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Mapping the direction of electron ionization to phase delay between VUV and IR laser pulses
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We theoretically demonstrate a one-to-one mapping between the direction of electron ionization and the phase
delay between a linearly polarized vacuum ultraviolet (VUV) and a circular infrared (IR) laser pulse. To achieve
this, we use an ultrashort VUV pulse that defines the moment in time and space when an above-threshold electron
is released in the IR pulse. The electron can then be accelerated to high velocities escaping in a direction
completely determined by the phase delay between the two pulses. The dipole matrix element to transition
from an initial bound state of the N2 molecule, considered in this work, to the continuum is obtained using
quantum-mechanical techniques that involve computing accurate continuum molecular states. Following release
of the electron in the IR pulse, we evolve classical trajectories, neglecting the Coulomb potential and accounting
for quantum interference, to compute the distribution of the direction and magnitude of the final electron
momentum. The concept we theoretically develop can be implemented to produce nanoscale ring currents that
generate large magnetic fields.
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I. INTRODUCTION

Generating large and controllable THz magnetic fields is
of fundamental importance. For instance, such fields con-
trol the direction of magnetization in magnetic devices, and,
when a maximum speed of magnetic switching is reached,
they control the onset of magnetic disorder [1]. Thus, THz
magnetic fields have a wide range of applications in optoelec-
tronic devices used for information processing. Such fields
can currently be produced by the Stanford Linear Accelera-
tor (SLAC) electron beam. However, while important, these
fields are a relatively low-tech application of a state-of-the-art
accelerator. Devising optical techniques for generating THz
magnetic fields with sufficient spatial and temporal precision
to be useful for small devices is a frontier of ultrafast science.

Recently, utilizing visible and infrared (IR) laser technol-
ogy allowed for high-velocity electrons to be arranged in
almost any geometric form in semiconductors [2–5]. Such
forms include a line current, as in SLAC, and a ring current,
relevant for generating solenoidal magnetic fields. These high-
velocity electrons, which generate high magnetic fields, were
produced using coherent control.

Coherent control is a powerful tool with applications in a
wide range of areas, such as quantum optics and metrology
[6–8], attosecond metrology [9,10], optoelectronics [11], and
laser cooling [12,13]. In recent studies [2–5], steering the
direction of electron current was achieved by controlling the
quantum interference of excitation or ionization pathways re-
sulting from a mid-IR ω pulse and its second harmonic 2ω [2].
The phase delay of the two pulses was shown to control inter-
ference between the two-photon (ω) and single-photon (2ω)
pathways and to finally determine the direction of electron
motion [2]. However, this optical technique limits the dimen-

sions over which the electron current is generated to roughly
one wavelength of the infrared light that is used to accelerate
the electrons [14], i.e., to a few μm. Using coherent control of
one- and two-photon processes to reduce to the nm scale the
dimensions over which current is produced requires optically
generating ω and 2ω vacuum ultraviolet (VUV) light beams.
This is currently impractical. Here, we theoretically demon-
strate that control of electron currents generated at roughly
100 nm is possible. As in the attosecond streak camera [15],
we achieve control by varying the phase delay between a
linearly polarized VUV pulse and a circularly polarized IR
pulse. We show control of electron motion in the context
of the N2 molecule. Our approach involves, first, releasing
the electron at low velocity above the ionization threshold
of an atom or molecule using a VUV pulse. The VUV pulse
with duration significantly smaller than the IR pulse serves to
define the space and time origin of the electron. We consider
transitions from an inner or outer valence electron 20–40 eV
(< 100 nm) of N2. Then, the newly released electron is accel-
erated by a circularly polarized IR radiation to speeds that are
proportional to the field strength and inversely proportional
to frequency. We achieve high electron velocities by choos-
ing the IR pulse to have long wavelength, λ = 2.3 μm, and
intensity of up to 5 × 1013 W/cm2.

The current study is theoretical and thus we are not
constrained by laboratory restrictions. Hence, we study N2

molecules aligned along the linear polarization of the VUV
pulse. We demonstrate a one-to-one mapping between the
direction of electron escape and the phase delay between the
IR and VUV pulses, achieving excellent control of electron
motion.

To show control of electron dynamics, we develop a
hybrid quantum-classical approach. The dipole matrix ele-
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ment to transition from an initial bound state of the N2

molecule to the continuum is obtained using very accurate
quantum-mechanical techniques. The latter involve comput-
ing continuum molecular states. We obtain these states by
solving a system of Hartree-Fock (HF) equations in the single
center expansion [16]. Also, we derive in detail and imple-
ment in our formulation the dependence of the dipole matrix
element on the angles that determine the direction of electron
ionization due to the VUV pulse.

Following release of the electron in the IR pulse, we ne-
glect the Coulomb potential and in the context of the strong
field approximation evolve classical trajectories, while fully
accounting for quantum interference. The development of the
classical aspect of this hybrid approach is based on our pre-
vious experience in classical techniques describing ionization
in strongly driven systems [17].

