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Knee structure in the laser-intensity dependence of harmonic generation for graphene
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We investigate the harmonic generation of graphene irradiated by linearly polarized lasers with intensities in a
wide range from 108 W/cm2 to 1013 W/cm2. We find a striking knee structure in the laser intensity dependence
of the harmonic yield, which consists of a perturbative region, followed by a plateau of saturated harmonic
yield, and then a transition to nonperturbative growth. The knee structure is rather universal for the various
harmonic orders and has been certified by two-band density-matrix equation calculations, as well as ab initio
time-dependent density-functional theory calculations. Taking the third harmonic as an example and based on
the two-band model, we reveal the underlying mechanisms: the perturbative region can be analytically depicted
by perturbation theory, while the plateau of saturated harmonic yield and the transition to nonperturbative
growth are caused by destructive and constructive quantum interference of harmonics generated by the electrons
corresponding to the lattice momenta around Dirac points and M points in the Brillouin zone, respectively. In
particular, we find that tuning the Fermi energy can effectively alter the knee structure, while the profile of the
knee structure is not sensitive to temperature. Our calculations of the third-order harmonic versus tuned Fermi
energy are compared with recent experiments, showing good agreement. Our predicted knee structure and its
associated properties are observable with the current experimental techniques.
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I. INTRODUCTION

With the rapid development of laser technology, high-order
harmonic generation from the gases of atoms and molecules
has been widely studied over the past several decades [1–4],
leading to the birth of a new branch of physics, namely, at-
tosecond science [5]. More recently, much attention has been
given to harmonic generation in solid materials [6,7] due to
the possibility of probing the electronic band structure [8,9]
and obtaining coherent and bright attosecond pulses [6,10].

Graphene is a simple but specific two-dimensional mate-
rial, containing only two carbon atoms per unit cell and the
atoms are orderly arranged in a periodic hexagonal lattice.
It has important applications because of its unusual opti-
cal properties [11]. Harmonic generation in graphene has
attracted much attention experimentally [12,13] and theoret-
ically [14,15]. The harmonic generation of graphene is found
to be enhanced by elliptically polarized light [12,16–18], in
contrast to the atomic cases. The harmonic ellipticity from
graphene irradiated by elliptically [14,19] and linearly [19,20]
polarized lasers has also been studied and apparent elliptic
ninth harmonic emission has been observed and thoroughly
investigated under a linearly polarized laser. In addition, the
harmonic generation in bilayer and twisted bilayer graphene
has also been studied [21,22].

In this work, we attempt to investigate the laser intensity
dependence of harmonic yields in graphene. Note that in the
situations of atoms and molecules, the issues associated with
laser intensity dependence have been extensively addressed
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for single and double ionization [23–27], as well as high-order
harmonic generation [28,29]. Atomic or molecular ionization
is found to transition from multiphoton ionization to above-
threshold ionization, tunnel ionization, and finally overbarrier
ionization with increasing laser intensity [30]. Additionally,
the high-order harmonic yield and “cutoff” of the harmonic
photon energy are dramatically altered by the laser intensity.
In contrast to atomic and molecular systems, the harmonic in
graphene is generated by the sum current of the electrons with
various lattice momenta in the Brillouin zone. The quantum
interference between the harmonics generated by different
electrons will play an important role in harmonic genera-
tion. Obviously, the laser intensity will affect the yields and
especially the phases of the harmonics generated by these
electrons, which are therefore expected to alter the structure
in the profile of the laser intensity dependence of the har-
monic yields in graphene. Motivated by this consideration,
in this paper, we calculate the harmonic yield of graphene
for a wide range of laser intensities from 108 W/cm2 to
1013 W/cm2 using the two-band density-matrix equations and
time-dependent density-functional theory. The simulation re-
sults demonstrate a striking knee structure that consists of
a perturbative region, then a plateau of saturated harmonic
yield, and a transition to nonperturbative growth. The under-
lying mechanisms are analyzed. In particular, we find that
tuning the Fermi energy can effectively alter the knee struc-
ture, while the profile of the knee structure is not sensitive to
temperature.

This paper is organized as follows. We describe our calcu-
lation methods for the two-band density-matrix equations in
the velocity gauge and time-dependent density-functional the-
ory in Sec. II A and Sec. II B, respectively. Section III A
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FIG. 1. (a) Brillouin zone of the reciprocal lattice of graphene.
Points K and K ′ are two degenerate Dirac points and the red arrow
indicates the polarization direction of the electric field. (b) Disper-
sion relation of valence and conduction bands of graphene under
the nearest-neighbor tight-binding approximation. EF is the Fermi
energy of doped graphene.

presents our main calculated results and the mechanisms of
the knee structure are discussed in Sec. III B. We also discuss
the effects of finite temperature and Fermi energy tuning on
the knee structure in Sec. III C. Finally, Sec. IV presents our
conclusion. Throughout the paper atomic units are used if not
specified.

II. MODEL

A. Two-band density-matrix equations

Graphene is a two-dimensional single layer of carbon
atoms arranged in a honeycomb lattice [11,31] and its recip-
rocal space structure is a hexagonal lattice structure, as shown
in Fig. 1(a). The tight-binding Hamiltonian H0 for electrons in
graphene considering that electrons can only hop to nearest-
neighbor atoms has the form

H0 =
(

0 γ0 f (k)
γ0 f ∗(k) 0

)
, (1)

where k is the lattice momentum. In our calculation,
γ0 = 0.1 a.u. is the nearest-neighbor hopping energy
and f (k) = eikyd + 2 cos(

√
3kxd/2)e−ikyd/2, with a

carbon-carbon bond length of d = 1.42 Å (≈2.684
a.u.). Diagonalization of the H0 matrix can yield
energy eigenvalues, which describe the conduction (c)
and valence (v) bands Ec(k) = −Ev (k) = γ0| f (k)| =
γ0

√
1 + 4 cos2(

√
3kxd/2) + 4 cos(

√
3kxd/2) · cos(3kyd/2).

