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We present a grid-based implementation of the time-dependent configuration-interaction singles method
suitable for computing the strong-field ionization of small gas-phase molecules. After outlining the general
equations of motion used in our treatment of this method, we present example calculations of strong-field
ionization of He, LiH, H2O, and C2H4 that demonstrate the utility of our implementation. The following paper
[S. Carlström et al., following paper, Phys. Rev. A 106, 042806 (2022)] specializes to the case of spherical
symmetry, which is applied to various atoms.
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I. INTRODUCTION

Strong-field physics and attosecond science offer a rich
experimental platform to study ultrafast phenomena on elec-
tronic timescales and length scales [1,2]. Applied to gas
phase molecules, techniques such as high-harmonic spec-
troscopy [3–7], orbital tomography [8], laser-induced electron
diffraction [9–11], and holography [12] attempt to use the
technologies of attosecond physics to probe electronic struc-
tures and dynamics that occur within molecular systems.
Although promising, fine-tuning these techniques to extract
accurate and complete information is not straightforward
due to the highly nonlinear and nonperturbative nature of
the strong-field interactions driving these experimental ef-
forts. Often the only path to disentangling and interpreting
the measurable experimental observables is through detailed
modeling of not only the underlying molecular and electronic
structures but also the complete probing process itself. In
this regard, the novel spectroscopic methods brought forth by
strong-field and attosecond physics will only be as accurate
as the underlying modeling used to interpreting the complex
observables involved.

The first step in all of these strong-field driven processes
is the removal of an electron with a strong low-frequency
laser field. Following ionization, the liberated electron is then
accelerated in the laser field and driven back to recollide with
the parent ion, a process called laser-induced electron rec-
ollision. In order to accurately describe this time-dependent
nonperturbative process at an ab initio level, it is necessary to
develop time-domain methods that can interface with standard
methods in time-independent electronic structure theory. In
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addition, a proper description of the recollision motion of the
continuum electron will likely require going beyond the lo-
calized Gaussian-like basis sets upon which most of standard
electronic structure codes are based. In this article we develop
and explore a grid-based implementation of time-dependent
configuration-interaction singles (TD-CIS) as applied to small
gas-phase molecules, where Cartesian grids are used to repre-
sent the continuum electron, while still using Gaussians for
the occupied orbitals.

The problems we are interested in studying are not
new, and many different approaches have been fruitfully
pursued before. A listing, which is by no means exhaustive,
would include TD-CIS for molecules [13–19]; TD-CIS
for atoms [20,21]; a newly developed relativistic TD-CIS
that takes the Dirac equation as its starting point [22];
time-dependent density-functional theory [23–26]; methods
that go beyond the single Slater determinant ansatz, such
as multiconfigurational time-dependent Hartree [27–29],
multiconfigurational time-dependent Hartree–Fock [30–34],
and time-dependent multiconfigurational self-consistent-field
methods [35]; time-dependent complete-active-space
self-consistent-field methods [36]; time-dependent resolution
in ionic states [37]; the various restricted-active-space
methods, e.g., time-dependent restricted-active-space
configuration-interaction [38] and time-dependent
occupation-restriction multiple-active-space methods [39];
the excitation-class-based methods such as time-dependent
coupled-cluster [40–42] and algebraic diagrammatic
construction [43–45]; and finally the recent extension of
the R-matrix method to molecules, UKRmol+ [46] and
RMT [47]. For reviews of the various ab initio approaches to
multielectron dynamics, see [48,49].

This article is arranged as follows. In Sec. II the general
equations of motion for the TD-CIS ansatz are derived in
detail, as well as the generalization of surface-flux techniques
to compute photoelectron spectra to multiple ionization chan-
nels. The time propagator is briefly surveyed in Sec. III. Some
illustrative calculations are presented in Sec. IV. Section V
concludes the paper.
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A. Conventions

Hartree atomic units, where h̄ = e = a0 = me = 1, are
used throughout.

We employ a modified version of Einstein’s summation
convention, where indices appearing on one side of an equal-
ity sign only are automatically contracted over, e.g.,

� = c0�0 + �̃k ≡ c0�0 +
∑

k

�̃k .

For the canonical orbitals, we use the following letters: |i〉,
| j〉, |k〉, and |l〉 denote occupied orbitals; |a〉 and |b〉 denote
virtual orbitals; and |c〉, |d〉, |e〉, and | f 〉 denote any orbitals.
Matrix elements between orbitals are written using Mulliken-
like notation:

(c|d )
def= 〈c|ĥ0 + V̂L(t )|d〉,

[cd||e f ]
def= [cd|e f ] − [cd| f e],

[cd|e f ]
def=

∫
dς1dς2

|r1 − r2|χ
∗
c (ς1)χ∗

d (ς2)χe(ς1)χ f (ς2), (1)

where ĥ0
def= T̂ + V̂ is the molecular one-body Hamiltonian,

V̂L(t ) is the time-dependent potential due to the external laser
field, and ς1,2 refer to both spatial and spin coordinates of the
orbitals.