II. METHOD

A. Dipole matrix element for an electron ionizing due to a VUV
pulse

In what follows, we outline the derivation of the dipole
matrix element for an electron to transition from a bound to
a continuum state of a molecule due to the VUV pulse. This
matrix element is obtained as a function of the excess energy
and the direction of ionization of the electron. Both of these
parameters will be important for determining the control that
the IR pulse exercises on electron motion.

1. Continuum momentum eigenstates

First, we formulate the continuum momentum eigenstates
of a diatomic molecule in the LAB frame. The z axis of the
molecule-fixed (MF) frame is taken to be along the axis of the
diatomic molecule. The z axis in the LAB frame is taken along
the polarization direction of the linear VUV laser pulse. The
origin of the MF and LAB frames is at the center of mass
of the molecule. The momentum eigenstate of an electron
escaping in the continuum with momentum �k is expressed in
the MF frame (unprimed vectors) [18,19] as follows:

|�k〉 =
L∑

l1=0

l1∑
m1=−l1

il1 e−iσl1 Y ∗
l1,m1

(k̂)ψl1,m1 (�r; k), (1)

where ∗ denotes complex conjugation. The basis functions
ψl1m1 (�r; k) are the continuum energy eigenstates of a diatomic
molecule normalized in energy ε, with ε = k2

2 . The �k eigen-
state in Eq. (1) is normalized in energy as well. The Coulomb
phase shift σl1 (k) is given by arg �(l1 + 1 − iZ

k ), with Z the net
charge of the molecular ion following the escape of one elec-
tron. We use atomic units unless otherwise stated. To obtain
in the LAB frame (primed vectors) the continuum momentum
eigenstate, we express in the LAB frame the spherical har-
monic that is a function of k̂ in Eq. (1). Using the convention
that was introduced by Rose in Ref. [20] and was also adapted
in Refs. [21] and [18], we obtain

Yl1,m1 (k̂) =
l1∑

m2=−l1

Yl1,m2 (k̂′)Dl1
m2,m1

(R̂). (2)

The matrix Dl1
m2,m1

(R̂) is the Wigner rotation matrix (see
Refs. [20] and [22]), where l1 is the angular momentum quan-
tum number, and m1, m2 are the magnetic quantum numbers.
The three Euler angles R̂ = (α, β, γ ) specify the orientation
of the diatomic molecule with respect to the LAB frame. Next,
inverting Eq. (2), we obtain the spherical harmonics in the
LAB frame as follows:

Yl1,m1 (k̂′) =
∑
m2

Yl1,m2 (k̂)Dl1∗
m1,m2

(R̂). (3)

Substituting Eq. (2) in Eq. (1), the continuum momentum
eigenstate in the LAB frame is given by

|�k′〉 =
∑

l1,m1,m2

il1 e−iσl1 Y ∗
l1,m2

(k̂′)Dl1∗
m2,m1

(R̂)ψl1,m1 (�r; k). (4)

2. Energy-normalized continuum and bound wave functions

To calculate the continuum wave functions, we use a single
center expansion (SCE) [16,23] with respect to the center of
mass of the molecule. In SCE, the bound wave functions are
given by

ψi(�r) =
∑
li,mi

Plimi (r)Ylimi (r̂)

r
, (5)

where �r = (r, θ, φ). Note that ψi(�r) is a HF orbital in our
calculations. The continuum wave functions ψl1,m1 (�r; k) are
expressed as follows:

ψl1,m1 (�r; k) =
∑
l ′m′

P l1m1
l ′m′ (r; k)

r
Yl ′m′ (r̂). (6)

Expressing the wave function as a product of radial functions
and spherical harmonics significantly simplifies the compu-
tation of integrals. Indeed, when solving a system of HF
equations, the integrals over angles are computed analytically.
As a result, we solve a system of equations expressed in terms
of the radial part of both bound and continuum wave func-
tions; see Ref. [16]. The energy-normalized radial functions
P l1m1

l ′m′ (r; k) are found to be [23,24]

P l1m1
l ′m′ (r; k) =

∑
LM

e−iηLMUl1m1,LMP l ′m′
LM (r; k), (7)

where

P l ′m′
LM (r; k) = cos ηLM

∑
L′M ′

UL′M ′,LMP l ′m′
L′M ′ (r; k). (8)

The phase shifts ηLM and matrix U are obtained from the
following eigenvalue equation:

∑
L′M ′

Rlm,L′M ′UL′M ′,LM = − tan ηLMUlm,LM, (9)

where U consists of the eigenvectors of the interaction matrix
R, defined below. The R matrix is referred to as scattering
matrix K in Ref. [18]. The unnormalized continuum radial
functions P l ′m′

L′M ′ (r; k) are obtained after solving the system of
HF equations. The energy-normalized functions P l1m1

l ′m′ (r; k) in
Eq. (7) result from P l ′m′

L′M ′ (r; k) satisfying the normalization
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condition∫ ∞