Of particular importance for the physics of graphene are
the two points K and K ′ at the corners of the graphene Bril-
louin zone. Their positions in momentum space are given by
K = ( 2π

3
√

3d
, 2π

3d ) and K ′ = ( 4π

3
√

3d
, 0), as shown in Fig. 1(a).

Figure 1(b) exhibits the electronic dispersion in the honey-
comb lattice, where EF is the Fermi energy of doped graphene.

We simulate the laser-graphene interaction by the two-band
density-matrix equations (TBDMEs) in the velocity gauge.
Within the dipole approximation, they read

i
∂

∂t
ρmn(k, t ) = [Em(k) − En(k)]ρmn(k, t )

+ A(t ) · [p̂(k), ρ̂]mn − i�iρmn(k, t )(1−δmn)

− i�e[ρmn(k, t ) − ρmn(k, t = 0)]δmn, (2)

where ρ̂ is the density matrix comprising elements ρmn =
〈m, k|ρ|n, k〉, where m and n represent the valence or conduc-
tion band. �i and �e, independent of k, are relaxation param-
eters. The momentum matrix p̂(k) consists of the intraband
dipole elements pcc(k) = �kEc(k) = −pvv (k) and the in-
terband dipole elements pcv (k) = i[Ec(k) − Ev (k)]Dcv (k) =
−pvc(k), where Dcv (k) = i〈uc,k(r)|�k|uv,k(r)〉 and uc,k(r)
[uv,k(r)] is the periodic part of the Bloch wave function for
the conduction (valence) band of graphene with crystal mo-
mentum k [32,33].

A(t ) = A0 f (t ) sin(ω0t )e is the vector potential of the laser
field and f (t ) is an eight-cycle sine square envelope. A0 is the
amplitude of the vector potential and ω0 is the frequency of the
laser field corresponding to wavelength λ = 5500 nm. e is the
unit vector along the laser polarization direction, as indicated
by the red arrow in Fig. 1(a).

At the initial moment t = 0, the density operator
ρmn(k, t = 0) is equal to δmn fmk, which characterizes the
equilibrium occupation of single-particle states at finite tem-
perature T and Fermi energy EF [34], where

fmk = [1 + e[Em (k)−EF]/(kBT )]−1 (3)

is the Fermi-Dirac distribution with Boltzmann’s constant kB.
Next, the total current can be evaluated by

jtot(t ) =
∑
k∈BZ

j(k, t ) (4)

and

j(k, t ) = Tr{ρ̂[p̂(k) + A(t)]} =
∑
mn

pmn(k)ρnm(k, t) + A(t),

(5)

where Tr denotes the trace and BZ denotes the first Brillouin
zone.

The total yield of ω-frequency emission can be evaluated
using

Htot(ω) = ω2|Ftot(ω)|2, (6)

in which

Ftot(ω) = TF [e · jtot(t )] =
∫ ∞

−∞
e · jtot(t )e−iωt dt, (7)

where TF denotes the Fourier transform.

B. Time-dependent density-functional theory

Since our density-matrix equations only consider two en-
ergy bands under the tight-binding approximation, we check
our main results with time-dependent density-functional the-
ory (TDDFT) [35]. Within the TDDFT framework, the
evolution of the wave function is computed by propagating
the Kohn-Sham equations [36–38]:

i
∂

∂t
ψi(r, t ) = ĤKS(r, t )ψi(r, t ), (8)

where ψi(r, t ) is the wave function of an electron with the
index i. ĤKS is the Kohn-Sham Hamiltonian in the velocity
gauge given by

ĤKS(r, t ) = 1
2 [p̂ + A(t )]2 + VKS(r, t ), (9)

043103-2



KNEE STRUCTURE IN THE LASER-INTENSITY … PHYSICAL REVIEW A 106, 043103 (2022)

where VKS(r, t ) = V (r, t ) + VHartree [n](r, t ) + Vxc[n](r, t ) is
the Kohn-Sham potential and VHartree [n](r, t ) is the Hartree
potential. n(r, t ) = ∑

i |ψi(r, t )|2 is the electron density.
V (r, t ) represents the interaction between four valence elec-
trons and the ionic core and is modeled by norm-conserving
pseudopotentials. Vxc[n](r, t ) is the exchange-correlation
potential. Here, we apply the generalized gradient approxima-
tion in the Perdew-Burke-Ernzerhof parametrization, which
accounts for the short-range correlations and neglects some
long-range processes, such as excitonic and Auger effects
involving the interband transitions [39–41].

In the calculation of the harmonic generation in graphene,
a 60 × 60 × 1 k-point mesh is used to sample the Brillouin
zone and the real-space spacing is 0.2 Å (≈0.378 a.u.). The
parameters of the vector potential A(t ) of the laser field are the
same as those used in the two-band density-matrix equations.
The OCTOPUS package [42,43] is employed to perform the
simulations.

We compute the total electronic current j(r, t ) from
time-evolved wave functions. The harmonic yield can be eval-
uated using Htot(ω) = ω2|Ftot(ω)|2, in which Ftot(ω) = TF [e ·∫
�

d3r j(r, t )], where � is the volume of the physical system.

III. KNEE STRUCTURE IN LASER
INTENSITY-DEPENDENT HARMONIC GENERATION

A. Main results

In Fig. 2(a), we demonstrate the dependence of the har-
monic yield calculated by the TBDMEs in the velocity gauge
on the laser intensity over a wide range from 108 W/cm2

to 1013 W/cm2 for the third- to ninth-order harmonics. The
results indicate that for each harmonic order, as the laser
intensity increases, the harmonic yield first linearly increases,
then saturates, and finally nonlinearly increases. The pro-
files exhibit visible knee structures for harmonics up to the
ninth order. To verify the results calculated by TBDMEs in
the velocity gauge, we perform TDDFT calculations and the
TBDME simulation of the length gauge (see Appendix A
for details). The results are shown in Figs. 2(b) and 2(c),
which exhibit knee structures analogous to those in Fig. 2(a).
In Figs. 2(a)–2(c), the dashed lines show that the nth-order
harmonic yield Htot(nω0) is proportional to the nth power of
the laser intensity I , namely, Htot(nω0) ∝ In, as predicted by
perturbation theory.