II. GENERAL TD-CIS, EQUATIONS, AND SURFACE FLUX

Our ansatz is

�(t ) = c0(t )�0 + �̃k (t ), (2)

where �0 is the Slater determinant of the reference state
[typically the Hartree–Fock (HF) ground state], c0(t ) is time-
dependent complex amplitude, and �̃k (t ) an excited Slater
determinant obtained by substituting the occupied orbital
|k〉 of the reference by a time-dependent particle orbital
|k̃〉 formed as a linear combination of the virtual canonical
orbitals:

�̃k (t )
def= cka(t )â†

aâk�0 ⇒ |k̃〉 = cka(t )|a〉.
No distinction is made between excitation and ionization
channels, since |k̃〉 is associated with a particular hole con-
figuration of the remaining ion, the particle–hole density of
which is given by |k̃〉〈k|. We also note that this implies that
particle orbitals corresponding to different occupied orbitals
are nonorthogonal, 〈k̃|l̃〉 �= 0, which must be taken into ac-
count when forming the energy expression [50].

To derive the equations of motion (EOMs), we start from
the Dirac–Frenkel variational principle

δ〈�|L̂ = 0, (3)

where the Lagrangian is given by

L̂ = 〈�|Ĥ − i∂t |�〉 − λi j̃〈i| j̃〉 − λ j̃i〈 j̃|i〉. (4)

The Lagrange multipliers λi j̃ and λ j̃i ensure that the particle
orbitals | j̃〉 remain orthogonal to the occupied orbitals |i〉 at
all times; this is necessary since otherwise the basis would be
overcomplete. In the time propagation, they are implemented
as projectors, without explicitly evaluating the multipliers. A

possible alternative approach would have been to treat the
Lagrange multipliers as dynamical variables [51]. Such a for-
mulation avoids an explicit orthogonalization step, quadratic
in the number of orbitals, leading to substantial efficiency
improvements in effective one-electron theories such as time-
dependent density-functional theory. The potential savings
are however likely to remain minor in wave-function-based
methods such as TD-CIS.

Inserting the ansatz (2) into the expression (4) for the
Lagrangian, we find

L̂ = E − c∗
0i∂t c0 − 〈k̃|i∂t |k̃〉 − λi j̃〈i| j̃〉 − λ j̃i〈 j̃|i〉, (4′)

where the total energy is given by

E = |c0|2E0 + 〈k̃|k̃〉Ek + (c∗
0Ekk̃ + c.c.)

+ Ek̃k̃ − 〈k̃|l̃〉Elk − [l k̃||kl̃].

We have introduced here the following notation for the partial
contributions to the overall energy:

E0
def= (i|i) + 1

2 [i j||i j]

is the (time-dependent) energy of the reference determinant
�0,

Ek
def= E0 − εk

is the channel energy associated with excitation or ionization
from the occupied orbital k, and the orbital energy

εk
def= εkk, εkl

def= (k|l ) + 1
2 [k j||l j].

The occupied–virtual orbital energy (as well as its complex
conjugate)

Ekk̃
def= (k|k̃) + [ki||k̃i]

contains the terms that lead to excitation or ionization from
the reference, whereas the virtual–virtual energy

Ek̃k̃
def= (k̃|k̃) + [k̃i||k̃i]

describes the interaction of the excited or ionized electron
with its parent ion state (intrachannel) as well as with the
external field. Finally, the interchannel energies

Elk
def= (l|k) + [li||ki]; [l k̃||kl̃]

describe coupling between the various ionization channels
through the external field and Coulomb interaction, respec-
tively. We note that, due to the linearity of the ansatz (2), we
are free to choose the energy origin;1 by setting E0 = 0, we
avoid having to converge the quick phase evolution due to the
HF reference. Simultaneously, the channel energy becomes
simply Ek = −εk .

By varying (4′) with respect to c∗
0 and 〈k̃|, we get the EOMs

i∂t c0 = c0E0 + 〈k| f̂ |k̃〉,
i∂t |k̃〉 = (Ek + f̂ )|k̃〉 + c0 f̂ |k〉

− 〈l| f̂ |k〉|l̃〉 − (Ĵlk − K̂lk )|l̃〉 − λk̃i|i〉, (5)

1This can be thought of as a gauge transform.
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where the Fock operator is defined as

f̂
def= ĥ0 + V̂L(t ) + Ĵii − K̂ii ⇒ 〈l| f̂ |k〉 ≡ εlk

and the direct and exchange potentials are defined by their
action on an orbital:

Ĵcd |e〉 def= χe(ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χd (ς2),

K̂cd |e〉 def= χd (ς1)
∫

dς2

|r1 − r2|χ
∗
c (ς2)χe(ς2) ≡ Ĵce|d〉.

We now use our gauge freedom to choose E0 = 0 and we get
the modified EOMs

i∂t c0 = 〈k| f̂ |k̃〉,
i∂t |k̃〉 = (−〈k| f̂ |k〉 + f̂ )|k̃〉 + c0 f̂ |k〉

− 〈l| f̂ |k〉|l̃〉 − (Ĵlk − K̂lk )|l̃〉 − λk̃i|i〉. (5′)

If |k〉 and |k̃〉 live in different vector spaces, e.g., if |k〉
is expanded in a basis set of Gaussians and |k̃〉 is resolved
on a grid, their respective matrix representations of the Fock
operator f̂ will in general not agree, i.e., |k〉 resolved on the
grid of |k̃〉 will not necessarily be an eigenvector of the matrix
representation of f̂ on the same grid. It is therefore important
to compute matrix elements of operators in the correct vector
space. The chief reason for representing the occupied orbitals
using Gaussians instead of resolving them on the grid and
computing the matrix elements of the Fock operator accord-
ingly is that any grid coarse enough to be reasonable for time
propagation would not be able to accurately represent the
oscillatory behavior of the Fock operator close to the nuclei.
Specifically, the direct interaction Ĵii needs to partially screen
the nuclear potentials −ZB/|RB − ri| such that the long-range
potential behaves as −1/ri. This cancellation is challenging
to achieve accurately on a coarse grid, while it is trivial to
compute exactly in the Gaussian basis and then instantiate the
result on the grid. A similar argument can be made for the
short-range nonlocal potential Ĵii − K̂ii.