0
dr

∑
L′M ′

P l ′m′
L′M ′ (r; k1)P l ′m′

L′M ′ (r; k2) = δ(ε1 − ε2), (10)

where ε1 = k2
1
2 and ε2 = k2

2
2 . It follows that the radial functions

satisfy the asymptotic conditions [25]

P l ′m′
L′M ′ (r → ∞; k) → FL′ (r; k)δl ′,L′δm′,M ′

+ GL′ (r; k)Rl ′m′,L′M ′ , (11)

where FL′ (r; k) and GL′ (r; k) are energy-normalized reg-
ular and irregular Coulomb functions, respectively; see
Refs. [26,27]. The regular Coulomb function corresponds to
the solution of a point charge. The irregular Coulomb function
corresponds to the distortion of the solution from that of a
single point charge. The latter is present in a molecule since
there is no spherical symmetry.

3. Dipole matrix element from a bound to a
continuum molecular state

The photoionization cross-section to transition from an
initial bound state to a final continuum molecular state is
proportional to the absolute value squared of the dipole matrix
element. The latter describes the transition of an electron from
an initial state ψi(�r) to a final state |�k′〉 due to a single photon
absorption, here by a VUV pulse,

DM = DM (�k′) = 〈�k′| �r′ · n̂′|ψi〉, (12)

where

�r′ · n̂′ =
√

4π

3
rY1,M (r̂′), (13)

with n̂′ being the unit vector of the polarization of the electric
field of the VUV pulse. The value of M is 0 for linear polar-
ization and ±1 for right/left circularly polarized light in the
LAB frame. Substituting Eq. (3) into Eq. (13) for r̂′ instead of
k̂′, we obtain

�r′ · n̂′ =
√

4π

3
r

∑
|m|�1

Y1,m(r̂)D1∗
M,m(R̂). (14)

The polarization of the photon in the MF frame is denoted by
m. Next, substituting Eqs. (14) and (4) into Eq. (12), we obtain

DM =
∑

l1,m1,m2,m

eiσl1 (−i)l1Dl1
m2,m1

(R̂)D1∗
M,m(R̂)

× Yl1,m2 (k̂′)Dl1,m1,m, (15)

where

Dl1,m1,m =
∫

d�rψ∗
l1,m1

(�r; k)

√
4π

3
rY1,m(r̂)ψi(�r). (16)

Substituting Eqs. (5) and (6) in Eq. (16) and integrating over
the angular part in Eq. (16), we obtain an expression in terms
of Wigner-3 j symbols and of the radial bound and continuum

wave functions,

Dl1,m1,m =
√

4π

3

∑
l ′,m′,li,mi

(−1)m′√
(2li + 1)(2l ′ + 1)

×
(

l ′ li 1
0 0 0

)(
l ′ li 1

−m′ mi m

)

×
∫ ∞

0
drP l1m1

l ′m′ (r)rPlimi (r). (17)

For diatomic molecules, the magnetic quantum number is a
good number, with no summation over the initial-state quan-
tum number mi in Eq. (17) and over m1 in Eq. (15). Also,
from the properties of the Wigner-3 j symbol, it follows that
in Eq. (17), m′ = m + mi. Hence, there is no summation over
m′ in Eq. (17). Given the above, Eq. (15) takes the form

DM =
∑

l1,m2,m

eiσl1 (−i)l1Dl1
m2,m+mi

(R̂)D1∗
M,m(R̂)

× Yl1,m2 (k̂′)Dl1,m+mi,m. (18)

Here, we consider the symmetry axis of the diatomic molecule
being parallel to the VUV pulse, with the latter being polar-
ized along the z axis in the LAB frame. This corresponds
to Euler angles α = β = γ = 0, resulting in Dl1

m2,m+mi
(0̂) =

δm2,m+mi and D1∗
M,m(0̂) = δM,m, i.e., M = m and m2 = M + mi.

Given the above, the dipole matrix element for a diatomic
molecule aligned along the polarization direction of the VUV
pulse takes the form

DM =
∑

l1

eiσl1 (−i)l1Yl1,M+mi (k̂
′)Dl1,M+mi,M . (19)

B. Transition amplitude of an electron from a bound to a
continuum state due to VUV+IR pulses

We have obtained the dipole matrix element DM (�k′) for
an electron to transition from a bound molecular state with
ionization energy equal to Ip to a final continuum molecular

state �k′ with �k′2
2 = h̄ω − Ip, where h̄ω is the photon energy of

the VUV pulse. Next, in terms of this dipole matrix element,
we obtain the amplitude to transition from an initial bound
state of the molecule to a final continuum state with electron
momentum �p f in the presence of the VUV and IR pulses. Af-
ter an electron is released into the continuum with momentum
�k′ at time tion by the VUV pulse, we neglect the Coulomb
potential. The duration of the VUV pulse is taken to be much
smaller than the duration of the IR pulse. The electron is then
accelerated by a circular IR laser pulse polarized on the x-z
plane. Hence, the conserved canonical momentum due to the
motion of the electron in the IR laser field is given by