Figure 2(d) compares the laser intensity dependence of
the third harmonic yield calculated by the TBDME simula-
tions of the length gauge and velocity gauge and TDDFT,
indicating that apparent knee structures emerge for the three
methods. The knee structure consists of a perturbative region,
plateau region, and nonperturbative growth region that cor-
respond to laser intensities ranging from 1 × 108 W/cm2 to
1 × 109 W/cm2, 1 × 109 W/cm2 to 2 × 1010 W/cm2, and
2 × 1010 W/cm2 to 1 × 1013 W/cm2, respectively. Quanti-
tatively, there are some deviations between the results of the
TBDMEs in the length gauge and velocity gauge, especially
in the nonperturbative growth region. These deviations might
be partly due to the velocity gauge requiring the solution of
dynamics equations on a basis including many virtual states
(conduction and valence bands), which are not physically

FIG. 2. Laser intensity dependence of the harmonic yield cal-
culated by the TBDMEs in the velocity gauge (VG) (a), TDDFT
(b), and TBDMEs in the length gauge (LG) (c). (d) Comparison of
the third harmonic yields of graphene calculated by the TBDMEs
and TDDFT with that of the model atom calculated by the time-
dependent Schrödinger equation (TDSE). The three orange crosses
mark the laser intensities I = 2 × 108 W/cm2, 1 × 1010 W/cm2, and
1 × 1012 W/cm2. In panels (a), (b), (c), and (d), the dashed lines
show the In dependence for the nth harmonic. (e) Effects of finite
temperatures on the knee structure of the third harmonic when the
Fermi energy is tuned to EF = 0 or 2EF = 2.17ω0. (f) Effects of
Fermi energy tuning on the knee structure of the third harmonic when
the temperature is zero. Here, for the TBDMEs of the velocity and
length gauges, all relaxation parameters are set to 0 and the laser
wavelength is 5500 nm.

occupied [44,45]. However, because the velocity gauge can
basically characterize the profile of the knee structure and has
the advantage that the transitions induced by the external field
formally preserve the crystal momentum [46], we prefer to ex-
ploit the velocity gauge to discuss the mechanism of the knee
structure. In Appendix A, we have made some comparative
calculations showing that the main results of the TBDMEs in
the velocity gauge can be well reproduced by the TBDMEs in
the length gauge.

In Fig. 2(d), we also show the third harmonic yields of the
model atom. The ionization potential of the model atom is 0.1
a.u. [47,48]. In contrast to the results of graphene, the third
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harmonic yield of the model atom increases monotonically
from 1 × 1010 W/cm2 to 1 × 1012 W/cm2. As the laser in-
tensity increases further, the increasing trend of the harmonic
yield is suppressed. No apparent knee structure is observed.
This phenomenon of atomic harmonic generation has also
been observed in previous experiments [28,29].

Note that the above interesting knee structure did not ap-
pear in previous works that investigated the laser intensity
dependence of the harmonic yield for crystalline solids and
some two-dimensional materials [9,12,49–51] because their
calculations were only implemented for a narrow range of
laser intensities. In this work, we extend our calculations
to a wide range of laser intensities from 1 × 108 W/cm2

to 1 × 1013 W/cm2. In a recent experiment [12], a laser
with an intensity of 1.7 × 1012 W/cm2 and a duration of
approximately 95 fs was used to irradiate graphene. In the
experiment of Ref. [52], the authors established that graphene
has a higher power damage threshold of 3 × 1012 W/cm2 for
a 50 fs laser pulse. In the theoretical work of Ref. [53], the
energy damage threshold is estimated as 0.29 J/cm2. In the
present work, the duration time of the laser pulse is approxi-
mately 73 fs (full width at half maximum of the laser) and the
power damage threshold is approximately 4 × 1012 W/cm2,
which corresponds to the energy damage of 0.29 J/cm2. The
laser intensities in the nonperturbative growth region might
be slightly above the power damage threshold, while the knee
structure regime is well below the threshold and therefore can
be experimentally accessed.

Gate tuning of the Fermi energy allows control of the
optical properties, leading to many promising applications
in optoelectronics and photonics [54,55]. Additionally, the
effects of finite temperature on the harmonic yield are often
taken into account [56–58]. Here, we also attempt to consider
the influence of the Fermi energy and finite temperature on
the knee structure. Figure 2(e) shows that the profile of the
knee structure does not change with temperature when the
Fermi energy is equal to 0. When the Fermi energy is tuned
to 2EF = 2.17ω0, the perturbative region of the knee structure
is weakly influenced by temperature. In contrast, tuning the
Fermi energy has a substantial effect on this structure [see
Fig. 2(f)] when the temperature is set to zero. When the Fermi
energy is tuned to 2EF = 2.17ω0, compared with EF = 0, the
harmonic yield in the perturbative region markedly increases.
When the Fermi energy is tuned to 2EF = 5.55ω0, the har-
monic yield in the perturbative region is suppressed and that
in the plateau region is enhanced. Finally, the knee structure
almost disappears when the Fermi energy is further increased
to 2EF = 12ω0. The increase in EF only changes the transition
processes of the k space through Pauli blocking, which can
prevent multiphoton transitions and effectively alter the knee
structure. Nevertheless, the profile of the knee structure is not
sensitive to temperature.

B. Mechanism analysis at zero temperature

Taking the third harmonic as an example and based on the
two-band model, we discuss the mechanisms for the observed
harmonic behavior. To simplify formulas, we hat tildes on
the physical quantities associated with the third harmonic
emission.

