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Steering the longitudinal photoelectron momentum in the above-threshold ionization
with two not-quite-collinear laser beams
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Strong-field atomic processes, driven by long-wavelength laser beams, are known to be affected by magnetic
forces. In such beams, the Lorentz force pushes the photoelectrons along the beam direction and prevents their
rescattering or recombination with the parent ions. In high-order harmonic generation (HHG), therefore, the
yield of energetic photons is markedly suppressed, rendering x-ray radiation sources from high harmonics so far
impractical. To compensate these magnetic forces and to reenable HHG at long wavelengths, a setup of two not
quite collinear beams has been suggested recently but not much analyzed beyond classical arguments and with
respect to accessible laser parameters. Using the nondipole strong-field approximation, we here investigate when
the longitudinal momentum of the photoelectrons vanishes and how this noncollinear setup explicitly depends
on the wavelength and intensity of the driving beams. We also demonstrate that an optimal crossing angle δ0

between these beams always exists for which the fraction of the returning electrons is maximized. This rather
simple steering of the longitudinal momentum will allow an efficient HHG with driving beams deep in the
midinfrared.
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I. INTRODUCTION

During the past decades, the observation of atoms in strong
laser fields helped understand not only the quantum dynamics
on ultrashort timescales, but also led to the development of
robust tabletop radiation sources at rather high photon ener-
gies. Indeed, the fundamental processes of above-threshold
ionization (ATI), Refs. [1,2] and high-harmonic generation
(HHG), Refs. [3,4] can nowadays be mastered accurately by
just tailoring the parameters of the driving laser beams [5–11].
Electrons, which are released and accelerated in the laser field,
can be steered back to their parent ions and give then rise to
energetic photoelectrons in ATI or the emission of photons in
HHG, respectively.

Today, HHG is routinely applied to generate coherent ra-
diation with photon energies of tens of eV, or even more, by
using near-infrared driving beams [12]. The tabletop design of
these sources makes it desirable to extend the HHG process
towards the x-ray regime [12,13] by just following the simple
cutoff law h̄ωmax = Ip + 3.17Up, where Ip denotes the ioniza-
tion potential of the target atoms and Up ∼ Iλ2 the (so-called)
ponderomotive energy in the driving beam. Since, from a
classical viewpoint, the ponderomotive energy is proportional
to the intensity I and the (square of the) wavelength λ, it
appears straightforward to obtain high-energetic harmonics
by simply increasing the wavelength λ and/or intensity I of
the beam [14]. Unfortunately, however, this argument quickly
breaks down owing to the magnetic field, and which leads to a
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Lorentz force Fz ∼ Iλ along the beam axis. This force pushes
the electrons away from their parent ions and, thus, prevents
the recombination as needed for HHG. In practice, an increase
of the cutoff photon energy generally leads to a decrease in the
radiation yield [15,16] and which renders the HHG process
unattractive as a x-ray radiation source.

Various proposals have been suggested in the literature
to circumvent this problem with the magnetic field in the
electron-photon interaction [17–21] with many of them being
quite challenging with regard to the setup of the beams and
targets. A much simpler scheme was suggested by Pisanty
et al. [22], who proposed a gas target in the focus of two
noncollinear, circularly polarized and counter-rotating beams
with identical wavelengths and intensities but with a small
crossing angle δ [cf. Fig. 1(a)]. For this scheme, Pisanty
and co-workers [22] argued that a forward ellipticity in the
target region may counteract the magnetic Lorentz force, thus,
bringing the electron back to the parent ion. If these arguments
indeed apply, the HHG yield may increase by several orders
of magnitude.