�k′(tion) − �AIR(tion) = �k′(t ) − �AIR(t ) = �p f , (20)

where �p f is the final electron momentum at the end of the IR
laser field. The envelope of the electric field of the VUV pulse
that ionizes the electron is given by

�EV(t ) = EV
0 exp

[
−2 ln(2)

(
t

τV

)2]
ẑ, (21)
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where EV
0 is the amplitude and τV is the full width at half-

maximum (FWHM) in intensity of the VUV pulse. The vector
potential of the IR pulse is given by

�AIR(t ) = −E IR
0

ωIR
exp

[
−2 ln(2)

(
t + �t

τIR

)2]

× {sin [ωIR(t + �t )]x̂ + cos[ωIR(t + �t )]ẑ}, (22)

where E IR
0 is the amplitude and ωIR is the frequency of the

electric field of the IR pulse, with τIR being the FWHM in
intensity. In addition, �t is the time delay between the VUV
and IR pulses. In what follows, we refer to ωIR�t as phase
delay φ. According to the strong field approximation (SFA)
[28,29], the amplitude for an electron to transition from a
bound state ψi to a final state with momentum �p f in the
presence of the XUV+IR laser fields is given by

a( �p f ) =
∫ t f

ti

dtionEV(tion)DM[ �p f + �AIR(tion)]

× e−iS(tion,t f , �p f ). (23)

The times ti and t f denote the start and end, respectively, of
the IR laser field. The classical action S accumulated during
the time interval from tion until t f is given by

S(tion, t f , �p f ) = −Iption +
∫ t f

tion

dt ′ [ �p f + �AIR(t ′)]2

2

= p2
f

2
(t f − tion) − Iption

+
∫ t f

tion

dt
�AIR(t ) · [ �AIR(t ) + 2 �p f ]

2
. (24)

Next, we describe how to compute a( �p f ) in Eq. (23) for
each photon energy of the VUV pulse. First, we create a
two-dimensional grid over the polar angle θV and azimuthal
angle φV that define the direction of ejection of the escaping
electron with momentum �k′ due to the VUV pulse. For each
point of the two-dimensional grid, we compute fully quantum
mechanically DM (�k′), as described in Sec. IIA3. Then, we
describe classically the propagation in the IR pulse of the elec-
tron ejected with momentum �k′(tion). Specifically, we choose
the ionization time tion using importance sampling [30] in the
time interval [−2.5τV, 2.5τV]. For the probability distribution,
we use the amplitude of the VUV pulse EV

0 . For each classical
trajectory, we propagate the electron in the IR laser field from
time tion to time t f . We generate, for each θV grid point,
2 × 107 classical trajectories.

In addition, we account for the interference of trajectories
corresponding to electrons ejected with different momenta �k′
at different ionization times tion that finally escape with the
same momentum �p f . To do so, we create a three-dimensional
grid over the cylindrical coordinates p f r, θ, p f y of the final
momentum that the electron acquires due to both the VUV and
IR pulses. We note that pf r is the magnitude of the projection
of p f on the plane of the IR pulse, i.e., pf r = √

pf x
2 + pf z

2.
Also, θ is the angle of pf r with the z axis, which is also the
axis of polarization of the VUV pulse. We obtain the ampli-
tude A( �p f ) for each grid point corresponding to an electron

momentum �p f by adding coherently the amplitudes ai for all
trajectories i with the same �p f as follows:

|A( �p f )|2 =
∣∣∣∣∣
∑

i

ai( �p f )

∣∣∣∣∣
2

. (25)

Finally, we obtain the probability for an electron to be ejected
on the plane x-z plane of the IR pulse with momentum (pf r, θ )
by integrating |A( �p f )|2 over the p f y component,

|A(pf r, θ )|2 =
∫

d pf y|A( �p f )|2. (26)

III. RESULTS

Next, we demonstrate that by changing the phase delay φ

between the VUV and IR laser pulses, we control the direction
of escape of an electron that is released in the continuum due
to the VUV pulse and accelerates due to the IR pulse. We do
so in the context of N2, when the VUV pulse is aligned with
the z axis in the LAB frame.

A. Computation of the bound and continuum orbitals

We briefly discuss the computation of the bound and con-
tinuum orbitals of N2. The electronic configuration of N2 is
(1σ 2

g , 1σ 2
u , 2σ 2

g , 2σ 2
u , 3σ 2

g , 1π2
ux, 1π2

uy). We consider single
photon absorption by the VUV pulse and subsequent ion-
ization of an electron initially occupying the 2σg, 3σg, or
1πu bound orbital. The 1πux and 1πuy orbitals are energy-
degenerate and have opposite m quantum number. For the
computations performed in this work, the initial state ψi is
given by one of these three orbitals. We compute the bound
states using the HF method with the quantum chemistry
package MOLPRO [31]. We implement HF by employing
the correlation-consistent polarized triple-zeta basis set (cc-
pVTZ) [32]. We find the equilibrium distance to be equal to
2.08 Å, and the ionization energies of the 2σg, 3σg, and 1πu

orbitals to be equal to 37.7, 16.0, and 15.3 eV, respectively,
close to the experimental values reported in [33].