1. Perturbative region

The total yield of the third harmonic H̃tot ≡ Htot(3ω0) is the
coherent sum over the harmonic amplitudes generated by the
Bloch electrons, according to Eqs. (6) and (7):

H̃tot =
∣∣∣∣∣
∑
k∈BZ

[
√

H̃ (k)eiφ̃(k)]

∣∣∣∣∣
2

, (10)

where H̃ (k) is the third harmonic yield of the Bloch electron
with lattice momentum k, which is expressed as H̃ (k) =
(3ω0)2|F̃ (k)|2, where F̃ (k) = ∫ ∞

−∞ e · j(k, t )e−i3ω0t dt .
φ̃(k) = arg[F̃ (k)] ∈ [−π, π ) is the corresponding
harmonic phase, which is calculated by considering
tan[φ̃(k)] = Im[F̃ (k)]/ Re[F̃ (k)], as well as the signs of
Im[F̃ (k)] and Re[F̃ (k)].

For a laser intensity of 2 × 108 W/cm2 of the perturba-
tive region, we numerically calculate the yields [Figs. 3(a)
and 3(c)] and phases [Figs. 3(b) and 3(d)] of the harmonic,
which are generated by the electrons corresponding to lat-
tice momenta k around K [Figs. 3(a) and 3(b)] and K ′
[Figs. 3(c) and 3(d)], as marked by the two dashed circles
in Fig. 1(a). From Figs. 3(a) to 3(d), the labels of “1,” “2,”
and “3” represent the ring positions corresponding to band fre-
quency differences of ωcv = Ecv (k) = Ec(k) − Ev (k) = 1ω0,
2ω0, and 3ω0, respectively, where Ecv (k) is the band energy
difference between the conduction and valence bands. As
shown in Figs. 3(a) and 3(c), the third harmonic yield is
mainly contributed by the electrons with Ecv (k) = ωcv = 2ω0

and Ecv (k) = ωcv = 3ω0. In Figs. 3(b) and 3(d), we show
the distributions of harmonic phases φ̃(k), which are not
disordered. Centered on the K and K ′ points and along the
radial direction, there are some apparent ±π -phase changes at
ωcv = 1ω0, 2ω0, and 3ω0, exhibiting some ring structures that
depend on ωcv in Figs. 3(b) and 3(d). These results indicate
that we can evaluate the third harmonic yields and phases that
are functions of the band frequency difference ωcv .

According to Eqs. (6) and (7), we can also express the
total yield of the third harmonic H̃tot as the coherent sum over
harmonic amplitudes generated by the Bloch electrons with
different band frequency differences, i.e.,

H̃tot =
∣∣∣∣∣
∑
ωcv

[
√

H̃ (ωcv )eiφ̃(ωcv )]

∣∣∣∣∣
2

, (11)

with the amplitude of H̃ (ωcv ) = (3ω0)2|F̃ (ωcv )|2 and
the phase of φ̃(ωcv ) = arg[F̃ (ωcv )] ∈ [−π, π ), in which
F̃ (ωcv ) = ∫ ∞

−∞ e · j(ωcv, t )e−i3ω0t dt and the currents j(ωcv, t )
are defined by

j(ωcv, t ) =
∑

k∈Ecv (k)=ωcv

j(k, t ). (12)

Namely, the current j(ωcv, t ) is the sum of the currents
j(k, t ) generated by electrons whose lattice momenta k sat-
isfy Ecv (k) = ωcv . Note that we do not execute any kind of
normalization here and that√

H̃ (ωcv )eiφ̃(ωcv ) =
∑

k∈Ecv (k)=ωcv

√
H̃ (k)eiφ̃(k). (13)
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FIG. 3. Harmonic yield H̃ (k) [(a) and (c)] and phase φ̃(k) [(b) and (d)] for the k points around the K [(a) and (b)] and K ′ [(c) and (d)] points
of the Brillouin zone, as demonstrated by the two dashed circles in Fig. 1(a). The positions where the band frequency difference is ωcv = 1ω0,
2ω0, and 3ω0 are labeled by “1,” “2,” and “3,” respectively. In panels (e) and (f), the black square curves are the yield H̃ (ωcv ) and phase φ̃(ωcv ),
respectively. The corresponding red dashed lines are evaluated by Eqs. (B6) and (B7) of perturbation theory. In (e), the blue crosses label the
harmonic yields at ωcv = 2ω0 and ωcv = 3ω0, and the corresponding phases φ̃(ωcv ) are appended. Note that the above numerical results are
calculated by the TBDMEs of the velocity gauge with Fermi energy EF = 0 and temperature T = 0 K for the laser intensity of 2 × 108 W/cm2

in the perturbative region.

The harmonic yield and phase as a function of the band
frequency difference ωcv are shown in Figs. 3(e) and 3(f),
respectively. In Fig. 3(e), our calculated results (black square
curve) present two main harmonic yield peaks around ωcv =
2ω0 and 3ω0, which are consistent with the results of Figs. 3(a)
and 3(c). At the band frequency differences of ωcv = 1ω0,
2ω0, and 3ω0, we find some interesting phase changes in
Fig. 3(f), which correspond to the ring structures in Figs. 3(b)
and 3(d).

The phase changes at ωcv = 1ω0, 2ω0, and 3ω0 can be well
understood by perturbation theory [34,59,60], which is pre-
sented in detail in Appendix B. The yield H̃ (ωcv ) and phase
φ̃(ωcv ) (red dashed lines) calculated by Eqs. (B6) and (B7)
are shown in Figs. 3(e) and 3(f), respectively (see Appendix B
for the detailed derivations). The perturbation theory results
qualitatively agree with the numerical results. We find that
across each resonance peak at ωcv = 1ω0, 2ω0, or 3ω0, there
is a phase jump of −π or +π . According to Eq. (11), we
see that the harmonic yields generated by the Bloch electrons
around the resonance peaks cancel each other such that the
total harmonic yield H̃tot approximately equals the sum of
H̃ (ωcv = 2ω0) + H̃ (ωcv = 3ω0), considering that the phases
at the resonance peaks are zero and H̃ (ωcv = ω0) is small.
According to Eq. (B6) in Appendix B, we have H̃ (ωcv =
2ω0) + H̃ (ωcv = 3ω0) ∝ I3, indicating that the third har-
monic yield is proportional to the third power of the laser
intensity.

