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Two-dimensional infrared (2DIR) spectroscopy is widely used to study molecular dynamics, but it is typically
restricted to solid and liquid phase samples and modest spectral resolution. Only recently has its potential to study
gas-phase dynamics begun to be realized. Moreover, the recently proposed technique of cavity-enhanced 2D
spectroscopy using frequency combs and developments in multicomb spectroscopy is expected to dramatically
advance capabilities for acquisition of rotationally resolved 2DIR spectra. This demonstrates the need for
rigorous and quantitative treatment of rotationally resolved, polarization-dependent third-order response of
gas-phase samples. In this article, we provide a rigorous and quantitative description of rotationally resolved
2DIR spectroscopy using density-matrix, time-dependent perturbation theory and angular momentum algebra
techniques. We describe the band and branch structure of 2D spectra, decompose the molecular response into
polarization-dependence classes, use this decomposition to derive and explain special polarization conditions,
and relate the liquid-phase polarization conditions to gas-phase ones. Furthermore, we discuss the rotational
coherence dynamics during the waiting time.
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I. INTRODUCTION

Two-dimensional infrared (2DIR) spectroscopy is a non-
linear all-optical technique using ultrashort broadband pulses
to study dynamics of molecules after photoexcitation [1–5]. In
a common experimental arrangement, three ultrashort pulses
(<1 ps) are made to interact with the sample in sequence, and
the molecular response is recorded as a function of delays be-
tween pulses (t1, t2) and of the spectrum of the third pulse (ω3).
Fourier transforming the response along the t1 axis produces
2D correlation maps between the pump excitation (ω1) and
the probe interaction (ω3). Conventional 2DIR spectrometers
provide only modest spectral resolution (>1 cm−1), as they
are commonly used to study liquid and solid state samples
with broad spectral features and large optical densities.

Recent work has begun to explore 2DIR spectroscopy of
gas-phase molecules and the resulting rotational structure.
Mandal et al. [6,7] measured 2DIR gas-phase spectra of
N2O in SF6 to study gas-to-liquid transition in supercritical
fluids. Due to high pressure of the sample and insufficient
experimental resolution, individual rovibrational resonances
were not resolved. The presented theoretical description did
not consider individual third-order rovibrational pathways
separately; instead it modeled whole branches as single ex-
citations with individual lines treated as perturbations of the
central branch frequencies. Nonetheless, this study clearly
demonstrated the notable differences between liquid-phase
and gas-phase 2DIR molecular response, in particular the
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correlation between P-branch excitation and R-branch de-
tection and vice versa. Very recently, Gronborg et al. [8]
presented 2DIR gas-phase spectra of optically thick pure CO2

at atmospheric pressure using a standard 2DIR spectrometer
operated in pump-probe geometry. Here individual rotation-
ally resolved resonances (RR2DIR) were observed but the
resolution was still insufficient to record the details of their
line shapes.

This previous pioneering experimental work has used
conventional ultrafast optical technology, however recent
advances in frequency comb-based methods promise to dra-
matically advance the capabilities for acquisition of RR2DIR
spectra. For example, Allison and coworkers have used
frequency comb techniques to enhance ultrafast transient
absorption spectroscopy (a third-order response) in dilute
gases with detection limits approximately four orders of
magnitude lower than conventional methods [9,10]. Allison
also framed the more general coherent 2D spectroscopy in
terms of wave mixing of multiple frequency combs and
described methods for cavity-enhancing 2D spectroscopy sig-
nals [11]. Lomsadze and Cundiff have demonstrated rapid,
high-resolution coherent multidimensional spectroscopy in
optically thick Rubidium vapors with multiple frequency
combs [12]. In parallel with these technique develop-
ments, there has been rapid progress in the bandwidth and
power of mid-IR and long-wave IR frequency comb light
sources [13–18].

Sensitive, broadband, high-resolution (<0.1 cm−1)
RR2DIR spectroscopy in the fingerprint region (λ=3–20 μm)
will enable analysis of complex mixtures of polyatomic
gases with unprecedented specificity. As is well known

2469-9926/2022/106(4)/042819(19) 042819-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8196-9897
https://orcid.org/0000-0003-0289-8830
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042819&domain=pdf&date_stamp=2022-10-31
https://doi.org/10.1103/PhysRevA.106.042819


GRZEGORZ KOWZAN AND THOMAS K. ALLISON PHYSICAL REVIEW A 106, 042819 (2022)

from conventional 2DIR spectroscopy [5] and 2D NMR
spectroscopy [19], adding another dimension to molecular
spectra enables easier discrimination of individual molecular
resonances, simplifying detection of constituent species
in complex mixtures. Such mixtures commonly occur
in human breath [20], in flames, and in detection of
explosives and narcotics, but their linear spectra are
highly congested and difficult to interpret. The new
spectroscopic capabilities will also benefit fundamental
chemical physics studies on problems such as intramolecular
vibrational redistribution [21] and collisional processes
in gases [7,22,23]. For example, observing intensities of
off-diagonal resonances that emerge as t2 increases will
enable accurate measurements of collisional population and
coherence transfer [24], which is responsible for line mixing
in linear absorption spectra, and tracking the evolution of
diagonal and antidiagonal line widths will directly report
on the effect on velocity-changing collisions. With a large
information density of rotationally resolved 2DIR (RR2DIR)
spectra, there are likely many unforeseen applications as well.