In the single center expansion of the bound states ψi [see
Eq. (5)], it suffices to truncate the expansion over the li
quantum number up to lmax = 30. For the computation of the
continuum orbitals ψl1,m1 , in the single center expansion given
in (6) we truncate the l1 quantum number up to lmax = 19.
We also checked (not shown) that our results for the total
cross sections as a function of photon energy for the 2σg, 3σg,
and 1πu orbitals are in agreement with experimental results
[34–36].

We take the amplitude and duration of the electric field of
the VUV pulse to be equal to EV

0 = 1013 W/cm2 and τV = 0.5
fs. We consider two amplitudes of the IR pulse corresponding
to intensity of either 5 × 1012 or 5 × 1013 W/cm2, to roughly
identify the strength of the IR pulse required to achieve con-
trol. Given the ionization energy of a valence electron of N2,
we find that the intensity upper limit of 5 × 1013 W/cm2

results by requiring that the rate of ionization of a valence
electron via tunneling due to the IR pulse is very small.

In our studies, the duration of the IR pulse is τIR = 100
fs and its frequency is equal to ωIR = 0.020 a.u. (2300 nm).
In the two-dimensional grid of the angles of ejection of the
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FIG. 1. Probability g(θ ) for an electron ionizing from the 3σg orbital due to a linearly polarized VUV pulse and accelerated by a circularly
polarized IR pulse to ionize with an angle θ with respect to the z axis on the x-z plane. The IR pulse is polarized on the x-z plane. The VUV
pulse is linearly polarized along the molecular axis (z axis). We waterfall plot the probability g(θ ) for different phase delays φ between the
VUV and IR pulses. The VUV photon energy is 17 eV (a) and 24 eV (b). The intensity of the IR pulse is 5 × 1013 W/cm2.

electron due to the VUV pulse in the LAB frame, the polar
angle θV ranges from 0◦ to 180◦ in steps of 1◦, while the
azimuthal angle φV ranges from 0◦ to 360◦ in steps of 10◦. For
the three-dimensional grid of the final electron momentum in
cylindrical coordinates, pf y and pf r vary from −5 to 5 a.u.
and 0 to 5 a.u., respectively, in steps of 0.01 a.u., while the
angle θ varies from 0◦ to 360◦ in steps of 1◦.

B. Control of the direction of electron ionization
with VUV+IR pulses

We demonstrate that the phase delay between the linearly
polarized VUV pulse and the circularly polarized IR pulse
determines the direction of the ionizing electron. We show that
best control is achieved when, at the time tion that the electron
is released by the VUV pulse, it has very small energy. That
is, the photon energy of the VUV pulse has to be just above
the ionization threshold for the IR pulse to steer the electron
most effectively.

To illustrate this, we plot the probability g(θ ) for an elec-
tron to escape to the continuum on the x-z plane of the IR pulse
with an angle θ . The latter angle is measured with respect
to the z axis in the LAB frame. Integrating |A(pf r, θ )|2 in
Eq. (26) over pf r , we find g(θ ) as follows:

g(θ ) =
∫

d p fr p fr |A( �p f , θ )|2. (27)

In our results, we fully account for the energy range of the
VUV pulse. That is, the Fourier transform of the VUV pulse
with a full width at half-maximum equal to 0.5 fs extends
over energies roughly ± 4 eV from the central photon energy.
Hence, when considering a VUV pulse with central photon
energy equal to, for instance, 23 eV, we also consider photon
energies in the interval [19, 27] eV in steps of 1 eV. That is,
for each of these energies we obtain the amplitudes ai( �p f ),
which we then weight by the value of the Fourier transform at
the respective energy. We then add coherently the amplitudes
thus obtained to compute |A(pf r, θ )|2 in Eq. (26).

In Fig. 1, we plot the probability distribution g(θ ) when an
electron ionizes to the continuum from 3σg, an outer valence
orbital, with an angle θ with respect to the z axis on the
x-z plane. Since we consider linear polarization of the VUV
pulse which is aligned with the molecular axis, the relevant
transition is 3σg → εσu. The z axis is both the symmetry axis
of the diatomic molecule and the polarization axis of the VUV
pulse. The circular IR pulse is polarized on the x-z plane. We
take the IR pulse to have an intensity of 5 × 1013 W/cm2. We
consider a 17 eV VUV photon energy, which is 1 eV above
the ionization threshold of the 3σg orbital [Fig. 1(a)], and a
higher photon energy of 24 eV [Fig. 1(b)].