2. Plateau region

In contrast to Figs. 3(a) and 3(c), we find that for 1 ×
1010 W/cm2 of the plateau region, the Bloch electrons with
a wide range of momenta corresponding to more than eight
resonance rings [i.e., band frequency differences of ωcv =
qω0 (q = 1, 2, . . . , 8) in Figs. 4(a) and 4(c) ] can emit the
third harmonic H̃ (k). Accordingly, the phase distribution also
demonstrates some ring structures, as shown in Figs. 4(b)
and 4(d). Note that for the intermediate laser field in the
plateau region, the resonance peaks show some small shifts
due to Stark effects.

Figures 4(e) and 4(f) show the harmonic yields H̃ (ωcv ) and
phases φ̃(ωcv ) as a function of the band frequency difference
ωcv . When the band frequency difference is below 2.8ω0,
the yields H̃ (ωcv ) are small enough so that their contribution
to the total harmonic yield H̃tot can be ignored. In the band
frequency difference range from 2.8ω0 to 5.5ω0, there are two
main yield peaks marked by black crosses. The corresponding
phases are −0.53π and −0.47π , which are approximated to
be −π/2. From 5.5ω0 to 8ω0, there also exist two yield peaks
labeled by the blue crosses and the corresponding phases are
0.55π and 0.66π , respectively, which are approximated to be
π/2. According to Eq. (11), the π -phase difference can cause
the destructive interference of the harmonic yields H̃ (ωcv ).
This picture is maintained in the plateau region, which implies
that with increasing laser intensities, the total harmonic yields
might not increase like that in the perturbative region because
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FIG. 4. Panels (a), (b), (c), and (d) are the same as those in Fig. 3, but the laser intensity is 1 × 1010 W/cm2, which is in the plateau region.
(e) The yield H̃ (ωcv ) and (f) phase φ̃(ωcv ) numerically calculated by the TBDMEs of the velocity gauge for laser intensities of 1 × 1010 W/cm2.
In (e), the crosses mark the harmonic yield peaks and the corresponding phases φ̃(ωcv ) are appended.

of the destructive interference mechanism. This mechanism
can be used to understand the striking plateau of saturated
harmonic yield.

3. Nonperturbative growth region

For a laser intensity of 1 × 1012 W/cm2 of the nonpertur-
bative growth region, Figs. 5(a) and 5(b) present the harmonic
yields H̃ (k) and phases φ̃(k) corresponding to all lattice
momenta k of the first Brillouin zone. In contrast to the per-
turbative and plateau regions, Fig. 5(a) shows that harmonic
yields H̃ (k) are mainly contributed by the lattice momenta
near M points. Figures 5(c) and 5(d) exhibit the harmonic
yield H̃ (ωcv ) and phase φ̃(ωcv ) as a function of the band
frequency difference ωcv . The gray line in Fig. 5(c) is the
density of states (DOS). Note that the orange hexagons in
the left panels of Fig. 5 correspond to the band frequency
difference of M points (ωM

cv ≈ 24.1ω0), which is also indicated
by the orange vertical dashed line in the right panels. More-
over, we observe a π -phase jump at ω

jump
cv ≈ 33.7ω0 indicated

by the black vertical dashed line in the right panels, which
corresponds to the black circle in Fig. 5(b).

In contrast to that of the perturbative and plateau regions,
there is only one dominating peak in Fig. 5(c). Moreover, the
formation of the peak is not due to multiphoton resonance
(i.e., ωcv = qω0), but arises from constructive quantum in-
terference. On the one hand, as shown by the gray line in
Fig. 5(c), the density of states is a maximum at the band
frequency difference of ωM

cv , corresponding to M points of
the Brillouin zone [11]. According to Eq. (13), this result
implies that at ωM

cv , most electrons with k ∈ Ecv (k) = ωM
cv

can contribute to H̃ (ωM
cv ). On the other hand, by carefully

investigating the distributions of amplitudes and phases on
the orange hexagons [i.e., k ∈ Ecv (k) = ωM

cv] in Figs. 5(a)
and 5(b), one can find that for high yield H̃ (k) located
around M points, the corresponding phases φ̃(k) are all −π/2.

FIG. 5. (a) Harmonic yield H̃ (k) and (b) phase φ̃(k) generated
by electrons corresponding to all k points of the first Brillouin zone
for the laser intensity of 1 × 1012 W/cm2 in the nonperturbative
growth region. (c) The yield H̃ (ωcv ) and (d) phase φ̃(ωcv ) for laser
intensities of 1 × 1012 W/cm2 and 1.1 × 1012 W/cm2. In panel (c),
the gray line is the density of states (DOS). ωM

cv (or ωjump
cv ) corre-

sponding to the orange hexagons (or black circles) in the left panels
is indicated by the orange (or black) vertical dashed line in the right
panels.
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FIG. 6. Third harmonic yield as a function of Fermi energy EF at different temperatures for 2 × 108 W/cm2 (a) in the perturbative region
and 1 × 1010 W/cm2 (c) in the plateau region. The dashed line in (a) presents the perturbation theory result of the third harmonic calculated by
Eq. (B3). (b) Comparison between the experimental results of Ref. [56] and our numerical results for 2 × 108 W/cm2, in which the relaxation
parameters of �i = 0 and �e = 0.002 a.u. have been taken into account in the TBDMEs of the velocity gauge (VG). Panels (d), (e), and (f) are
the same as (a), (b), and (c), respectively, but the results are calculated by the TBDMEs in the length gauge (LG). In panel (e), the dephasing
time is set to be 1/T2 = 0.002 atom unit.

According to Eq. (13), the yield peak of H̃ (ωM
cv ) arises from

constructive quantum interference of H̃ (k).
Figure 5(d) shows that around ωM

cv (in the region of 10ω0 <

ωcv < 33.7ω0 for 1 × 1012 W/cm2), the phases φ̃(ωcv ) re-
main at −π/2. Equation (11) indicates that the constructive
quantum interference of H̃ (ωcv ) around ωM

cv can enhance the
total harmonic yield H̃tot.