However, whereas Pisanty and co-workers provide some
profound estimates for their proposal, little has been said
so far how the crossing angle, wavelength, and intensity of
the driving beams affect such a noncollinear HHG setup.
Moreover, the laser-electron interaction was treated only in
low-order approximation in the Hamiltonian to account for
the (local forward) ellipticity of the combined fields. To in-
corporate the magnetic electron-photon interaction in a more
complete fashion into theory, a nondipole strong-field approx-
imation (SFA) should be applied for any thorough treatment
of such a noncollinear beam geometry [23–25].
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FIG. 1. Strong-field ionization by two not quite collinear laser beams. (a) If an atomic gas (green) is placed in the focus of two beams
which propagate under the crossing angle δ, electrons (yellow, ATI) or photons (blue, HHG) can both be emitted from the target gas cloud.
(b) Detailed geometry of ATI as considered within the present theory: An atom is irradiated by two beams with intensities I1, I2, wavelengths
λ1, λ2, and ellipticities ε1, ε2. A photoelectron with momentum p = (p, ϑp, ϕp) is emitted in spherical coordinates and observed at the detector
D. (c) The photoelectron energy spectra exhibit the well-known ATI peaks, spaced by the photon energy, whose magnitude varies with position
and especially the polar angle ϑp of the detector. (d) A polar plot of the polar-angle distributions (PADs) readily reveals the role of the crossing
angle δ and can be understood qualitatively by following the classical electron paths: For two collinear beams (δ = 0, green solid line), the
photoelectrons gain a longitudinal momentum �pz along the beam axis owing to the Lorentz force and with two lobes tilted into the same
direction. These lobes rotate counterclockwise if the crossing angle δ increases (orange dashed and blue dotted lines). For the optimal crossing
angle δ = δ0, half of the electrons (from the upper part of the PAD) will have the longitudinal momentum �pz ≈ 0 (orange dashed line). For
this optimal angle, half of the photoelectrons, therefore, remain on the x-y reaction plane and return to their parent ions. This cancellation of
the magnetic Lorentz force of the beams then enhances the yield of HHG photons or rescattered photoelectrons.

In this paper, we analyze and discuss the ATI process if
driven by two not quite collinear laser beams with arbitrary
wavelength, intensity, and ellipticity [cf. Fig. 1(b)]. By using
our recently developed nondipole SFA [24], we show that
the energy spectra and PAD of the photoelectrons strongly
depend on the crossing angle δ of the beams [cf. Figs. 1(c)
and 1(d)]. Especially, the PAD clearly reveal the magnetic
Lorentz force which, for a single beam already, pushes the
electrons away from the polarization plane ϑp = π/2, lead-
ing to a nonzero and measurable forward momentum �pz

[26–28]. We here demonstrate that two noncollinear beams
generally result into a counterclockwise rotation of the PAD
and that an optimal crossing angle δ0 can be chosen between
these beams for which the electrons from the upper half of the
PAD (e.g., ϑp < π ) will remain within the polarization plane.
This clearly increases the probability of these electrons to
rescatter with their parent ions, especially when compared to
a single driving beam, giving, thus, rise to a higher harmonic
yield. Detailed computations show how δ0 depends on the
wavelength and intensity of the driving beams and provide
us with a quantitative guidance for generating high harmonics

at long wavelengths. Much further work is, however, required
to explicitly compute the harmonic yields by incorporating the
full nondipole SFA amplitude for recombination into the time-
dependent dipole moment of the target atoms. We use atomic
units (me = e = h̄ = 4πε0 = 1) unless stated otherwise.

II. THEORETICAL BACKGROUND

In order to apply the nondipole SFA [24] to the ionization
by two not quite collinear laser beams, let us start from their
combined field. We here assume that both beams can be ap-
proximated as monochromatic plane waves in Coulomb gauge
[∇ · A(r, t ) = 0] and that the combined electric and magnetic
fields are just given by the sum of the vector potentials of the
individual beams [29],

A(r, t ) = A1(r, t ) + A2(r, t ),

A j (r, t ) = A(0)
j [cos(k jr − ω jt ) e j,1 − ε j sin(k jr − ω jt )e j,2].