To illustrate the difference between liquid-phase and gas-
phase dynamics, let us compare the orientational dynamics in
these two environments. Considerations of molecular orien-
tation in liquid-phase 2D spectroscopy usually begin with a
classical propagator for rotational diffusion written in terms
of spherical harmonics Ylm [5,25]

G(� jt j |�i ) =
∑
lm

e−l (l+1)Dt jY ∗
lm(� j )Ylm(�i ). (1)

The propagator (Green’s function) describes the distribution
of molecules with respect to orientation � j = (θ j, φ j ) af-
ter initial localization at an orientation �i, with G(� j, t =
0|�i ) = δ(� j − �i ). In a third-order spectroscopy experi-
ment, each interaction with the pulse (εi · μ̂) excites and
aligns the sample along the polarization axis, with diffusive
evolution of the distribution described by the propagator in be-
tween interactions. The dynamics are terminated by polarized
detection of the third-order polarization (ε4 · μ̂). Denoting
polarization unit vectors as ε̂i, i = 1, 2, 3 for pulses and i = 4
for detection, the ensemble-averaged orientational part of the
response is given by

〈(ε̂4 · μ̂)(ε̂3 · μ̂)(ε̂2 · μ̂)(ε̂1 · μ̂)〉

=
∫

d�1

∫
d�2

∫
d�3

×
∫

d�4 (ε̂4 · μ̂)G(�3t3|�2)(ε̂3 · μ̂)

× G(�2t2|�1)(ε̂2 · μ̂)G(�1t1|�0)(ε̂1 · μ̂)p0(�0), (2)

where p0(�0) is an initially isotropic distribution.
Hochstrasser [26] used this formalism to derive expressions
for the polarization dependence of third-order spectroscopy
signals produced by correlated vibrational transition dipoles
in liquids. These results are widely used to simplify 2DIR
spectra, for example, by removing diagonal peaks [27]
involving a single vibrational mode to emphasize off-diagonal
peaks due to the coupling of different vibrational modes.

In the gas phase, the situation is drastically different, since
orientational dynamics are dominated by coherent evolution

of quantum rotors unperturbed by collisions. A quantum ex-
pression analogous to Eq. (2) uses the unitary time evolution
operator U0(t ) = e−iH0t/h̄ instead of the classical propagator
and an initial density matrix ρ (0)(−∞), instead of p0(�0),
namely,

G(�1t1|�0)p0(�0) → e− i
h̄ H0t1ρ (0)(−∞)e

i
h̄ H0t1 . (3)

As a consequence, the effect of rotational dynamics on 2DIR
line shapes (or branch structures in the case of rotationally
resolved spectra) are very different than in the liquid phase.
Furthermore, the standard liquid-phase polarization condi-
tions are no longer as useful and instead new ones, unique
to the gas phase, bring more clarity to the 2D spectra.

Here we provide a comprehensive treatment of the
theory of rotationally resolved two-dimensional infrared
spectroscopy. Our work builds on previous work studying
state-resolved four-wave mixing in gases [28–36] but is
more general in several ways, including the consideration of
rotationally coherent pathways (Feynman diagrams with rota-
tional coherence during the waiting time between the second
and third pulses) and the discovery of new polarization condi-
tions for suppressing branches of the 2DIR spectrum. In this
longer article, we aim to provide a comprehensive guide to the
theory of rotationally resolved 2DIR spectroscopy with many
example signals. In a shorter article [38], we present three
polarization conditions and demonstrate their power with sim-
ulations of multi-isotopologue spectra of methyl chloride.
Both papers are accompanied by a software package [39],
which can be used to simulate rotationally resolved 2DIR
spectra. In both papers, we restrict the discussion to third-
order excitations occurring within a single vibrational mode
in order to focus on the unique aspects of the spectrum pro-
duced by rotational-state resolution. However, our theory is
easily generalized to spectra involving multiple vibrational
modes with corresponding cross peaks, as often considered
in solution-phase 2DIR spectroscopy.

The paper is structured as follows: Sec. II presents the
theoretical framework of time-dependent perturbation theory.
Section III describes the general features and branch structure
of 2D IR spectra. Section IV describes the polarization depen-
dence of RR2DIR spectroscopy signals, while Sec. V applies
the presented theory to controlling molecular response with
polarization. Section VI describes rotational coherences and
time-dependent interference between pathways after excita-
tion with two broadband pulses, and finally Sec. VII concludes
the article. Appendix A provides details on spherical tensor
decomposition of the fourfold dipole operator, Appendix B
gives explicit formulas for the components of the polariza-
tion tensor, and Appendix C discusses the magic angle and
population-alignment canceling angle conditions in more de-
tail. Appendix D gives an example calculation of the R-factor
and compares the results to direct evaluation of the fourfold
dipole operator for a particular Feynman pathway.