If instead |k〉 and |k̃〉 do live in the same vector space,
we may choose |k〉, |l〉, . . . to be the canonical orbitals which
diagonalize the field-free Fock operator. This choice (which
we make in the special case of atomic symmetry; see the
following article [52]) is a restriction compared to the more
general case considered in this article. Furthermore, in the
case of an atom placed at the origin of our coordinate system,
there are no permanent dipole moments. These two restric-
tions considerably simplify the EOMs,

i∂t c0 = 〈k|V̂L|k̃〉,
i∂t |k̃〉 = (−εk + f̂ )|k̃〉 + c0V̂L|k〉

− 〈l|V̂L|k〉|l̃〉 − (Ĵlk − K̂lk )|l̃〉 − λk̃i|i〉, (5′′)

where we have dropped the term c0(ĥ0 + Ĵii − K̂ii )|k〉 since
we require 〈k|k̃〉 = 0. Our molecular implementation below
uses (5′), while our atomic implementation [52] relies on (5′′).

A. t+iSURF{C,V}

The following derivation in similar in spirit to those of
Scrinzi [53], Orimo et al. [54], but differs in the details.

We begin by defining the N-electron Heaviside function
acting on one electron



def= �̂ jN [1 − θ (r1 − Rs)] · · · [1 − θ (rN−1 − Rs)]θ (rN − Rs ),

(6)
where �̂ jN permutes coordinates j and N . With this, we
construct our ansatz for the asymptotic region (r j > Rs),


|�(t )〉 = an(pσz , t )A|ξn(t )〉|pσz (t )〉
def= an(pσz , t )|ξn(t )pσz (t )〉,

where {|ξn(t )〉} is a “time-dependent, complete but otherwise
arbitrary set of functions” [53] that spans the ion degrees of
freedom and |pσz (t )〉 is an electron with final momentum p
and spin projection σz.

The antisymmetrization operator used above to couple an
already antisymmetrized (N − 1)-body wave function |ξn(t )〉
with one electron |pσz (t )〉 to form an antisymmetrized N-body
wave function is defined as

A def= 1√
N

(−)N− j�̂ jN , (7)

where (−)N− j is the signature of the permutation. This form
is valid, provided that the strong orthogonality assumption
applies, i.e., that the scattering state |pσz (t )〉 is orthogonal to
all the bound orbitals of the initial state [55–58]. This condi-
tion is trivially fulfilled due to the presence of the Heaviside
function (6).

The overlap with such an asymptotic state is given by

an(pσz , t ) = 〈ξn(t )pσz (t )|
|�(t )〉
= 〈ξn(t )|〈pσz (t )|A
|�(t )〉
= 〈pσz (t )|θ

√
N〈ξn(t )|�(t )〉〉

def= 〈pσz (t )|θ |n(t )〉, (8)

where we have used the fact that A is self-adjoint to act
with it on 
|�(t )〉 to the right and that only N terms are
nonzero for which the coordinate of |pσz (t )〉 coincides with the
photoelectron orbital in |�(t )〉 (a single orbital in TD-CIS).
The sign of each such term will precisely compensate the cor-
responding sign of the antisymmetrizer (7). The normalization
leaves a factor of

√
N , which is absorbed into the definition of

the Dyson orbital |n(t )〉. Finally, 〉〉 denotes integration over
both the photoelectron and ion coordinates. The benefit of
formulating the photoelectron amplitudes in terms of Dyson
orbitals is that the various surface terms then attain the famil-
iar expressions from the single-electron case, with the Dyson
orbital replacing the single-electron wave function. The only
remaining difference is in the channel coupling through the
ion Hamiltonian.

It is convenient to choose |ξn(t )〉 as the time-dependent
eigenstates of the ion,

|ξn(t )〉 def= e−iEn (t−ti )|ξn〉
⇒ 〈ξn(t )|[i∂†

t + En] ≡ 〈ξn(t )|[i∂†
t + Ĥion] = 0,

where ti is some reference time, usually taken as the beginning
of the laser interaction. Similarly, the scattering states obey the
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one-electron TDSE

〈pσz (t )|[i∂†
t + ĥS] = 0

and the wave function in the asymptotic region

[i∂t − (Ĥion + ĥS )]|�(t )〉 = 0.