The above picture is valid in the whole nonperturbative
growth region. For instance, we extend the calculation to the
third harmonic yields and phases for the higher intensity of
1.1 × 1012 W/cm2, as shown in Figs. 5(c) and 5(d). We also
observe the effect of the constructive quantum interference
of the Bloch electrons around M points. Quantitatively, with
increasing laser intensity, the height and width of the domi-
nating peak increase, which will lead to the nonperturbative
growth of the third harmonic yield.

The above mechanism analysis is based on TBDMEs in
the velocity gauge. For comparison, we also make extensive
calculations and discussions based on TBDMEs of the length
gauge, as shown in Appendix A.

C. Effects of finite temperature and Fermi energy tuning

For a laser intensity of 2 × 108 W/cm2, Fig. 6(a) shows
that when the temperature is 0, the third harmonic yield
significantly changes with increasing Fermi energy and a
double-peak structure located at 2EF = 2ω0 and 2EF = 3ω0

is observed. This result agrees with the prediction from per-
turbation theory for graphene calculated by Eq. (B3), which

is represented by the dashed line. The effect of increasing
the Fermi energy EF on the third harmonic is caused by
Pauli blocking. As the Fermi energy increases from EF = 0 to
2EF = 4ω0, one-photon, two-photon, and three-photon transi-
tions are blocked in sequence. As the temperature increases,
the double-peak structure is smoothed and evolves into a
single-peak structure centered at 2EF = 2.17ω0.

When the temperature is set to 0, compared with EF =
0, the third harmonic yield of doped graphene with 2EF =
2.17ω0 is significantly enhanced. The influence of this Fermi
energy tuning on the knee structure is clearly shown by the
comparison between the black and red curves of Fig. 2(f).
When the Fermi energy is 0, Fig. 6(a) shows that the third
harmonic yields are not sensitive to temperature. When the
Fermi energy is tuned to 2EF = 2.17ω0, the harmonic yield
decreases with increasing temperature.

In Fig. 6(b), our numerical results in which the relaxation
parameters of �i = 0 and �e = 0.002 a.u. (corresponding to a
relaxation time of 12.1 fs) have been considered are compared
with the experimental results of Ref. [56]. For four typical
temperatures T = 150 K, 300 K, 500 K, and 1000 K, the
numerical results have been scaled by factors of 5.00, 1.24,
2.52, and 9.40, respectively. The numerical results for the
temperature of 500 K match the experimental results, showing
good agreement. Note that our extended calculations show
that the results of Fig. 6(b) are almost independent of the laser
intensity in the perturbative region.

For an intensity of 1 × 1010 W/cm2 in the plateau region,
the dependence of the third harmonic yield on the Fermi
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energy exhibits a single-peak structure centered at 2EF =
5.5ω0, as shown in Fig. 6(c). Compared with the results for
2 × 108 W/cm2, the single-peak structure is more insensitive
to temperature. More importantly, for temperature T = 0, the
third harmonic yield of doped graphene with 2EF = 5.5ω0

is tenfold stronger than that with EF = 0. This result is also
reflected in the comparison between the blue triangle curve
and black square curve in Fig. 2(f), where the harmonic yield
in the plateau region increases with the Fermi energy transi-
tion. At the same time, the harmonic yield in the perturbative
region is obviously suppressed because of Pauli blocking.
These results indicate that for the perturbative and plateau
regions, tuning the Fermi energy can significantly influence
the knee structure.

To verify these simulation results, we also perform TB-
DME simulations of the length gauge and show the results
in Figs. 6(d), 6(e) and 6(f). The results of the length gauge
are qualitatively consistent with those of the velocity gauge.
In contrast to Fig. 6(b), however, Fig. 6(e) shows that the
numerical and experimental results are a better match at 300 K
than at 500 K.

IV. CONCLUSION

In summary, we have investigated the harmonic generation
of graphene irradiated by linearly polarized lasers with vari-
ous intensities and found a striking knee structure, in contrast

to the atomic and molecular situations. The underlying mech-
anism is determined to be the destructive and constructive
quantum interference of harmonics generated by the electrons
corresponding to the lattice momenta around Dirac points
and M points in the Brillouin zone, respectively. Our findings
have also been confirmed by ab initio TDDFT calculations. In
particular, we find that tuning the Fermi energy can effectively
alter the knee structure, while the profile of the knee structure
is not sensitive to temperature. The knee structure is rather
universal and its associated properties can be observed with
the current experimental techniques. In fact, our calculations
of the third-order harmonic versus the tuned Fermi energy
have been compared with a recent experiment, showing good
agreement.
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APPENDIX A: COMPARISON OF THE RESULTS
OF LENGTH AND VELOCITY GAUGES

1. TBDMEs in the length gauge

We also calculate our main results by the TBDMEs of the
length gauge [33]. Within the dipole approximation, they read

i
∂ρcv (k, t )

∂t
=

(
Ecv (k) − i

1

T2

)
ρcv (k, t ) + iE(t ) · ∇kρcv (k, t ) + E(t ) · [Dcv (k)ρvv (k, t ) − ρcc(k, t )Dcv (k)], (A1a)

i
∂ρvv (k, t )

∂t
= E(t ) · [Dvc(k)ρcv (k, t ) − ρvc(k, t )Dcv (k)] + iE(t ) · ∇kρvv (k, t ), (A1b)

i
∂ρcc(k, t )

∂t
= E(t ) · [Dcv (k)ρvc(k, t ) − ρcv (k, t )Dvc(k)] + iE(t ) · ∇kρcc(k, t ). (A1c)

At the initial moment t = 0, the assignment method of the density-matrix elements in the length gauge agrees with that of the
velocity gauge. Ecv (k) = Ec(k) − Ev (k) is the band energy difference with lattice momentum k. The interband dipole elements
of the coordinate operator Dcv (k) have been mentioned in the main text. T2 is the interband dephasing time. A(t ) is the vector
potential of the laser field and E(t ) = −∂A(t )/∂t is the electric field. The laser parameters of the length gauge are consistent
with those of the velocity gauge.