II. MACROSCOPIC POLARIZATION AND
TIME-DEPENDENT PERTURBATION THEORY

The main purpose of this section is to relate the source
term in electromagnetic wave equation, the macroscopic
third-order polarization �P(3)(t ), to microscopic light-matter
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interaction and to establish the experimental conditions and
approximations within which our results are applicable.
Throughout the article, we exclusively use SI units. The third-
order polarization is related to the incident field by

�P(3)(�r, t )

=
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1 R(t3, t2, t1) : [ �E (�r, t − t3)

× �E (�r, t − t3 − t2) �E (�r, t − t3 − t2 − t1)], (4)

where R(t3, t2, t1) is the third-order nonlinear response func-
tion, which is a fourth-order tensor, and “:” denotes tensor
contraction—here threefold contraction with electric field
terms. The incident field is assumed here to take the form of
three optical pulses:

�E (�r, t ) = 1

2

3∑
i=1

ε̂iEi(�r, t ) + c.c., (5)

Ei(�r, t ) = Ei(t − τi )e
i[�ki ·�r−ωi (t−τi )], (6)

where c.c. is the complex conjugate of the preceding term, ε̂i

is unit polarization vector and Ei(t − τi ) is a slowly varying
envelope of the pulse centered at τi. The exponential term
specifies the carrier frequency, ωi, and the angular wave vec-
tor, �ki, which determines the propagation direction. We limit
our analysis to linearly polarized beams, expressed in terms of
the polarization vector:

ε̂i = cos θix̂ + sin θiŷ, (7)

where θi is the linear polarization angle. The presented for-
malism can be extended to elliptically polarized beams by
considering a more general expression for the polarization
vector:

ε̂i = cos θix̂ + eiδi sin θiŷ. (8)

Substituting Eq. (5) into Eq. (4) produces 63 terms, corre-
sponding to threefold product of six electric field terms from
Eq. (5). Here we’re considering only 23 terms corresponding
to the sample interacting with E1, E2, and E3 in a time-ordered
sequence. Picking one of these terms, we obtain

�P(3)(�r, t ) = 1

8
ei(�ks·�r−ωst )ei(κ1ω1τ1+κ2ω2τ2+κ3ω3τ3 )

∫∫∫ ∞

0
dt3 dt2 dt1 R(t3, t2, t1) : ε̃3̃ε2̃ε1Ẽ3(t − t3 − τ3)

× Ẽ2(t − t3 − t2 − τ2)Ẽ1(t − t3 − t2 − t1 − τ1)ei(κ3ω3+κ2ω2+κ1ω1 )t3 ei(κ2ω2+κ1ω1 )t2 eiκ1ω1t1 . (9)

The κi terms in the exponents are equal to ±1 and select
either positive or negative frequency components of fields
from Eq. (5). Tilded polarization vectors and pulse envelopes,
ε̃i and Ẽi(t ), implicitly depend on κi, and they are either equal
to ε̂i [Ei(t )] for κi = +1 or to ε̂∗

i [E∗
i (t)] for κi = −1. The wave

vector and frequency of molecular polarization are defined as

�ks = κ1�k1 + κ2�k2 + κ3�k3, (10)

ωs = κ1ω1 + κ2ω2 + κ3ω3. (11)

Following previous work [40,41], we label the directions as-
sociated with κ = (κ1, κ2, κ3) = (−1, 1, 1) as SI (rephasing),
with (1,−1, 1) as SII (nonrephasing) and with (1, 1,−1) as
SIII (double quantum).

The nonlinear response function for dipole interaction can
be compactly written as [5]

R(t3, t2, t1)

= −
( i

h̄

)3

Tr{�μ(t3)[�μ(t2), [�μ(t1), [�μ(0), ρ (0)(−∞)]]]},
(12)

where Tr{·} is the trace over internal molecular degrees of
freedom and ρ (0)(−∞) is the density matrix of the molecule
prior to the interaction. The interaction picture dipole operator
is given by

�μ(t ) = e
i
h̄ H0t �μe− i

h̄ H0t , (13)

where H0 is the field-free Hamiltonian. So far, the formal-
ism we have laid out is a standard treatment of third-order
spectroscopy, common to both liquid-phase and gas-phase
spectroscopy. In rotationally resolved 2DIR spectroscopy, we

will consider Feynman pathways involving different rotational
states, so we expand the density matrix in a basis of the
molecule’s rotational eigenstates:

ρ =
∑

α′,J ′,m′
α′′,J ′′,m′′

〈α′J ′M ′|ρ|α′′J ′′M ′′〉|α′′J ′′M ′′〉〈α′J ′M ′|, (14)

where J ′, J ′′ and M ′, M ′′ are the rotational quantum numbers
and their projections on laboratory-fixed axis, and α′, α′′ de-
note the remaining quantum state labels: projection of J on
the molecular axis (Km), vibrational and electronic state, etc.
The field-free and collision-free time evolution in this basis is
given trivially by

U0(t )|α′′J ′′M ′′〉〈α′J ′M ′|U †
0 (t )