(1)
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As usual, the amplitudes A(0)
j = ω j I1/2

j (1 + ε2
j )−1/2 of these

vector potentials are defined by the intensities I j , whereas
−1 � ε j � 1 denote the ellipticities, ω j = 2πc/λ j denote the
frequencies, and λ j denote the wavelengths. The wave-vectors
k j are chosen so that one of the beams propagates along the
z axis (k1 = ω1/c ez) and the second within the x-z plane
under the crossing angle δ with respect to the first beam [k2 =
ω2/c(− sin δex + cos δez )]. For this geometry, the polariza-
tion planes of the two beams are defined by the unit vectors
e1,1 = ex, e1,2 = ey, and e2,1 = cos δex − sin δez, e2,2 = ey,
respectively. Whereas our nondipole SFA theory [24] covers
rather general beam configurations, we will assume in this pa-
per two counter-rotating and circularly polarized beams (ε1 =
− ε2 = 1) with identical intensity I = I1 = I2 and wavelength
λ = λ1 = λ2. We also assume two not quite collinear beams
with a crossing angle δ � 1. Whereas, in general, this analysis
could be carried out also for rather arbitrary beam parameters,
e.g., elliptically polarized beams or beams with different in-
tensities I1 �= I2, we here focus on the scenario that is best
accessible, both theoretically and experimentally. Other beam
configurations might indeed increase the ability to steer the
momentum of the rescattered photoelectrons but are beyond
the scope of the present paper.

For the sake of simplicity, moreover, we describe the target
by a single atom in a (hydrogenike) 1s initial-state |�0〉,
located within the focus of the beams at z = 0 [Fig. 1(b)],
although our conclusions below will be valid for all atoms
in the overlap region of the beams. Following Refs. [24,25],
we will first compute the photoelectron momentum distri-
bution by means of the SFA transition amplitude T (p) and
which formally excites an electron from its initial ground-state
|�0〉 into the nondipole Volkov states |χp(t )〉. These contin-
uum solutions include all magnetic corrections up to order
p/mec and are characterized by the asymptotic momentum
p = (p, ϑp, ϕp) of the photoelectrons at the detector [24]. For
the vector potential (1), these nondipole Volkov states can be
expressed in terms of plane waves as

χp(r, t ) = 1

(2π )3/2

∞∑
N1,N2=−∞

CN (p)e−i(EN t−pN r), (2)

and where we have introduced the short-hand notation
N = (N1, N2). The expansion coefficients CN (p) depend on
the photoelectron momentum p as well as the beam parame-
ters I , λ, and δ, which together determine the vector potential.
The energies and momenta of the individual plane waves,

EN = Ep + 2 Ũp − (N1 + N2)ω,

pN = p + 2Ũp pz

cω
k − (N1 + N2)k,

can be given explicitly in terms of the photoelectron energy
Ep = p2/2 at the detector as well as the corrected pondero-
motive energy Ũp = Up/[1 − (pz/c)2]. Since all the k2 and
the coefficients CN depend on δ, we, therefore, expect that the
photoelectron momentum can be controlled to a good extent
by just choosing the crossing angle between the beams.

With the expansion (2), the angle- and energy-differential
ionization probability P (p) = p|T (p)|2 can be readily

FIG. 2. PAD of photoelectrons with energy Ep = 7.8 eV ≈5 ω

as emitted in the ATI with two not quite collinear laser beams
(I = 1014 W/cm2, λ = 800 nm). Distributions on the px-pz plane
(ϕp = 0) are shown for three values of the crossing angle
δ = 0◦, 5◦, and 10◦ and for a neon target (ionization potential
Ip = 21.56 eV).

expressed in terms of the direct SFA transition amplitude [24],

T (p) = −i
∫ ∞

−∞
dt 〈χp(t )|V̂le(r, t )|�0(t )〉

= −2π i
∞∑

N1,N2=−∞
CN (p)V (pN )δ(EN + Ip), (3)

where the δ function designates the positions of discrete ATI
peaks in the energy spectrum [cf. Fig. 1(c)]. The relative
amplitudes of this spectrum are determined by the coefficients
CN (p) and the matrix element V (p) = 〈p|V (r)|�0〉 of the
atomic (Coulomb) potential V (r). Owing to the geometry of
the beams, we will restrict our analysis to photoelectrons that
are emitted within the px-pz plane, i.e., for the azimuthal angle
ϕp = 0. Figure 1(d) then displays the angular distributions
P (p) as a function of the polar angle ϑp and for a fixed
photoelectron energy Ep = p2/2 but for selected crossing
angles δ.