In Fig. 1, we vary the phase delay φ between the VUV and
IR pulses from 0◦ to 315◦ in steps of 45◦. For each phase delay
φ, we find the angle θ that corresponds to the maximum of
g(θ ), i.e., the most probable angle of electron escape on the x-z
plane, θmax. For each φ, we expect that θmax = φ; we find this
to be true when the electron due to the VUV pulse is released
at tion in the IR pulse with very small excess energy. That is,
k′(tion) = √

2(h̄ω − Ip) is very small. This is seen in Fig. 1,
where g(θ ) is narrow and centered around θ = θmax = φ when
the excess energy is 1 eV (17 eV photon energy), while g(θ ) is
wide and in most cases doubly peaked for 8 eV excess energy
(24 eV photon energy). This finding means that we achieve
a one-to-one mapping between the angle of ionization of the
electron and the phase delay between the two laser pulses.
This holds true for small electron energies at the time the
electron is released in the IR pulse.

Hence, we clearly demonstrate control of electron motion
for VUV energies around 20 eV. This is important because
these energies are within the range of high harmonics gener-
ated from solids where one can harness the surface structure
that can be added to solids to focus the VUV light down to the
100 nm scale [37].

In Fig. 1, we find that when the electron due to the VUV
pulse is released at tion in the IR pulse with higher excess
energy, there is a double peak structure in g(θ ), mostly for
φ = 90◦, 270◦. For instance for φ = 90◦, the momentum that
the electron gains from the IR pulse is equal to − �AIR(tion) and
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FIG. 2. Same as Fig. 1 but for an electron ionizing from the 1πu orbital. The VUV photon energy is 18 eV (a) and 23 eV (b).

points along the x axis. In addition, the electron is released due
to the VUV pulse at time tion in the IR pulse along the +z and
−z axis with the same probability, since N2 is a homonuclear
molecule. As a result, the final angle of electron escape is
smaller than 90◦ for electrons released along the +z axis and
greater than 90◦ for electrons released along the −z axis.

Similar results are obtained for ionization to the continuum
of an electron from 1πu, another outer valence orbital; see
Fig. 2. In this case, we achieve excellent control of the angle of
electron escape both for 18 eV photon energy (2.7 eV excess
energy) but also for a higher photon energy of 23 eV (7.7 eV
excess energy). We note that 23 eV photons are feasible for
solid-state high-harmonic generation. In what follows, we
explain the reason for achieving for higher excess energies
better control for the 1πu orbital compared to the 2σg and 3σg

orbitals. We find that the most probable angles of release due
only to the VUV pulse are 45◦ and 135◦ for the 1πu orbital,
while they are 0◦ and 180◦ for the 2σg and 3σg orbitals. We
refer to the �k′ vectors corresponding to these two angles as
�k′

1 and �k′
2. To account for the IR pulse, we add to �k′

1 and �k′
2

the − �AIR vector. This addition is illustrated in Fig. 3(a) for
the 2σg and 3σg orbitals and Fig. 3(b) for the 1πu orbital.

Comparing Fig. 3(a) with Fig. 3(b), it is clear that the angle
between the two resultant vectors �p f ,1, �p f ,2, which is given
by θ2 − θ1, is smaller for the 1πu orbital than for the 2σg and
3σg orbitals. This is the reason that the double peak structure
is significantly less pronounced for the 1πu orbital compared
to the 2σg and 3σg orbitals for higher excess energies. Indeed,
this can be seen by comparing Fig. 2(b) with Fig. 1(b) for
φ = 90◦ and 270◦.

We further illustrate the one-to-one mapping between the
most probable angle of ejection of the electron, θmax, and the
phase delay between the VUV and IR pulses by plotting θmax

as a function of φ in Fig. 4. We do so for a transition from the
3σg and 1πu orbitals when the VUV photon energy is close
to the ionization threshold, 17 and 18 eV, respectively. The
values of θmax for all φ’s lie on the gray line in Fig. 4 that
corresponds to θmax = φ. For each φ, we also compute the
standard deviation of the probability distribution g(θ ) and find
it to be very small; see Fig. 4. The small spread of the angles
θ around φ, for each φ, implies excellent control of electron
motion.

As we have already noted, the Coulomb potential is fully
accounted for in the interaction of the N2 molecule with the

FIG. 3. Schematic diagram for the resultant final momentum �pf . The vectors �k′
1 and �k′

2 are the momentum vectors due to the VUV pulse
corresponding to the two most probable angles of release due to VUV pulse at time tion. The resultant vectors �pf ,1 and �pf ,2 are obtained by
�k′

1 − �AIR and �k′
2 − �AIR, respectively. The angles θ1 and θ2 are the polar angles on the x-z plane of the vectors �pf ,1 and �pf ,2. The diagram on the

left corresponds to the 2σg and 3σg orbitals and on the right to the 1πu orbital.
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FIG. 4. θmax as a function of the delay φ between the VUV and
IR pulses, for an electron ionizing from the 3σg and 1πu orbital
with VUV photon energy equal to 17 and 18 eV, respectively. The
intensity of the IR pulse is 5 × 1013 W/cm2. The vertical bars denote
the standard deviation of the probability distribution g(θ ).