= e− i
h̄ H0t |α′′J ′′M ′′〉〈α′J ′M ′|e i

h̄ H0t

= e− i
h̄ (Eα′′J′′M′′−Eα′J′M′ )t |α′′J ′′M ′′〉〈α′J ′M ′|. (15)

In thermal equilibrium the initial density matrix ρ (0)(−∞) is
a diagonal matrix of Boltzmann population factors:

ρ (0)(−∞) =
∑
α′′,J ′′

[ρ (0)(−∞)]α′′,J ′′

=
∑
α′′,J ′′

∑
M ′′

e−Eα′′J′′M′′ /kT

Q
|α′′J ′′M ′′〉〈α′′J ′′M ′′|,

(16)

where Q is the total internal partition function in-
cluding rotations and vibrations. The zeroth-order den-
sity matrix does not evolve prior to interaction with
light, i.e., U0(t )ρ (0)(−∞)U †

0 (t ) = ρ (0)(−∞). Expanding the
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commutators in Eq. (12) produces 23 sequences of threefold
ket-side or bra-side interactions. Selecting any one of them,
fixing a phase-matching condition [Eq. (10)] and substituting
some initial rotational energy level [ρ (0)(−∞)]αi,Ji for the full
density matrix ρ (0)(−∞) in Eq. (12) will produce a number of
Feynman pathways (i.e., sequences of excitations of the den-

sity matrix that can be described with a double-sided Feynman
diagram). The details will depend on the selected initial level
and on the range of levels accessible by dipole interaction
under specified phase-matching condition. Nevertheless, the
contribution to the molecular response from each third-order
rovibrational pathway can be written as

ε̃4 · [R(t3, t2, t1) : ε̃3̃ε2̃ε1]i jkl
α j J j ,αkJk ,αl Jl ,αiJi

= i
(−1)λ

h̄3 I (t1, t2, t3)
∑

Mi,Mj ,Mk ,Ml

ρ (0)(−∞)αi,Ji,Mi〈αiJiMi|ε̃i · �μi|α jJ jMj〉

× 〈α jJ jMj |ε̃ j · �μ j |αkJkMk〉〈αkJkMk|ε̃k · �μk|αl JlMl〉〈αl Jl Ml |ε̃l · �μl |αiJiMi〉, (17)

where the indices i jkl in the superscript are for beam polariza-
tion vectors, λ is equal to the number of bra-side interactions
in the selected sequence, and I (t1, t2, t3) contains purely the
time dependence of the response.

The time dependence of the response for each time delay
is given by Eq. (15). We additionally include phenomenolog-
ical population relaxation and coherence dephasing decay to
obtain

I (t1, t2, t3) = e−(i�1+
1 )t1 e−(i�2+
2 )t2 e−(i�3+
3 )t3 , (18)

where the molecular coherence frequencies �i are given by
energy differences from Eq. (15). In gas-phase molecular
samples, dephasing and relaxation are primarily caused by
collisions; therefore the 
i coefficients for population states
should be identified with inelastic collision rates and for co-
herences with collisional pressure broadening widths. In a
more complete description of the molecular response, a col-
lision operator would be included in the field-free operator
U0 to explicitly model collisional effects, including transfer
of population and coherence [42,43]. Collisional transfer of
coherence will produce additional off-diagonal peaks in the
spectrum and significantly increase the number of rovibra-
tional pathways that need to be considered. We further discuss
the appropriateness of neglecting collisional transfer of coher-
ence at the end of Sec. III, after describing the structure of
RR2DIR spectra.

With regards to shapes of individual resonances, a fully
rigorous treatment would additionally include the Doppler
effect and the effect of velocity-changing collisions. This can
be done by replacing the density matrix with the velocity
distribution of the density matrix and solving an appropriate
quantum Boltzmann equation [44]. Alternatively, more ap-
proximate models could be used that include only Doppler
broadening [45] or phenomenological models of velocity-
changing collisions [46]. Inclusion of Doppler broadening
would produce line shapes elongated along the diagonal [5].
At t2 = 0, the diagonal linewidth would be given by the Voigt
linewidth, whereas the antidiagonal linewidth would corre-
spond to the intrinsic Lorentzian width. With increasing t2 the
total line shape would symmetrize as the velocity-changing
collisions thermalize nonequilibrium velocity distribution. In-
deed, rotationally resolved 2DIR spectroscopy can be an
excellent platform for detailed studies of molecular collisions
and sophisticated line-shape theories. However, to focus on

the essential features of 2D spectra, here we adopt the simple
model of Eq. (18).

