal*dpl?
127 hi(za — 2p)°

in agreement with the well-known result for two-body reso-
nance energy transfer in vacuum [6]

F(O[M —> 0, I'NR — O) = (47)
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FIG. 6. Plot of rate of energy transfer for both the exact numer-
ical calculation (34) and the result using the approximate analytical
expression (44) against mediator position for a system in a vacuum
and a system near a half-space (gray) modeled as a perfect reflector
(corresponding to ¢ — 0o so that ryg = 1 = —rg). All rates are
normalized to their isotropic two-body rate Ty = I'S° (@™ — 0) [see
Eq. (46)] in their respective environments and the mediator position
is in units of the donor transition wavelength Ap. The polarizability
volume oM /47 ¢, of the mediator is chosen as 0.113. The surface is
positioned at z = 0, the donor is at z/Ap = 0.04, and the acceptor is
at z/Ap = 0.08, as indicated by the blue and red vertical lines and
dictated by the imposition of the nonretarded limit in that section of
the system. In order for the retarded approximation to hold in its
section of the system, the mediator should not be brought nearer
than approximately a wavelength away from the donor, acceptor, or
boundary—this is indicated by the vertical line.

Returning to our three-body, environment modified rate
formula (36), based on Ref. [27] we are particularly interested
in how changing the position of the mediator affects the rate
of energy transfer between the donor and acceptor. Figure 6
shows how the rate of energy transfer changes as the position
of the mediator is varied along the z axis in the presence of
a half space and compares this with a vacuum environment,
both using the approximate formula (36) and for an exact
numerical calculation using the full formula (34) (carried
out using the Fourier-transformed Green’s tensors found in,
for example, Appendix B of [25]). It is clear from Fig. 6
that the approximations we applied to write down Eq. (36)
work where they are expected to (mediator significantly more
than one wavelength away from donor, acceptor, and surface),
but fail outside of that. We can see that, even at the larger
mediator distances accessible via the analytic approximation,
the mediator still has a significant enhancing and reducing
effect on the rate of energy transfer, which is influenced by the
presence of the half space. It is interesting to note from Fig. 6
that for this particular situation the effect of the mediator is
actually diminished by the presence of the half space. In other
words, when the environment for this particular setup contains
a half space, adding a controllable third body will have less of
an effect on the energy transfer rate between the donor and
acceptor than if no half space were present.

This points towards a highly nontrivial dependence of the
donor-acceptor transfer rate when accompanied by a mediator
and a nearby surface. To investigate this (and to go beyond

e/,

100

ZM/AD

FIG. 7. Main figure: rate of energy transfer for a donor and
acceptor near a half space with reflection coefficient r, = 1. The
donor is fixed at position {xp, zp}/Ap = {—1, 1} and the acceptor at
position {xa, za}/Ap = {1, 2}, while the mediator is free to move in
the x-z plane. The other parameters and normalization are the same
as in Fig. 6. The gray regions around donor and acceptor indicate
where the rate enhancement goes off the color scale. Inset: plot for
identical system (with all axes and and color scales the same) but
with the half space removed.

the collinear case) we use the full form of the Green’s tensor
for an environment containing a half space (given in [25]), of
which the retarded (42) and nonretarded (41) forms are limits.
A contour plot showing the rate for different positions of the
mediator in the x and z axes is shown in Fig. 7, including a plot
for the same system but without a half space. A comparison
of these plots demonstrates the intricate dependence on the
mediator’s position and environment of the rate of energy
transfer between the donor and acceptor even in the presence
of a relatively simple structure, producing both enhancement
and suppression in different regions.

V. CONCLUSIONS

Here we have given a formula, Eq. (32), which can be
used to find the rate of mediated energy transfer in any exter-
nal environment. This was derived using extended canonical
perturbation theory beyond second order. It would have been
possible to calculate this using standard perturbation theory
and considering all time orderings, but this would have been
an extremely complex and unwieldy process. We then applied
this formula to a simple system, namely three bodies near an
external semi-infinite half space, but it could be applied to
any environment for which the Green’s tensor is known either
analytically or numerically.

The arrangement of a dimer made up of a donor and ac-
ceptor trapped near a surface controlled by an external agent
is a situation of experimental interest (for example, in [27]),
and we have shown how the presence and position of a third
molecule influences the rate of energy transfer. Furthermore,
long-range transfer in photosynthetic complexes may rely on
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the type of mediated RET discussed here. The formula pre-
sented here is also a minimal model of RET in a more complex
environment and could be used as a starting point for such
investigations.

The work presented here could also indicate a poten-
tial way to observe retardation in RET. Ordinarily the
donor-acceptor rate at retarded distances is extremely small
compared to the corresponding (observable) rates at smaller
distances [37]. However, adding a distant mediator to a
nonretarded, surface enhanced reaction could be a way of
observing the role of retardation in RET, without the com-
plication of such low rates.

It is interesting to note that the form of the rate equa-
tion found, Eq. (32), is exactly as one would anticipate from
intuition about dipole moments and the Green’s tensor. As
indicated in Casimir and Polder’s 1948 paper on interatomic
potentials [38], this could likewise point towards a simpler
way to obtain fully quantum formulas of this nature. This
would be the start of a powerful method to carry out more
complex many-body calculations.
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APPENDIX: CONSISTENCY CHECK WITH
MIRROR-MODIFIED TWO-BODY RATES

In Eq. (20) of Ref. [15], a normal-mode QED-based
formula is given for the mirror-modified two-body rate

[ians(QD) for oriented (nonrandom) quantum dots modeled
as dipoles. These are taken to be at a nonretarded distance
from each other but arbitrary distance from a perfectly re-
flecting mirror. Similarly, the dipole moments in Ref. [15] are
taken to be aligned with each other and with the surface of the
mirror. Therefore, the (fully) nonretarded limit of Eq. (20) in
Ref. [15] should agree with the perfect-reflector limit of the
following special case of Eq. (32):

27 uied,

Dx
h

|dMGyR (ra. rp. wp)dl >, (Al

with GNR being the xx component of the sum of Gy given by
Eq. (39) and GS& given by Eq. (41). Substituting these in and
carrying out the algebra, we find

|d2?|dD 1
Fxx = 5 6
8whey | (za —zp)
2rNR + rI%TR (A2)
(za —20)@za + )  (a+z)° |

Translating the notation of Eq. (20) in Ref. [15] to that used
here (namely R — za — zp) gives

|dA2|dP? 1
8mhej | (za —p)°

Cieans (QD) =

2 cos (2kzp) 1
— A
(za —z20)@a +20)®  (za+ ZD)6:|, (A3)

the kzp — O (nonretarded) limit of which exactly reproduces
the perfect reflector (rng — 1) limit of Eq. (A2) above.
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