VUV pulse. We neglect the Coulomb potential only during
the propagation inside the IR pulse of the electron released at
time tion. We expect that this approximation will not affect our
finding of the one-to-one mapping between the phase delay
φ and the most probable angle of electron escape θmax. Fully
accounting for the Coulomb potential at all stages will most
probably result in a broader distribution g(θ ) that still has a
peak around θmax = φ. Moreover, the details of the double
peak structure of g(θ ) observed for higher photon energies
[see Fig. 1(b) for φ = 90◦ and 270◦] depend on the system
that is interacting with the VUV and IR pulses. For instance,
a more asymmetric double peak structure of g(θ ) is expected
for a heteronuclear diatomic molecule. The reason is that the
probability for the electron to be released due to the VUV
pulse is different when the electron escapes along one center
versus the other one. Finally, we note that in this work we
assume that the diatomic molecule is perfectly aligned with
the VUV laser pulse. In an experiment, the molecule will
be aligned along the VUV pulse with a certain distribution.
Accounting for such a distribution is expected to only slightly
change the results presented in this work and to cause a small
increase of the width of the distribution of g(θ ) as a function

of θ for different phase delays. This is the reason we do not
include a distribution of alignments in the current work.

In Fig. 5, we demonstrate that, as expected, control of the
angle of ionization of the electron depends on the strength of
the IR pulse. We take the intensity of the IR pulse to be equal
to 5 × 1012 W/cm2, which is an order of magnitude smaller
than the intensity of the IR pulse considered in Figs. 1 and
2. We find that for the weaker IR pulse, the distribution g(θ )
is wide and not centered around θ = φ even for VUV photon
energies close to the ionization threshold, 18 and 17 eV for
the transitions from the 1πu and 3σg orbital, respectively. The
lack of control is clearly seen by the doubly peaked structure
of g(θ ) for most φ for both transitions.

We now show that control of the angle of electron ioniza-
tion is also achieved for electrons ionizing due to the VUV
pulse from the 2σg inner valence orbital. This is demonstrated
in Fig. 6(a) for a photon energy of the VUV pulse equal to
41 eV, which corresponds to the electron having an excess en-
ergy of 3.3 eV when it is released into the IR pulse. However,
for photon energies 45 and 55 eV, as for the 3σ orbital at 24 eV
VUV photon energy, we find that the distribution g(θ ) is wide
and doubly peaked for most values of the phase delay φ; see
Figs. 6(b) and 6(c). Hence, control is not achieved for these
higher excess energies.

Next, we investigate the velocities reached by the electron
that is released due to the VUV pulse and is accelerated by
the circular IR pulse. In Fig. 7, we plot the distribution of mo-
menta g(p fr ) that the electron escapes with on the x-z plane,
which is the plane of polarization of the IR pulse. We do so for
an electron ionizing from the 3σg orbital for a 17 eV photon
energy of the VUV pulse. The distribution of the magnitude
of the projection of the final electron momentum on the x-z
plane is given by

g(p fr ) =
∫

dθ p fr |A( �p f , θ )|2. (28)

The maximum momentum that an electron gains from the
IR field is E IR

0 /ω, which is equal to roughly 1.9 a.u. for the
higher IR intensity considered in this work. The momentum
of the electron at the time of release tion is k′ = 0.27 a.u.
Hence, when the phase delay φ between the two pulses is

FIG. 5. Same as in Figs. 1 and 2 but for an intensity of the IR pulse equal to 5 × 1012 W/cm2.

043106-7



M. MOUNTNEY et al. PHYSICAL REVIEW A 106, 043106 (2022)

FIG. 6. Same as in Fig. 1 but for an electron ionizing from the 2σg orbital. The waterfall plots (a), (b), and (c) correspond to VUV photon
energies of 41, 45, and 55 eV, respectively.

zero, an electron released due to the VUV pulse along the
+z axis at time tion will finally ionize with a momentum
equal to 0.27 + 1.9 = +2.17 a.u. due to both the VUV and
IR pulses. An electron released due to the VUV pulse along
the −z axis at time tion will finally escape with a momentum
equal to −0.27 + 1.9 = 1.63 a.u. due to both the VUV and
IR pulses. This explains the doubly peaked distribution of
electron momenta in Fig. 7, when φ = 0 and for most φ’s. The
height of both peaks is roughly equal, since N2 is a homonu-
clear molecule and the electron has the same probability to be
released along the +z and −z axis at time tion. Moreover, when
φ = 90◦, − �AIR(tion) points along the x axis and hence the
resultant electron momentum distribution due to the VUV and
IR pulses is centered around �AIR(tion) = E IR

0 /ωIR = 1.9 a.u.
Thus, we find that the ionizing electron is steered to a specific
direction by the phase delay of the VUV and IR pulses, but
it also accelerates to high velocities that are roughly equal to
2 × 106 m/s. If we take an even smaller photon energy of the
VUV pulse, the electron momentum distribution (not shown)
will be centered around E IR

0 /ωIR for most φ’s.