The EOMs for the overlaps (8) are then

−i∂t an(pσz , t ) = 〈pσz (t )|ĥSθ
√

N〈ξn(t )|�(t )〉〉 + En〈pσz (t )|θ
√

N〈ξn(t )|�(t )〉〉 − 〈pσz (t )|θ
√

N〈ξn(t )|Ĥion(t ) + ĥS|�(t )〉〉
= Enan(pσz , t ) − 〈pσz (t )|θ

√
N〈ξn(t )|Ĥion(t )1̂|�(t )〉〉 + 〈pσz (t )|ĥSθ − θ ĥS|n(t )〉

= Enan(pσz , t ) − 〈ξn(t )|Ĥion(t )|ξm(t )〉︸ ︷︷ ︸
def=Hnm (t )

〈pσz (t )|θ |qσz
′ (t )〉︸ ︷︷ ︸

δ(p−q)δσzσz ′

am(qσz
′ , t ) + 〈pσz (t )|[ĥS, θ ]|n(t )〉︸ ︷︷ ︸

Sn(pσz ,t )

= −H̃nm(t )am(pσz , t ) + Sn(pσz , t ),

where the ionic Hamiltonian in the interaction picture is given
by

H̃nm(t )
def= Hnm(t ) − δnmEn,

Hnm(t ) = 〈ξn(t )|Ĥion(t )|ξm(t )〉
= eiEnmt [δnmEn + 〈ξn|V̂L(t )|ξm〉]

Enm = En − Em,

and the asymptotic resolution of identity by

1̂ = |ξm(t )〉|qσz
′ (t )〉〈qσz

′ (t )|〈ξm(t )|.
The EOMs can be written in matrix form

−i∂t a(pσz , t ) = −H̃(t )a(pσz , t ) + S(pσz , t ). (9)

Here Sn(pσz , t ) is the surface term contributing to ioniza-
tion channel n and final photoelectron momentum p and
spin projection σz. The precise form of the surface terms
depends on the asymptotic wave function chosen (e.g.,
Coulomb or Volkov scattering wave functions), as well as the
gauge [59,60].

Rearranging, we get

∂t a(pσz , t ) + iH̃(t )a(pσz , t ) = iS(pσz , t ), (9′)

which is an inhomogeneous differential equation for the pho-
toionization amplitude a(pσz , t ). If we discretize (9′) in time
and apply the trapezoidal rule, evaluating the ionic Hamilto-
nian at half the time step, we find (suppressing the dependence
on pσz )

a j+1 − a j

τ
+ i

2
(H̃ j+1/2a j+1 + H̃ j+1/2a j ) = i

2
(S j+1 + S j )

⇐⇒
(

1̂ + iτ

2
H̃ j+1/2

)
a j+1

=
(

1̂ − iτ

2
H̃ j+1/2

)
a j + iτ

2
(S j + S j+1), (10)

which is globally accurate to O{τ 2}.

1. Diagonal H̃

If H̃ is diagonal (and time independent), its elements are
zero, no channel-coupling occurs, and we can integrate each

component of (9′) separately,

an(pσz , t ) = i
∫ t

ti

dτSn(pσz , τ )

= i
∫ t

ti

dτ 〈pσz (τ )|[ĥS, θ ]|n(τ )〉, (11)

we recover Koopman’s theorem [since |ξn(τ )〉 ≡
e−iEn (τ−ti )|ξ 〉], which is an excellent approximation in
configuration-interaction singles, if promotions are allowed
from the valence shell only.

2. iSURF

In the case of a discretized spectrum [61], the time evolu-
tion of the wave function after the end of the pulse (t = t f ) is
trivially given by

|�(t > t f )〉 = |γ 〉〈γ |�(t f )〉e−iEγ (t−t f ), (12)

where γ represents all quantum numbers necessary to de-
scribe an eigenstate of the field-free Hamiltonian Ĥ0 and Eγ is
its eigenenergy, which will have a negative imaginary part in
the presence of absorbing boundary conditions (correspond-
ing to exponential decay of outgoing waves). Furthermore,
after the pulse has ended, H̃ is diagonal, i.e., there is no
coupling between the ionization channels anymore, and only
the surface term remains, and the amplitude is given by (11).
Integrating this amplitude from the end of the pulse t f to the
detection time (suppressing the pσz argument), we find

an(∞) − an(t f ) = i
∫ ∞

t f

dτ 〈pσz (τ )|[ĥS, θ ]|n(τ )〉.

The total amplitude for channel n will be given by

an(∞) = an(t f ) + [an(∞) − an(t f )]

= an(t f )︸ ︷︷ ︸
tSURFF

+ i
∫ ∞

t f

dτSn(τ )︸ ︷︷ ︸
iSURF

.

Inserting the ansatz (12) into the source term, we find

Sn
(
pσz , t > t f

) = 〈pσz (t )|[ĥS, θ ]|n(t )〉
= 〈pσz (t )|[ĥS, θ ]

√
N〈ξn(t )|γ 〉〈γ |�(t f )〉〉

× ei(ε−Eγ )(t−t f ),
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where the target energy is chosen as ε
def= En + p2/2. By iden-

tical manipulations as in Eqs. (14)–(17) of [60] and assuming
the existence of the operator inverse, we arrive at

an(∞) − an(t f ) = 〈pσz (t f )|[ĥS, θ ]|n(ε)〉, (13)

where the Dyson orbital is given by

|n(ε)〉 =
√

N〈ξn(t f )|�(ε)〉, |�(ε)〉 def= (Ĥ0 − ε)−1|�(t f )〉,
and |�(ε)〉 is found using GMRES [62], with the one-body
Hamiltonian ĥ0 − ε as the preconditioner. We stress that
Eqs. (9′), (10), and (13) are valid for single ionization for any
ansatz and not just TD-CIS (2).