In the usual semi-impulsive limit, Ei(t − τi )→Eiδ(t − τi ),
the contribution to macroscopic polarization from a single
pathway can be compactly written as

ε̂4 · �P(3),i jkl
α j J j ,αkJk ,αl Jl ,αiJi

(�r, t3; t2, t1)

= i
(−1)λ

8h̄3 〈Oi jkl〉eikszI (t1, t2, t3)E1E2E3, (19)

where the previous integrations over times between interac-
tions t1, t2, t3 have collapsed to times between pulses in the
impulsive limit, with t3 = t − τ3, t2 = τ3 − τ2, t1 = τ2 − τ1 in
Eq. (19) and going forward. The Ei are the areas of electric
field pulse envelopes, and the fourfold sum over degenerate
M-states has been compactly represented with the expectation
value of an operator 〈Oi jkl〉 for reasons that will become
apparent in Sec. IV. Assuming negligible depletion of the first
two pulses, weak absorption of the third pulse and perfect
phase matching [47], the absorption coefficient for the probe
beam is given by

αI (ω3; t1, t2) = N

π
E1E2A(3)(t1, t2, ω3), (20)

where N is the number density of molecules, and
A(3)(t1, t2, ω3) is the amplitude given by a sum over the con-
tribution of each Feynman pathway to the spectrum:

A(3)(t1, t2, ω3) =
∑

pathways

I (t1, t2, ω3)S(3), (21)

with pathway amplitudes S(3):

S(3) = (−1)λπω3

8nε0h̄3c
〈Oi jkl〉. (22)

It is easier to illustrate the strength various resonances in the
2D spectrum using the resonance amplitude

A(3)
�1,�3

(t2) =
∑

pathways

S(3)e−i�2t2 . (23)

The discrete resonance amplitudes A(3)
�1,�3

(t2) do not contain
line-shape information. They do, however, capture the t2 de-
pendence due to rotational coherences.

In the following, we specialize our description to rovibra-
tional transitions within a single vibrational mode. The label
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FIG. 1. Diagrams of third-order rovibrational pathways phase-
matched in direction: SI , first column; S∗

I , second column; SII , third
column; SIII , fourth column. First row contains pathways not in a
rotationally coherent (RC) state during waiting time. Second row
contains RC pathways.

for remaining quantum numbers becomes α ≡ ην, where ν

is the vibrational quantum number, and we will henceforth
omit the η label. Any particular third-order pathway starting
in the ground vibrational state can in this case be represented
by a double-sided Feynman diagram such as those in Fig. 1.
The double-sided diagrams represent time evolution of the
density matrix and follow the usual conventions [5]: Time
flows from bottom to top; solid arrows represent interactions
with the light fields (̃ε1, ε̃2 or ε̃3, in order) and a dashed arrow
represents taking the expectation value (̃ε4); arrow on the left
(right) represents action of the dipole operator on the ket (bra)
part of the density matrix; arrows pointed to the right stand
for the positive frequency part of the field (ε̂i), and arrows
pointed to the left stand for the negative frequencies (ε̂∗

i ).

Within the rotating-wave approximation that we use here,
absorption corresponds to positive-frequency ket-side interac-
tion or negative-frequency bra-side interaction, and vice versa
for emission [48].

It is useful to adopt some compact notations for labeling
pathways. For individual density matrix elements within a
pathway, we use the notation previously introduced by Man-
dal et al. [6]. In this shorthand, the initial rovibrational state
is labeled by |ν = νi, J = Ji〉 ≡ |0〉, and following states are
identified by the vibrational quantum number and the differ-
ence in angular referenced to initial state, e.g., |ν = 1, J =
Ji − 1〉 ≡ |1P〉, |ν = 0, J = Ji + 2〉 ≡ |0S〉, etc., where the
rotational letters follow standard spectroscopic notation [49].
In many cases, it is useful to classify pathways instead by
the changes in angular momentum occurring at each step. For
this, we identify each pathway by the three dipole transitions
that produce it. Each step is assigned a term consisting of
a letter, P for �J = −1, Q for �J = 0 and R for �J =
+1, depending on the J-number difference between higher
and lower vibrational state. |�J| > 1 is not allowed in the
dipole approximation, so the step labels are restricted to P,
Q, and R, whereas density matrix elements can also include
S and O, since these states can be reached after multiple
dipole interactions. For the step-based pathway labeling, if
the upper vibrational state lies above the first excited state,
then the rotational transition letter is preceded by the larger
vibrational quantum number, e.g., 2P. Bra-side transitions are
distinguished from ket-side ones by marking the term with an
overline representing complex conjugation, e.g., 2P. Both no-
tations will allow us to discuss more the features of RR2DIR
spectra that depend on the changes of rotational quantum
numbers but not on their specific values. We show the cor-
respondence between double-sided diagrams, pathway labels,
and perturbation theory expressions by writing out Eq. (17)
for the PQ2Q pathway, also shown in Fig. 1:

ε̃4 · [R(t3, t2, t1) : ε̃3̃ε2̃ε1]PQ2Q = i
(−1)λ

h̄3 e−(i�|1P〉〈0|+
|1P〉〈0| )t1 e−(i�|1P〉〈1Q|+
|1P〉〈1Q| )t2 e−(i�|1P〉〈2Q|+
|1P〉〈2Q| )t3
∑

Mi,Mj ,Mk ,Ml

ρ (0)(−∞)0,Ji,Mi

× 〈0, Ji, Mi|ε̂∗
2 · �μ2|1, Ji, Mj〉〈1, Ji, Mj |ε̂∗

3 · �μ3|2, Ji, Mk〉〈2, Ji, Mk|ε̂4 · �μ4|1, Ji − 1, Ml〉
× 〈1, Ji − 1, Ml |ε̂1 · �μ1|0, Ji, Mi〉. (24)