III. RESULTS AND DISCUSSION

Let us start with a neon target with ionization potential
Ip = 21.56 eV. For such a target with tightly bound 2p valence
electrons, Fig. 2 displays the computed angular distributions
of ATI photoelectrons with energy Ep = 7.8 eV ≈5 ω. As seen
from the black solid curve in this figure, the PAD exhibits two
lobes that, at first glance, are centered around the polarization
plane (ϑp = π/2, 3π/2) for co-propagating beams (δ = 0). A
closer inspection shows, however, that the maxima of the two
lobes are slightly displaced from each other by ϑp,max �= π/2
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FIG. 3. Peak shifts �pz as function of the crossing angle δ for a neon target with ionization potential Ip = 21.56 eV. Results are shown for
(a) the peak shifts �p(+)

z in the upper and (b) �p(−)
z in the lower halves of the PAD for which the ionization probabilities become maximum

as well as for three selected wavelengths of the incident beams: λ = 800 nm (blue solid curves), 1600 nm (orange dashed curves), 3200 nm
(green dotted curves). The left panel (a) also displays the optimal crossing angle δ0 for the three wavelengths for which the peak shift �p(+)

z in
the upper half of the PAD vanishes. The beam intensity was set to I = 1.5 × 1014 W/cm2 in all these computations.

(3π/2) owing to the small nonzero longitudinal momentum
�pz = √

2Ep cos ϑp,max. This peak shift is known to increase
with the intensity and wavelength [24,26,27,30,31] of the
incident laser light, in line with the classical Lorentz force
Fz ∼ Iλ. If, therefore, this peak shift becomes too large, the
electron misses its parent ion as indicated in Fig. 1(d).

For two not quite collinear beams with crossing angle δ,
the associated PAD rotates counterclockwise, i.e., the maxima
of the PAD move both to the left in the upper half (ϑ < π )
of the x-z scattering plane and to the right in the lower half
[cf. the green dashed and orange dot-dashed curves in Fig. 2].
Or, equivalently, the peak shift �p(+)

z decreases for all elec-
trons that are emitted in the upper half, whereas their shift
�p(−)

z increases in the lower half. In practice, therefore, only
half of the released electrons are driven back towards the
polarization plane and, hence, their target ions, whereas the
other half is accelerated even further away owing to the total
Lorentz force [cf. Fig. 1(d)]. Whereas this behavior is strictly
true only for directly emitted photoelectrons, our discussion
is relevant also for those electrons that are driven back to the
parent ion, instead of being measured at the detector. Indeed,
this rotation of the PAD has been found quite universal in
the non-dipole SFA above for all photoelectron energies that
contribute significantly to the ATI spectra and, thus, confirm
the classical arguments by Pisanty and co-workers [22]. For
a proper choice of the crossing angle δ of the two beams,
we, therefore, expect overall that the (upper) half of the
photoelectrons will be steered back to their ions. Figure 3
displays the peak shifts �p(+)

z and �p(−)
z as functions of the

crossing angle δ for a neon target with ionization potential
Ip = 21.56 eV and for beams of given wavelength and inten-
sity. Results are shown especially for beams with intensity
I = 1.5 × 1014 W/cm2 and the three wavelengths λ = 800
nm (blue solid curves), 1600 nm (orange dashed curves), and
3200 nm (green dotted curves), respectively. For all these
beam parameters, an optimal crossing angle δ0 does exist, for
which (half of) the emitted electrons return to their parent

ions [cf. Fig. 1(d)] and may enhance their rescattering or
recombination with the parent ions.