3. Surface terms and gauge dependence

The surface terms require the evaluation of

Sn(pσz , t ) = 〈pσz (t )|[ĥS, θ ]|n(t )〉,
which depends on the particular form of scattering wave func-
tions chosen, as well as the gauge:

ĥS = T̂ + V̂L(t ) = T̂ +
{

F(t ) · r (length gauge)

A(t ) · p (velocity gauge),

⇒ [ĥS, θ ] = [T̂ , θ ] +
{

0 (length gauge)

[A(t ) · p, θ ] (velocity gauge).
(14)

tSURFF has customarily been used in the velocity gauge,
which is valid since the single-active-electron approxima-
tion is gauge invariant (provided only local potentials are
used) [59,60]. In this gauge, the Volkov scattering wave func-
tions have the simple expression

χV
pv (t, r) = 1

(2π )3/2
exp

{
ip · r − i

2

∫ t

t0

dt ′[p + A(t ′)]2

}
,

the spatial part of which can be evaluated prior to time propa-
gation; only the Volkov phase varies with time.

If we instead work in the length gauge, we also need to
gauge transform the scattering wave functions according to

χV
pl (t, r)

= exp[iA(t ) · r]χV
pv (t, r)

= 1

(2π )3/2
exp

{
i[p + A(t )] · r − i

2

∫ t

t0

dt ′[p + A(t ′)]2

}
,

which means that when solving (10) in the length gauge,
the spatial part of the scattering wave functions needs to be
reevaluated at every time step. However, as we see in Eq. (14),
the laser coupling term in the surface term vanishes.

We note that TD-CIS is not gauge invariant [48,63,64] and
velocity gauge calculations with fixed bound orbitals cannot
be expected to agree with length gauge calculations. Recently,
Sato et al. [65] introduced a rotated velocity gauge TD-CIS
formulation, where the gauge transform from length gauge to
velocity gauge is applied to the bound orbitals on the fly.

III. TIME PROPAGATOR

The EOMs (5′) are solved by a simple fourth-order Runge–
Kutta propagator, since that only requires the action of the
Hamiltonian on the wave function. The action of the di-
rect and exchange potentials on the particle orbitals |k̃〉 is
computed by solving Poisson’s problem via successive over-
relaxation [66,67]. The use of iterative solvers means that the
computational complexity scales approximately linearly with
the number of grid points, which in turn is given by

ng = κnxnynznc, κ =
{

1 (spin restricted)
2 (spin unrestricted),

and nc is the number of channels. Orthogonality of the particle
orbitals to the source orbitals is maintained by projecting
out the latter from the former, every time the Hamiltonian is
applied.

To suppress reflections from the boundary of the computa-
tional domain, we use the complex-absorbing potential (CAP)
by Manolopoulos [68], with a design parameter δ = 0.2 lead-
ing to less than 1% reflection for all momenta above kmin =
1.5 a.u. The CAP then spans the last 4.37 bohrs of the box
in each direction. To avoid lowering the convergence order of
the propagator, the CAP is multiplied by the time step and
applied as a mask function, separately from the other terms in
the Hamiltonian. The reason for this is that the convergence
of the propagator relies on the fact that the EOMs obey the
Dirac–Frenkel variational principle

〈δ�|Ĥ − i∂t |�〉 = 0 ⇒ 〈δ�| ⊥ 〈�|. (3′)

If the EOMs are derived assuming a Hermitian Ĥ , the
presence of the CAP may result in the EOMs no longer obey-
ing (3′). Applying the CAP as a mask function circumvents
the issue.

IV. RESULTS

We now outline the capabilities of our TD-CIS implemen-
tation using He, Ne, and a variety of small molecules: LiH,
H2O, and C2H4. In all cases the GAMESS-US [69] electronic
structure program was used to compute the initial restricted
Hartree–Fock (RHF) molecular orbitals (MOs). Since only the
basis set and the corresponding expansion coefficients of the
MOs are required as inputs for the TD-CIS computations, any
electronic structure program may be used. All the required
one- and two-electron matrix elements are then evaluated by
a Gaussian integral package internal to the TD-CIS code. The
aug-cc-pVTZ basis set was used for each system.

Except for the case of He, the TD-CIS computations were
all carried out using continuum grids that extended from
−22.5 to 22.5 bohrs in all spatial directions with 270 × 270 ×
270 grid points, yielding a spatial step size of h ≈ 0.167 bohr.
The time step in all cases was τ = 0.002 a.u. ≈ 0.05 as.