Figure 1 illustrates the usage of both notations on eight
third-order pathways. We also associate each pathway with
an Ri, i = 1, . . . , 8, label following the convention in Hamm
and Zanni [5]. In Fig. 1, we show only pathways starting with
P-branch excitation to minimize the differences between them
and to simplify the discussion below. For reference, Fig. S1
in the Supplemental Material [37] shows analogous pathways
starting with R-branch excitation. Comparing PPP and PPP
or PQ2Q and PQ2Q pathways, it is clear that conjugating a
pathway corresponds to conjugating all the terms of its label.
Rotationally coherent (RC) pathways (bottom row) are those
for which ket and bra sides of the density matrix element
produced by the second interaction have different rotational
quantum numbers. For SI and SII , only RC pathways are in a
coherent state during waiting time, while the remaining path-

ways are in a population state. Using the three-letter notation
for pathways, all RC ones have different first two terms, while
all non-RC ones have the same two terms; see PPP and PPP
vs PQ2Q and PRR in Fig. 1. For SIII , all pathways oscillate
at overtone frequency during waiting time, but the subset that
is also RC isn’t so trivially distinguishable by the three-letter
notation.

Rotationally coherent pathways unbalance rephasing (SI )
and nonrephasing (SII ) pathways, preventing acquisition of
purely absorptive spectra without resorting to the magic angle
(MA) condition [38]. This can be explained most easily by
comparing S∗

I with SII pathways shown in Fig. 1. The non-RC
PPP and PPP pathways differ only by the conjugate of the
last transition and the sign of the third molecular coherence,
�3 = �|0〉〈1P| = −�|1P〉〈0|, and constitute a balanced pair. For
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(a) (c)

(b) (d)

FIG. 2. Correspondence between S∗
I and SII RC pathways. Top

row (a, c) shows two pairs of S∗
I and SII pathways connected by

the bijective map. Bottom row (b, d) shows the associated transi-
tion matrix elements. Dashed rectangles highlight the change of �3

coherences in (a) and (c) and of transition matrix elements in (b)
and (d).

all S∗
I (SII ) non-RC pathways we can obtain the balancing

SII (S∗
I ) counterpart by conjugating the last transition term.

Note that to transform PPP into PPP one needs to conjugate
the first two interactions instead of just the ω3 one, which
makes the symmetry less apparent and which is the reason
why in the rest of the article we discuss S∗

I instead of SI

pathways.
As for RC pathways, S∗

I pathways can be mapped bijec-
tively to SII RC pathways by conjugating the last term of the
label. Additionally, if the term contains letter Q, then the letter
is left unchanged, but if the letter is R, then it is replaced
with P and vice versa. For example, the PQ2Q pathway be-
comes PQ2Q and the �3 coherence |1P〉〈2Q| is replaced with
|2P〉〈1Q| [Fig. 2(a)]. The PRR pathway becomes PRP and
|1P〉〈0| is replaced with |0〉〈1R| [Fig. 2(c)]. For both RC pairs,
the �3 coherences are not merely conjugates of each other as
for non-RC pathways, with their frequencies differing only
in sign. The |1P〉〈2Q| coherence lies in the R branch, while
|2P〉〈1Q| lies in the P branch and similarly for the other pair.
Moreover, while PRR and PRP contain the same set of tran-
sitions but in different sequence [see Fig. 2(d)], this is not the
case for pathways PQ2Q and PQ2Q; see Fig. 2(d). It is worth
noting that the pathway unbalancing described here is entirely
analogous to the presence of so-called diagonal cross-peaks
in spectra of coupled anharmonic modes [5], except here
only a single vibrational mode is involved. Further differences
between spectra phase matched in SI and SII direction will
be discussed in Sec. III. The spectral separation of SI and SII

RC pathways will be further illustrated when discussing the
polarization decomposition of third-order pathways in Sec. V.

Restricting ourselves to symmetric top parallel transitions
and assuming the usual selection rules—�J = ±1 for J = 0
or Km = 0 and �J = 0,±1 otherwise—we obtain 152 third-
order pathways contributing to macroscopic polarization for
each initial |η, νi = 0, Ji〉 state. Explicitly summing over de-
generate Ma states in Eq. (17) would increase this number
by a factor of ∼33(2Ji + 1), which is prevented by the use
of spherical tensor operator techniques discussed in Sec. IV.
Categorizing the pathways by phase-matching direction, there
are 57 for SI and SII directions each and 38 for SIII . For

FIG. 3. 2D resonance structure of diatomic molecule transitions
based on the CO vibrational mode. The figure shows only path-
ways phase-matched in SII direction. Branches of 2D resonances
are labeled in analogy to usual linear spectroscopy labeling of rovi-
brational transitions. Blue and red thin solid lines connecting the
resonances are drawn as guides for the eye. The shaded regions
highlight all resonances obtained starting from |0〉 = |ν = 0, Ji = 1〉.

each �ks, each pathway can be assigned to a 2D resonance.
For SI there are 28 distinct (�1,�3) pairs, for SII —34, and
for SIII —28. Clearly, multiple pathways may contribute to the
same 2D resonance. When several of these undergo rotational
coherence evolution during waiting time, we will observe
interference between them, as illustrated by several examples
in Sec. VI.