C. Magnetic field due to a ring current

Finally, we give a rough estimate for the magnetic field
resulting from a ring current generated by a linear VUV pulse
of intensity 1013 W/cm2 and pulse duration of 0.5 fs as well
as a circular IR field of intensity 5 × 1013 W/cm2. For a
VUV pulse focused down to roughly 100 nm with 20 eV
photon energy, the number of photons provided in an area of
1002 nm2 is roughly 2 × 105. Then, the ionized atoms and

thus the electrons released by the VUV pulse in the IR pulse
are roughly 2 × 105. We showed that an electron released by a
VUV pulse in an IR pulse accelerates by the IR field to speeds
≈2 × 106 m/s. Then, a current of roughly J = 0.5 A can be
created around a ring of length roughly equal to r = 100 nm.
The magnetic field resulting by the ring current is equal to
μ0J/(2πr), which is roughly equal to 1 T. Hence, our concept
can be implemented to produce large magnetic fields confined
below 100 nm.

IV. OUTLOOK

An important application of the concept we theoretically
develop in this work is to implement it to optically create
strong electron ring currents resulting in large magnetic fields
of the order of Tesla. To do so, one can envision using a
spatiotemporal light spring, which is a pulse recently pro-
posed [38]. Generating light springs and understanding their
nonlinear interaction with matter, such as plasmas to produce
beams of relativistic particles, is of intense interest [39–43].

Light springs are exotic pulses resulting from a superpo-
sition of several different frequency Laguerre-Gauss orbital
angular momentum (OAM) beams. Both their wavefront as
well as their intensity profile have a helical or corkscrew-like
structure. Using high harmonic generation, it will be possible
in the future to generate a focused down to roughly 100 nm
VUV light spring from an OAM IR laser field. Indeed, it
was recently reported that roughly 12 eV VUV beams were
generated by high harmonics from the MgO solid focused
down to 100 nm [37]. The circular IR laser beam will be
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FIG. 7. Probability for an electron being released from the 3σg orbital due to a linearly polarized VUV pulse and being accelerated by a
circularly polarized IR pulse to a final momentum whose projection on the x-z plane has magnitude pf r = √

pf x
2 + pf z

2. The VUV photon
energy is 17 eV and the intensity of the IR pulse is 5 × 1013 W/cm2.
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obtained from the fundamental IR laser field as well. The
idea is that the corkscrew intensity profile of the VUV light
spring will release electrons at different points on a ring that
is perpendicular to its propagation direction and at different
times in the circular IR pulse. This is equivalent to releasing
electrons at different points on the ring with different phase
delays between the VUV and IR pulses. Hence, a ring current
can be generated to produce a large magnetic field along the
propagation direction.

V. CONCLUSIONS

In conclusion, we have demonstrated a one-to-one map-
ping between the direction of ionization of an electron and
the phase delay between a linearly polarized VUV pulse and a
circular IR laser field. An ultrashort VUV pulse focused down
to 100 nm or less releases the electron in the circular IR pulse
with temporal and spatial resolution. Following release, the
electron is then accelerated to high velocities by the IR pulse.

We have demonstrated this concept in the context of the N2

molecule. However, future experiments can employ equally
well atoms such as helium, argon, or neon. Selection of an
atom for experiments should be partly based on the maximum
IR intensity that can be considered without tunnel ionization
of a valence electron. High IR intensities result in high elec-
tron speeds and thus large electron currents. For instance,
the first ionization energy of helium is higher than the first
ionization energy of N2. Hence, for helium, intensities of the
IR pulse higher than 5 × 1013 W/cm2 can be considered while
still keeping the rate of ionization of the valence electron via
tunneling very small. For experiments, selection of an atom
should also be based on transitions from a valence or inner
valence shell with a VUV pulse of around 20 eV photon
energy having large cross sections.

The theoretical concept of control of electron motion de-
veloped here can be implemented to create high magnetic
fields. In the near future, it should be possible to generate fo-

cused VUV pulses with a corkscrew-like intensity profile that,
in conjunction with a circular IR pulse, can direct electrons
around a ring and create magnetic fields. However, the concept
of controlling the direction of electron ionization with a VUV
and IR pulse that we theoretically develop here is general and
not restricted to creating ring currents. For instance, it can
also be applicable to processes in physical chemistry, an area
where coherent control emerged as a tool to steer a system
into a particular final state [44]. For instance, controlling the
direction of ionization of an electron released from an inner
valence or core orbital can influence from which atomic center
a valence electron is removed to fill in the hole created by
the VUV pulse in a process known as interatomic Coulombic
decay [45].
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