The computational complexity introduced by the gradients in Eqs. (A1) can be removed by transforming the crystal
momentum k into a frame moving one kt = k + A(t ) [61]. Under this transformation, the partial differential equations (A1)
reduce to the following ordinary differential equations [21,62–64]:

i
dρcv (kt , t )

dt
=

(
Ecv (kt ) − i

1

T2

)
ρcv (kt , t ) + E(t ) · [Dcv (kt )ρvv (kt , t ) − ρcc(kt , t )Dcv (kt )], (A2a)

i
dρvv (kt , t )

dt
= E(t ) · [Dvc(kt )ρcv (kt , t ) − ρvc(kt , t )Dcv (kt )], (A2b)

i
dρcc(kt , t )

dt
= E(t ) · [Dcv (kt )ρvc(kt , t ) − ρcv (kt , t )Dvc(kt )]. (A2c)

The above ordinary differential equations can be readily numerically solved by the standard fourth-order Runge-Kutta algorithm.
The total current can be evaluated by

jtot(t ) =
∑
k∈BZ

j(k, t ) =
∑
k∈BZ

[jinter(k, t ) + jintra(k, t )] = jinter(t ) + jintra(t ), (A3)

where jinter(t ) and jintra(t ) are the interband and intraband currents, respectively. For each electron with lattice momentum k,
the interband and intraband currents can be calculated by

jinter(k, t ) = pcv (kt )ρvc(kt , t ) + pvc(kt )ρcv (kt , t ), (A4a)

jintra(k, t ) = pcc(kt )ρcc(kt , t ) + pvv (kt )ρvv (kt , t ), (A4b)
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FIG. 7. For the laser intensities of 2 × 108 W/cm2 [(a) and (b)] of the perturbative region, 1 × 1010 W/cm2 [(c) and (d)] of the plateau
region, and 1 × 1012 W/cm2 [(e) and (f)] of the nonperturbative growth region, the yield H̃ (k) [(a), (c), and (e)] and phase φ̃(k) [(b), (d), and
(f)]. Panels (a) and (b) [panels (c) and (d); panels (e) and (f)] are the same as Figs. 3(a) and 3(b) [Figs. 4(a) and 4(b); Figs. 5(a) and 5(b)], but
the results are calculated by TBDMEs of the length gauge with 1/T2 = 0.

where the dipole elements of the momentum operator have
been mentioned in the main text.

2. Third harmonic yield H̃ (k) and phase φ̃(k) as a function
of lattice momentum k in the length gauge

On the basis of the TBDMEs of the length gauge, we also
calculate the third harmonic yield H̃ (k) and phase φ̃(k), as
shown in Fig. 7. For 2 × 108 W/cm2 of the perturbative region
and 1 × 1010 W/cm2 of the plateau region, the results of the
length gauge shown in Fig. 7 agree with those of the velocity
gauge presented in the main text.

For a laser intensity 1 × 1012 W/cm2 of the nonpertur-
bative growth region, the yields of the length gauge shown
in Fig. 7(e) do not exactly agree with those of the velocity
gauge presented in Fig. 5(a). The main difference is that for
the lattice momenta inside the red circles, the harmonic yields
H̃ (k) of the length gauge [Fig. 7(e)] are larger than those of
the velocity gauge [Fig. 5(a)]. The corresponding phases φ̃(k)
are π/2 as shown in Fig. 7(f). Note that the harmonic phases
near the M points are −π/2. The phase difference of π can
cause destructive interference of the harmonics according to
Eq. (10). Thus the total harmonic yield of the nonperturbative
growth region for the length gauge is smaller than that of the
velocity gauge, as shown in Fig. 2(d).

For the effect of the temperature and tuning the Fermi
energy on the knee structure shown in Figs. 2(d) and 2(f),
which are mainly associated with the perturbative and plateau
regions, the results based on the length gauge are consistent

with those of the velocity gauge according to our further
calculations.

3. Discontinuous phase distribution

In Figs. 7(b), 7(d) and 7(f), as well as the velocity gauge
counterparts of Figs. 3(b), 4(b) and 5(b), we find discon-
tinuous phase distributions. The interesting π -phase jumps
in Fig. 5(d) also originate from the phase distribution. In
the following discussion, taking the nonperturbative growth
region as an example, we address the mechanism for the
discontinuous phase distribution.

In the nonperturbative growth region, our calculations
indicate that the intraband dynamics dominate the third har-
monic generation. In the length gauge, a lattice momentum
k = (kx, ky) is transformed to k + A(t ) = [kx + A(t ), ky].
The intraband current of the electron with lattice momen-
tum k is given by jintra(k, t ) ∝ ∂Ec(p, ky)/∂ p|p=kx+A(t ) [65],
where we set A(t ) = A0 sin(ω0t ) for simplicity. One can

obtain F̃intra(k) = ω0
π

∫ π
ω0

− π
ω0

jintra(k, t )e−i3ω0t dt . Considering

the symmetry associated with the concrete expression of the
energy band Ec(kx, ky), mathematically, we can prove that
the real part Re[F̃intra(k)] is always zero. Then the phase
of the third harmonic φ̃intra(k) = arctan Im[F̃intra(k)]

Re[F̃intra(k)]
= ±π/2.

The “±” sign depends on the sign of the nonzero imaginary
part and therefore is related to the corresponding lattice mo-
mentum k.

In the above discussions, we ignore the interband tran-
sitions. Near the K points in the Brillouin zone, tunneling
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FIG. 8. Laser intensity dependence of the third harmonic yields
(a) and phases (b), which are calculated by the TBDMEs of
Eqs. (A2). Here, the dephasing time is set to 1/T2 = 0 and the laser
wavelength is 5500 nm.

between the two energy bands is important and might com-
plicate the electron motion and lead to an irregular phase
distribution, as shown in Fig. 7(f).