Figure 3 can be readily understood in terms of the (clas-
sical) Lorentz force that acts upon all charges in motion.
For two co-propagating beams with δ = 0, for instance, the
(magnetic) force components of the two beams simply add to
each other and scales linearly with the wavelength (Fz ∼ Iλ).
For δ = 0, therefore, the peak shifts �p(+)

z = �p(−)
z increase

as the wavelength is enlarged. These simple arguments also
agree with a classical analysis in which the (cycle-averaged)
magnetic Lorentz force Fz = 〈[v × B]z〉 = [1 − f (δ)]Iλ with
an always positive function f (δ), just depends on the initial
conditions (i.e., the emission into the upper or lower half of
the PAD) but neither on the intensity I nor the wavelength λ.
In our (quantum-mechanical) nondipole theory for the direct
amplitude, this shift is encoded into the wavelength depen-
dence of the expansion coefficients CN (p), and which then
enter the nondipole Volkov states (2). As seen from Fig. 3,
moreover, the influence of the Lorentz forces, e.g., the slope
of the curves, decreases with increasing laser frequencies.

Most important, perhaps, and as readily seen from
Fig. 3(a), such an optimal crossing angle δ0 can be found
for any wavelength λ. Whereas Fig. 3 itself displays only
peak shifts for those electrons, which propagate directly to
the detector, similar arguments apply also for the rescattering
or recombination of electrons. This can be explained by just
following their classical pathes [cf. Fig. 1(d)]: If δ = 0, the
electron will be pushed away from its parent ion for all di-
rections of initial emission, whereas for δ = δ0, the electron
returns to its parent ion if it has been emitted before with
positive momentum along the x axis. For δ > δ0, in contrast,
the sign of the longitudinal momentum is changed and the
electron will miss its parent ion again.

With this quite general behavior in mind, the noncollinear
setup of laser beams in Fig. 1(a) can be applied to counteract
the Lorentz force and to enhance the recombination or rescat-
tering of electrons by the parent ions. For an optimally chosen
crossing angle δ0, this may enlarge also the yield of high
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FIG. 4. Optimal crossing angle δ0 as function of wavelength λ (left panels) and intensity I of the laser pulses (right panels). Results are
shown for the four noble gases neon [(a) and (b) Ip = 21.56 eV], argon [(c) and (d) Ip = 15.76 eV], krypton [(e) and (f)Ip = 14.00 eV], and
xenon [(g) and (h) Ip = 12.13 eV], respectively. Moreover, all these calculations were performed within the long-wavelength regime for the
two intensities I = 1.5 × 1014 W/cm2 (black solid lines) and I = 3.0 × 1014 W/cm2 [red dashed lines; (a), (c), (e), and (g)] and the three
wavelengths λ = 800 nm (blue solid lines), λ = 1600 nm (orange dashed lines), and λ = 3200 nm [olive dotted lines; (b), (d), (f), and (h)]. At
the optimal crossing angle δ0, the peak shift vanishes for the electrons in the upper half (�p(+)

z = 0) and helps them return to their parent ions
within the polarization plane.
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harmonics or the nonsequential double ionization in strong
laser fields. To further understand how such an enhancement
depends on the laser parameters, the left panels of Fig. 4
display the optimal crossing angle δ0 as the function of wave-
length λ and for the four noble gases neon, argon, krypton,
and xenon, respectively. These optimal angles are shown for
two intensities I = 1.5 × 1014 W/cm2 (black solid lines) and
I = 3.0 × 1014 W/cm2 (red dashed lines). By starting from
the widely used 800 nm of Ti-sapphire lasers for HHG and by
going towards midinfrared lasers, the angular δ0 decreases for
all intensities and then requires their fine-tuning within about
0.1◦ in order to ensure the return of electrons, well of what
appears experimentally feasible today [32]. This dependence
was shown in Ref. [24] and just reflects the increasing peak
shift for identical laser parameters if the ionization potential
increases. On the right panels of Fig. 4, this optimal angles
are displayed as function of the intensity and for three se-
lected wavelengths: λ = 800 nm (blue solid lines), λ = 1600
nm (orange dashed lines), and λ = 3200 nm (olive dotted
lines). The increase inδ0 with intensity here follows from the
proportionality between the Lorentz force and intensity and,
hence, a larger angle δ for the compensation of this force.
This dependence of the optimal angle δ0 on the wavelength
and intensity of the noncollinear beams, presented in Fig. 4,
also constitute the major result of this paper.