A. Atoms: Helium and neon

In the case of helium, accurate static-field ionization rates
are available in the literature. Scrinzi et al. [70], in particular,
computed the He ionization rates using a full-dimensional
treatment within the exterior complex scaling (ECS) method-
ology. Jagau [71] used a complex-scaled coupled-cluster
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(a) (b)

et al. [70]
[71]

[71]

FIG. 1. Static-field ionization rates �s for (a) He and (b) Ne. The rates computed with the current TD-CIS method are compared against
the exact results of Scrinzi et al. [70], who used a full-dimensional complex scaling method, as well as Jagau [71], who used a complex-scaled
coupled-cluster approach. Also shown are the TD-CIS results obtained with the specialization to spherical symmetry (see the following
paper [52]).

approach, at various levels of theory for the field-free refer-
ence state; for our purpose, the coupled-cluster-singles (CCS)
rates are the most relevant. We use these rates as a benchmark
to confirm the validity of our TD-CIS implementation. The
spatial grid extends from −15 to 15 bohrs, in all spatial di-
rections with 180 × 180 × 180 grid points, yielding a spatial
step size h ≈ 0.168 bohr.

In order to compute the static-field ionization rates within
TD-CIS, a time-dependent computation is run with the system
initialized in the neutral state. With a static field applied,
the time-dependent population of the neutral, |c0(t )|2, is
monitored. After an initial turn-on transient has passed, the
long-time behavior of |c0(t )|2 is fit to an exponential decay
(∼ e−�st ) to extract the static-field ionization rate �s. Figure 1
shows the TD-CIS ionization rates, which are in excellent
agreement with those obtained by Scrinzi et al. [70], Ja-
gau [71]. At lower intensities, our computational box is not
sufficiently large enough to contain the tunnel exit (see the
discussion for H2O below). The apparent ionization rates at
these intensities are the upper bound to the true tunneling rate.

B. Convergence

As a test of the convergence of the calculations, we
compute the static ionization rates for He for different grid
spacings and time steps. We compare with the results from
the atomic TD-CIS implementation, which is at the same level
of theory and thus serves as our method limit. In Fig. 2 the
convergence with respect to the grid spacing is shown. Its
behavior is nonuniform, reflecting the underlying complexity
of the iterative algorithms. For the different time steps tried,
i.e., τ ∈ {0.001, 0.002, 0.004, 0.008, 0.016} a.u., the change
in the error was negligible for all field strengths F and grid
spacings h. The convergence with respect to the time step is
most likely limited by the tolerance set for the Poisson solver
employed for the Coulomb interaction.

C. LiH

The LiH molecule has two occupied orbitals in the RHF
neutral ground state. However, only the highest occupied
molecular orbital (HOMO) ionizes with non-negligible prob-
ability, due to the large binding potential of the HOMO−1.
Hence, we treat LiH as a single channel case, with the lower-
lying RHF orbital frozen during the computations.

We calculate the half-cycle ionization yield using a
smoothed half-cycle pulse defined as

F (t ) =
⎧⎨
⎩

0, t < 0
F0 sin2(αt ), 0 � t � tmax,

0, t > tmax,

α
def= ωL√

2
(15)

bohr
bohr
bohr

FIG. 2. Relative errors of the He static field ionization rates
shown in Fig. 1 with respect to the atomic TD-CIS results, for various
grid spacings.
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FIG. 3. Angle-dependent half-cycle ionization yields for LiH for
intensities of 10 TW/cm2 (data scaled by 100×), 20 TW/cm2 (data
scaled by 10×), and 50 TW/cm2. Here θ is the angle between the
molecular axis and the electric-field vector of the laser. We clearly
see that doubling the intensity (∼ F 2

0 ) increased the ionization prob-
ability by more than one order of magnitude. The inset shows the
ionizing orbital, along with the electric-field vector F for the θ = 0
configuration where the field points from the Li to the H atom.

where tmax = π/α. This pulse shape mimics the high-intensity
portion of a half cycle of a laser field with frequency ωL, but
using the smoothed half cycle reduces artifacts that arise from
an instantaneous turn-on had just a standard half-cycle field
been used instead. For all remaining computations, we use
ωL = 0.057 Ha, which corresponds to an 800-nm laser field.
In addition to minimizing the computational load required to
compute the ionization compared to that needed for a multi-
cycle pulse, using a half-cycle-type pulse allows us to see the
orientation dependence of the ionization yields when ionizing
polar molecules like LiH (and H2O considered below).

The angle-dependent half-cycle ionization yields are pre-
sented in Fig. 3 for the laser intensities for a variety of laser
intensities. The inset shows the definition of the angle between
the molecular axis and the electric field of the ionizing pulse;
θ = 0 corresponds to the electric-field vector of the laser
pointing from the Li to the H atom. Since the motion of
the liberated electron will be opposite to the direction of the
electric field, the angle corresponding to the peak of the angle-
dependent ionization (θ ≈ 0–45◦) sees the liberated electron
escape from the initial HOMO (located on the H atom) across
the Li atom.

Figure 4 shows the continuum electron wave packet at
the end of the laser pulse, for the case of θ = 90◦, i.e., the
laser field is perpendicular to the molecular axis. The tun-
nel barrier is clearly visible around x ≈ −5 bohr, in that the
wave packet appears pinched (marked with a black arrow).
The colormap which corresponds to the phase indicates that
the wavefront (and hence the direction of travel) right after
the tunnel exit is directed upward (smaller value of θ ), but
after some distance, the electron motion tends to −90◦, i.e.,
parallel to −x, opposite to the field polarization (marked with
white arrows). This agrees with the observation above that the

(bohr)

(bohr)

(b
oh

r)
(b

oh
r)

(bohr)

FIG. 4. Continuum electron wave packet after the end of the
pulse [t = tmax in (15)] for θ = 90◦ and 20 TW/cm2.

electron preferentially escapes the potential in the vicinity of
the Li atom.