4. Mechanism analysis of the knee structure in the length gauge

We also study the effect of the interband and intraband
dynamics on the knee structure under the length gauge.
Equation (A3) tells us that the total current is the sum of
the interband and intraband currents, i.e., jtot(t ) = jinter(t ) +
jintra(t ). One can obtain√

H̃tot · eiφ̃tot =
√

H̃inter · eiφ̃inter +
√

H̃intra · eiφ̃intra , (A5)

where H̃tot ≡ Htot(3ω0) = (3ω0)2|F̃tot|2. The corresponding
phase φ̃tot = arg(F̃tot ) ∈ [−π, π ) is calculated by consid-
ering tan[φ̃tot] = Im[F̃tot]/ Re[F̃tot], in which F̃tot = ∫ ∞

−∞ e ·
jtot(t )e−i3ω0t dt . The third interband (or intraband) harmonic
yield H̃inter (or H̃intra) and phase φ̃inter (or φ̃intra) can be
calculated with the interband current jinter(t ) [or intraband
current jintra(t )] by the same formulas.

We show the laser intensity dependence of the third har-
monic yields (H̃tot, H̃inter, H̃intra) and phases (φ̃tot, φ̃inter,
φ̃intra) in Fig. 8. In the perturbative region, as the laser inten-
sity increases, H̃tot and H̃inter increase rapidly, while H̃intra

remains stable [see Fig. 8(a)]. Figure 8(b) shows that the
phases φ̃tot are close to φ̃inter in this region. One can conclude
that the rapid increase in H̃tot is caused by the increase in
H̃inter. The underlying mechanism is that in the perturbative
region, a few electrons near Dirac points can be excited and
the trajectories of these electrons are short in the reciprocal
space due to small vector potential. Therefore, the third har-
monic generation is dominated by the multiphoton transitions
instead of the intraband dynamics.

In contrast to the perturbative region, in the plateau re-
gion, the intraband yield H̃intra increases rapidly, unlike the
interband yield H̃inter. A transition from H̃inter > H̃intra to
H̃inter < H̃intra appears in this region, which suppresses the
rapid growth of H̃tot. On the other hand, one can find that the
interband yields H̃inter are comparable to the intraband yields
H̃intra on the whole and there exist phase differences between
φ̃inter and φ̃intra. According to Eq. (A5), the interference
between H̃inter and H̃intra also suppresses the rapid increase
in H̃tot in the plateau region.

In the nonperturbative growth region, with increasing laser
intensity, the intraband yield H̃intra first increases rapidly

(from 2 × 1010 W/cm2 to 2 × 1012 W/cm2) and then remains
stable (from 2 × 1012 W/cm2 to 1 × 1013 W/cm2), while the
interband yield H̃inter slowly increases. Because the intra-
band yields H̃intra are much larger than the interband yields
H̃inter, according to Eq. (A5), the phases φ̃tot are close to
the intraband phases φ̃intra [see Fig. 8(b)]. Therefore, in the
nonperturbative growth region, the rapid increase in H̃tot orig-
inates from the increase in H̃intra. The underlying mechanism
is that as the laser intensity increases, more electrons near M
points can be excited, and the trajectories of the excited elec-
trons are longer in the reciprocal space with the increase of the
vector potential. Therefore, the intraband dynamics of those
electrons play a key role in the third harmonic generation.

APPENDIX B: PERTURBATION THEORY

Within the perturbation theory framework [34,60], the cur-
rent of graphene can be calculated by J (t ) = ∑∞

n=1 J (n)(t ),
where J (n)(t ) is the nth-order perturbation expansion of the
current. For doped graphene with Fermi energy EF (here, we
have set EF � 0), the time-dependent third-order current is
given as

J (3)(EF, t ) =
∫

dω σ (3)(EF, ω)E3(ω)e−i3ωt , (B1)

where σ (3) is the third-order optical conductivity and E (ω) is
the Fourier transform of electric field E (t ).

To simplify, we consider the electric field E (t ) =
E0 cos(ω0t ) and therefore Eq. (B1) can be simplified to

J (3)(EF, t ) = σ (3)(EF, ω0)E3
0 e−i3ω0t , (B2)

in which σ (3)(EF, ω0) ∝ i 1
ω4

0
T ( ω0

2EF
) [60].

The third harmonic yield of doped graphene with Fermi
energy EF is evaluated by

H (3)(EF) = (3ω0)2|TF [J (3)(EF, t )]|2

= (3ω0)2|σ (3)(EF, ω0)|2E6
0 ∝ 9I3

ω6
0

∣∣∣T ( ω0

2EF

)∣∣∣2
,

(B3)

where T (x) = 17G(x) − 64G(2x) + 45G(3x), in which

G(x) = ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ + iπθ (|x| − 1) (B4)

is a dimensionless complex function of a real variable x. Here,
θ (y) is the Heaviside step function, equal to 0 for y < 0 and 1
for y > 0.

On the other hand, the third-order term of the current
j(ωcv, t ) can be evaluated by

j (3)(ωcv, t ) = lim
�ε→0

J (3)(ωcv/2 − �ε, t )

− lim
�ε→0

J (3)(ωcv/2 + �ε, t ), (B5)

where J (3)(μ, t ) is the third-order current for doped graphene
with Fermi energy EF = μ as mentioned by Eq. (B2). The
third harmonic yield as a function of the band frequency
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difference ωcv is evaluated by

H̃ (ωcv ) = (3ω0)2|F̃ (ωcv )|2 ∝ (3ω0)2I3
∣∣∣ lim
�ε→0

[σ (3)(ωcv/2 − �ε,ω0) − σ (3)(ωcv/2 + �ε,ω0)]
∣∣∣2

, (B6)

where we have used F̃ (ωcv ) = TF [ j (3)(ωcv, t )]. The phase φ̃(ωcv ) is calculated by

tan[φ̃(ωcv )] = Im[F̃ (ωcv )]/ Re[F̃ (ωcv )]. (B7)
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