III. BRANCH STRUCTURE OF 2D SPECTRA

We illustrate the structure of RR2DIR spectra with 2D
resonance maps of CO (Fig. 3) and CH3

35Cl ν3 (Fig. 4).
To generate 2D resonance maps we extracted the required
energy levels, reduced matrix elements, quantum state degen-
eracies, and partition functions for these molecules from the
HITRAN database [50–53]. We assume thermal equilibrium
at T = 296 K and include pathways with Ji values up to 37
for CH3

35Cl and up to 15 for CO. The figures show resonance
amplitudes, Eq. (23), limited to the SII direction. Similar to
notation for pathways described in Sec. II, 2D branches are
labeled using the standard spectroscopic notation for rovibra-
tional transitions, except here the labels are determined by
the coherences and not by the transitions that produce them.
Any given pathway can be associated with a Y-X branch by
examining its �1 and �3 coherences. The branch label is
determined by the J-number difference between coherences’
higher vibrational state and lower vibrational state. For exam-
ple, PPP, PPP, and PPP in Fig. 1 have as �1 and �3 coherences
either |0〉〈1P| or |1P〉〈0|, hence they lie in the P-P branch, as
well as PRR and P2P2P pathways. Perhaps less intuitively,
the PQ2Q pathway with (�1,�3) = (|1P〉〈0|, |1P〉〈2Q|) lies
in the P-2R branch since the J-difference between the higher
vibrational state, 〈2Q|, and the lower one, |1P〉, is +1. We en-
courage the reader to further explore the structure of RR2DIR
spectra by using our PEAK_PICKER computer application [39],
which displays double-sided diagrams and other relevant in-
formation associated with 2D resonances.
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FIG. 4. 2D resonance structure of symmetric top transitions
based on the CH3Cl ν3 mode. Only pathways phase matched in the
SII direction are shown. (a) Branches of 2D resonances are labeled
in analogy to usual linear spectroscopy labeling of rovibrational
transitions. Blue and red thin solid lines connecting the resonances
are drawn as guides for the eye. (b) The congestion is reduced within
the R-P branch because J and Km dependence evolves along different
spectral axes. (c) The diagonal R-R branch is highly congested,
similar to linear spectra. (d) All Q-X and X-Q branches split into
two closely lying subbranches. (e) Unlike the Q-Q branch, the Q-2Q
branch splits into three subbranches.

The simpler example of CO branch structure is shown
in Fig. 3. For easier interpretation, resonances within each
branch are connected by guiding lines. Moreover, all the
resonances obtained starting from |ν = 0, Ji = 1〉 state are
highlighted by the shaded regions. The branch structure can
be thought to grow outward from the shaded “seed” pat-
tern with increasing Ji. The diagonal branches P-P and R-R
include (one-color) degenerate four-wave mixing (DFWM)
and two-color pathways. Each resonance in these branches is
associated with two DFWM pathways and two two-color RC
pathways. The antidiagonal branches R-P and P-R have one
pathway per each peak and are split into two subbranches.
The subbranches can be distinguished by specifying �3 co-
herences relative to common �1 coherence (and Ji reference
number). For R-P, these are |1R〉〈0S| (lower frequency, 1)
and |1P〉〈0| (higher frequency, 2), and in the same order
for P-R, |1P〉〈0O| and |1R〉〈0|. Neither of the subbranches
includes RC pathways. The lower frequency subbranches in-
clude stimulated-emission pumping (SEP) pathways with �2

in higher vibrational manifold, whereas the higher frequency
subbranches include ground-state hole-burning (GSHB) path-
ways.

The excited-state absorption (ESA) resonances lie in R-
2P, P-2R, R-2R, P-2P branches, of which the latter two
are split into subbranches. The lower frequency subbranches
(3) are RC and involve three different excitation wave-
lengths, whereas the higher frequency ones (4) are two-color
and non-RC. For R-2R, they are �3 = |2Q〉〈1P| (lower)
and �3 = |2S〉〈1R| (higher); for P-2P, they are |2Q〉〈1R|
and |2O〉〈1P|, in the same order. As shown in Fig. 3, the
spacing between subbranches in P-2P, R-2R, P-R, and R-
P branches is approximately 4B, where B is the rotational
constant.

The resonance structure of symmetric tops is more compli-
cated than that of linear rotors; see Fig. 4. On top of the double
“x”-shaped structure, there is additional double “+”-shaped
structure due to Q-X and Y-Q branches. Additionally, there
are two branches located at the band centers, Q-Q and Q-2Q.
Moreover, transitions for different Km values produce locally
diagonal structures for each Ji value. The diagonal branches
P-P, Q-Q and R-R are the most highly congested in terms of
the number of pathways per each peak and the spectral dis-
tance between peaks [see Fig. 4(c)]. Each resonance in these
branches is associated with six individual pathways that differ
by the state they occupy during waiting time, with four of
them being RC. See Fig. S2 in the Supplemental Material [37]
for all pathways contributing to an R-R resonance.