Large angles δ0 arise indeed only for rather high intensi-
ties of the driving beams [cf. Fig. 4(b)]. At the first glance,
this behavior of δ0 as function of the laser wavelength and
intensity may appear counterintuitive since the cycle-averaged
Lorentz force Fz ∼ I λ just obeys the same dependence on
both parameters. In practice, however, the full Lorentz force
also contains a z-dependent factor that arises from the per-
odicity of the fields and, hence, depends on the wavelength
but not the intensity of the laser pulses. This is often dis-
cussed in terms of the λ-dependent (oscillating) figure-eight
motion of electrons in the laser field, that occurs in addition to
their (classical) drift, owing to the the cycle-averaged Lorentz
force. Whereas a more detailed analysis of the classical dy-
namics of the photoelectron in such a crossed-beam scenarios
will be very interesting, this is beyond the scope of the present
paper.

Whereas the (magnitude of) peak shifts of the direct pho-
toelectrons certainly provide guidance for choosing the laser
parameters and for a possible enhancement of the high-
harmonic yields, further experimental and theoretical work
will be needed for realizing such a noncollinear excitation
scheme successfully. We especially expect the experimental
setup to be realized in a straightforward fashion, whereas the
nondipole theory still need to be extended for the rescattering
and/or recombination amplitudes. This extension appears fea-
sible to us but requires the calculation of the time-dependent
harmonic dipole moment of the active electron [33]. A

preliminary estimate on this dipole moment was obtained in
Ref. [22] and suggests at λ = 800 nm an increase by about
two orders of magnitude in the harmonic yield when two
not quite collinear beams with a crossing angle δ = 2◦ are
compared with a single beam of equal intensity. This implies a
quite similar trend as found for the direct ATI photoelectrons
in the present paper and help justify our approach here. With
a full treatment of the nondipole Volkov states (2) in the
evaluation of the dipole moment, we, however, expect more
reliable predictions for the harmonic yield as a function of δ

as well as for other features of the harmonic energy spectra.
Our findings above demonstrate that a noncollinear beam

setup might indeed be a very powerful tool for compensating
the longitudinal momentum of photoelectrons in ATI experi-
ments. It facilitates to drive the electrons back to their parent
ions and to enhance the high-harmonic yield, if the intensity
and wavelength are properly tuned towards a large cutoff
energy h̄ω = Ip + 3.17Up.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have demonstrated in this paper how
two not quite collinear and counter-rotating laser beams help
cancel the magnetic Lorentz forces that act upon the photo-
electrons in strong-field ATI experiments. By applying our
recently developed nondipole SFA, we are able to explained
the cancellation of the longitudinal momentum for roughly
half of the emitted electrons. Indeed, this fraction of emitted
electrons remain in the polarization plane and are, hence,
driven back to their parent ions. This noncollinear setup of
laser beams can, therefore, be applied also for driving HHG at
long wavelengths and high intensities and for which the yield
is typically strongly suppressed.

We also validate that an optimal crossing angle δ0 can
always be found for two noncollinear driving beams and for
maximizing the fraction of returning electrons. The depen-
dence of this angle δ0 with regard to the wavelength and
intensity of the driving beams is evaluated for a good range of
laser parameters, and this confirms that the associated setup
appears experimentally to be feasible. We, therefore, expect
such experiments to be soon performed and analyzed for its
use in HHG at long wavelengths. In the future, further theoret-
ical work is needed in order to explicitly compute the yields of
harmonic radiation within the nondipole theory by including
the structure of both, the laser pulse and target atoms [34–36].
Such a potential in the harmonic yield is of great interest for
many applications.
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[31] J. Daněk, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel,
B. Willenberg, J. Maurer, B. W. Mayer, C. R. Phillips, L.
Gallmann, and U. Keller, J. Phys. B: At., Mol. Opt. Phys. 51,
114001 (2018).

[32] D. D. Hickstein, F. J. Dollar, P. Grychtol, J. L. Ellis, R. Knut, C.
Hernández-García, D. Zusin, C. Gentry, J. M. Shaw, T. Fan,
K. M. Dorney, A. Becker, A. Jaroń-Becker, H. C. Kapteyn,
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