D. H2O

Due to the lower symmetry of H2O, belonging to the C2v

point group, it is not enough to compute the photoionization
yields as a function of θ only. We therefore choose a ninth-
order Lebedev grid [72] that can represent integrals involving
spherical harmonics up to � = � 9−1

2 � = 4 exactly. From this
grid of 38 field orientations, only 16 that are unique with
respect to the C2v symmetry are actually computed and then
replicated. The resulting yield surface is then transformed to
the equivalent expansion in spherical harmonics; the results
are shown in Fig. 5. For the three highest occupied molecular
orbitals and four different intensities of the driving field, the
ionization yields are plotted as a function of the angles θ

and φ, as well as angle integrated. The same field (15) is
used as for LiH, i.e., a half cycle of 800 nm. Additionally,
static ionization rates are computed (similarly to He and Ne)
orthogonal to the molecular plane, i.e., along the lobes of the
HOMO (the x axis), and compared with the CCS results of
Jagau [73].
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[73]
(a)

(b)

FIG. 5. (a) Static ionization rates of H2O, orthogonal to the
molecular plane, compared with the CCS results of Jagau [73].
(b) Half-cycle intensity-dependent photoionization yield of H2O,
total, as well as resolved on the RHF orbitals. The knee observed at
lower intensities for HOMO−2 is a polarization effect (see the text
for details). For comparison, the solid lines indicate the ionization
yields as predicted by an Keldysh-like theory (16), where only the
exponential factor due to the ionization potential of the molecular
orbitals and the field strength is considered. These lines have been
normalized to the respective TD-CIS results at 100 TW/cm2.

The dynamic photoionization yields can be compared to
tunneling yields estimated from a Keldysh-like [74] formula
for the ionization rate

w ∼ exp

[
− 1

3Ẽ
g(γ )

]
,

g(γ )
def= 3

2γ

[(
1 + 1

2γ 2

)
arcsinh γ −

√
1 + γ 2

2γ

]
, (16)

where γ
def= √

Ip/2Up, Ẽ def= F [2(2Ip)3/2]−1, and the estimated
ionization yield y = wtmax. We attribute the deviations of the
predictions by the tunneling formula from the TD-CIS results

TABLE I. Tunnel exit (17) for H2O. Missing values indicate
barrier suppression. The MO energies are given in the second row.
The CAP starts at 18.13 bohrs.

Intensity F HOMO HOMO−1 HOMO−2
(TW/cm2) (a.u.) 0.511 Ha 0.585 Ha 0.723 Ha

400 0.107
200 0.075 6.733
100 0.053 6.727 8.328 11.106
50 0.038 11.100 13.141 16.887

to the neglect of many-electron dynamics in the molecule
in (16). The nonexponential behavior of the HOMO−2 yield
for the smallest intensity is an artifact of limited computa-
tional box size. We compute the classical tunnel exit according
to

rexit = 2Ip

4F
+

√(
2Ip

4F

)2

− 2Ip

F
, (17)

where Ip is the magnitude of the orbital energy in Koopman’s
approximation and F = √

I the peak amplitude of the ion-
izing field. Table I shows the estimated tunnel exits for the
three highest occupied molecular orbitals and the various field
strengths. For the weakest field, we see that the tunnel exit
of the HOMO−2 is very close to the onset of the CAP. This
means that in that particular channel, Rydberg states (which
extend into the classically forbidden region in the tunnel but
not beyond it) incorrectly count towards the photoionization
yield, since we compute ionization as loss of norm. Hence,
what we observe is a polarization effect, rather than true
ionization, for these MOs. Also the angular distribution of the
yield for the HOMO−2 is affected by this artifact, resulting
in a qualitatively different shape for the lowest intensity. This
error decreases with increased box size, at the cost of longer
computation times.

We now turn to the angular distributions of the photoion-
ization yields; as we can see in Fig. 6(a), the MOs are very
similar to atomic orbitals (AOs) of p symmetry. The small
deviation of the MOs from pure spherical symmetry leads
however to drastically different angularly resolved ionization
yields, where the electron preferentially leaves the molecule
over the O atom, which we attribute primarily to dipole ef-
fects. This pattern persists for all intensities, although the
HOMO−1 contribution in the direction of the two H atoms
does seem to increase slightly with intensity [middle column
of Fig. 6(b)]. The nodal planes in the HOMO and HOMO−2
yields are mandated by the C2v symmetry. The observed nodal
plane in the HOMO−1 yields is however required by an
approximate, higher symmetry, D2h. This serves to further
highlight the atomistic nature of the H2O MOs, which we can
quantitatively investigate by computing their overlaps with the
p AOs of O (see Table II).

In Fig. 7 the photoionization yields along x for an eight-
cycle pulse with a sin2 envelope and a carrier wavelength
of 800 nm are shown. The yields are compared with the
results of Benda et al. [75] (specifically their coupled model
B) and show very good agreement. The discrepancy can
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(a)

(b)

(c)

(d)

(e)

FIG. 6. (a) RHF orbitals of H2O, along with their angle-resolved
ionization yields, for the following intensities: (b) 400 TW/cm2,
(c) 200 TW/cm2, (d) 100 TW/cm2, and (e) 50 TW/cm2. The yields
have been normalized to their respective maximum values, indicated
below each distribution.

be mostly attributed to the difference in ionization poten-
tials; in the present work, the MOs are slightly more bound
than in the calculations by Benda et al. [75] (13.90 eV vs
13.15 eV for the HOMO and 15.92 eV vs 15.15 eV for
the HOMO−1), which has a strong effect due to the expo-
nential sensitivity of strong-field ionization to the ionization
potential.

Also shown are the half-cycle yields yn in Fig. 5(b), along
with their logarithms log10(yi ), which appear to follow a linear
trend as a function of the inverse field strength 1/Fn. We may

TABLE II. Overlaps between the molecular orbitals of the H2O
ground state and those of the O ground state. We see that, to a very
large degree, the MOs of H2O are atomistic.

MO O px O py O pz

H2O HOMO 0.995 0.000 0.000
H2O HOMO−1 0.000 0.000 0.951
H2O HOMO−2 0.000 0.944 0.000

et al. [75]

et al. [75]

FIG. 7. H2O yields for ionization from the two highest-lying
occupied orbitals using an eight-cycle pulse, as a function of inverse
field strength. The yields are compared with the results of Benda
et al. [75], as well as with an adiabatic estimate (18) formed from
the half-cycle yields presented in Fig. 5. The bottom panel shows the
ratio between the results of Benda et al. [75] and the present work.

therefore estimate the eight-cycle yield adiabatically as

y = 1 − exp

{
−

∫ ∞

−∞
dt�[F (t )]

}

≈ 1 − exp

[
−

∑
i

〈�(Fi )〉
]

= 1 −
∏

i

[1 − ỹ(Fi )], (18)
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FIG. 8. Intensity-dependent photoionization yield of C2H4, total
as well as resolved on the RHF orbitals.

where Fi is the peak field amplitude of the ith half cycle and
the corresponding yields ỹ(Fi ) are found using a linear fit to
the half-cycle yields yn. This estimate of course neglects any
cycle-to-cycle effects, which explains its deviation from the
true eight-cycle results at lower intensities (higher 1/F ). For
higher intensities, the adiabatic results are however in good
agreement with the full calculations.

(a)

(b)

(c)

(d)

(e)

FIG. 9. (a) RHF orbitals of C2H4, along with their angle-resolved
ionization yields, for the following intensities: (b) 200 TW cm−2,
(c) 100 TW cm−2, (d) 50 TW cm−2, and (e) 25 TW cm−2. The yields
have been normalized to their respective maximum values, indicated
below each distribution.

TABLE III. Tunnel exit (17) for C2H4. Missing values indicate
barrier suppression. The MO energies are given in the second row.
The CAP starts at 18.13 bohrs.

Intensity F HOMO HOMO−1 HOMO−2 HOMO−3
(TW/cm2) (a.u.) 0.381 Ha 0.507 Ha 0.593 Ha 0.648 Ha

200 0.075 5.412
100 0.053 6.636 8.494 9.615
50 0.038 7.347 10.988 13.360 14.858
25 0.027 11.871 16.726 19.997 22.081

E. C2H4

Ionization yields are computed similarly to H2O, as de-
tailed above, but C2H4 belonging to the D2h point group has
higher symmetry than H2O and only nine unique field orien-
tations are required. The results are shown in Fig. 8 and the
corresponding angular distributions in Fig. 9.

Again, as in the case of H2O, we find that for the lower
intensities, the yields for the HOMO−2 and HOMO−3 de-
viate from the expected exponential behavior, with a knee
observed in the integrated ionization yield and qualitatively
different angular distributions [Fig. 9(e)], whereas the HOMO
and HOMO−1 follow their respective trends also for the
lowest intensity. Table III lists the tunnel exits for the various
MOs and intensities, and for the HOMO−2 and HOMO−3
and the lowest intensity, these are well beyond the CAP onset,
implying we are measuring mainly a polarization effect.

In Fig. 10 we compare an adiabatic estimation according
to (18) of the seven-cycle yield with the results by Krause and
Schlegel [17]. Their quoted ionization rates were multiplied
by the duration of the pulse [cf. their Eq. (8)] to obtain the
yields; we do not find agreement between the different calcu-
lations. Extracting the true ionization rates is nontrivial, due
to the temporal intensity averaging, which is why we cannot
easily compare directly with the half-cycle yields presented
in Fig. 8. We also note the experimental work of Talebpour
et al. [76], the comparison with which would require detailed

Ref. [17]

FIG. 10. C2H4 adiabatic dynamic yields (18) for a seven-cycle
pulse, compared with the results of Krause and Schlegel [17].
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knowledge of the experimental conditions, not available to us,
as well as extensive simulations.

V. CONCLUSION

We have described an implementation of TD-CIS for small
gas-phase molecules, with the continuum electron resolved
on a Cartesian grid, which allows an accurate description of
the photoelectron in strong-field processes. We applied this
method to a few molecules, finding reasonable results for the

angularly resolved ionization probability. An implementation
of t+iSURF for TD-CIS in the atomic case is presented in
the following article [52]; an implementation for the general
case is left for future work, which would allow us to effi-
ciently compute photoelectron spectra for various processes of
interest.
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