The ESA shifted diagonal branches, P-2P, Q-2Q and R-2R,
are similarly spectrally congested, as can be seen in Fig. 4(a)
for P-2P and R-2R, and in Fig. 4(e) for Q-2Q. Compared
to linear rotor subbranches, R-2R and P-2P contain addi-
tional middle subbranches with �3 = |2R〉〈1Q| and |2P〉〈1Q|,
respectively. Both subbranches are RC. The full Feynman
diagrams for R-2R branch are shown in Fig. S2 in the Sup-
plemental Material [37]. The new Q-2Q branch is also split
into three with �3 coherences from lower to higher frequency:
|2R〉〈1R|, |2Q〉〈1Q|, |2P〉〈1P|. Here the first and the last one
are RC. The spacing between subbranches in Q-2Q is given
by the spacing between Q(Ji + 1), Q(Ji ), Q(Ji − 1) lines in
2 ← 1 hot band, which is due to centrifugal distortion.

In contrast to (shifted) diagonal branches, the antidiagonal
P-R, R-P as highlighted in Fig. 4(b), and the ESA P-2R, R-2P
branches are least spectrally congested, especially the latter
pair, which is not split into subbranches. This is because the
locally diagonal Km structures are clearly separated along the
antidiagonal branches. The improved spectral separation off
the diagonal shows the potential of RR2DIR spectroscopy
to separate components of complex gas mixtures. Within the
“+”-shaped structure, the clusters of resonances with different
Ji quantum numbers are also well separated; see Fig. 4(d). In
all cases the branches are split into two subbranches that are
only weakly shifted from each other by centrifugal distortion.
For example, for the R-2Q branch the �3 split is between
blue-shifted |2Q〉〈1Q| coherence and red-shifted |2R〉〈1R|
coherence, and analogously for P-2Q between blue-shifted
|2P〉〈1P| coherence and red-shifted |2Q〉〈1Q| coherence. For
X-2Q and Q-2X branches each resonance corresponds to a
single pathway, with the blue-shifted subbranches being RC
for Q-2P and R-2Q branches and red-shifted subbranches
being RC for P-2Q and Q-2R branches. In Q-X, X-Q branches
each resonance comprises two pathways with one of them
being RC.
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FIG. 5. All resonances of CH3
35Cl ν3 mode starting from

|ν = 0, Ji = 6, Km = 1〉 state. (a) Resonances for the SI phase-
matching direction and (b) for the SII direction. The labels at each
resonance show the number of pathways contributing to the reso-
nance; the numbers in parentheses are the numbers of RC pathways.

Figure 5 shows all resonances of CH3
35Cl ν3 mode start-

ing from the |ν = 0, Ji = 6, Km = 1〉 state [54] for SI (a) and
SII (b) phase-matching directions. Figure S3 in the Supple-
mental Material [37] shows the same for SIII . The label at
each resonance gives the number of pathways contributing to
it and the number of RC pathways among them in parentheses.
For example, 2(2) indicates a purely RC resonance compris-
ing two pathways. Note that in the cases where the splitting
between subbranches is very weak, it may appear that a single
resonance has multiple labels. See, for example, the SII Q-2Q
branch in Fig. 5(b), which was noted previously to be split
into three closely spaced subbranches [Fig. 4(e)]. Comparing
Figs. 5(a) and 5(b) shows that for both phase-matching con-
ditions the number of branches is the same, but the splitting
into subbranches and the number of pathways per resonance is
different. For example, for SI it is the Q-Q branch that is split
into three subbranches, whereas for SII it is the Q-2Q branch.
More apparently, in the SI direction the R-2R branch contains
only one subbranch, whereas in the SII direction it contains
three. The figure can also be used to verify that removing all
RC pathways would produce the same branch structures in
both directions, as was noted when discussing unbalancing of
pathways in Sec. II.

As indicated in Sec. II, collisional transfer of coherence
will modify the structure of RR2DIR spectra by producing
additional off-diagonal resonances. The contribution of these
resonances to the total signal is expected to be low as long
as the linewidths are significantly below the spacing between

resonances and the experimental delay t2 is kept significantly
below the coherence relaxation time [t2 � 1/(γ p), where

 = γ p]. For CO in air at T = 296 K with B ≈ 1.93 cm−1,
this implies p � 2B/γ ≈ 51 atm and t2 � 440 ps (at p =
1 atm). For CH3Cl we can distinguish two distinct regimes of
coherence transfer. Because of small spacing between reso-
nances within Km structures (˜0.05 cm−1) and within Q-Q and
Q-2Q branches (see corner panels in Fig. 4) coherence transfer
will be significant even at atmospheric pressure, but only
within these separated clusters of closely lying resonances. On
the other hand, coherence transfer between resonances with
different Ji numbers outside of Q-Q and Q-2Q branches is
expected to be weak as long as p � 32 atm and t2 � 274 ps
(at 1 atm).

IV. POLARIZATION DEPENDENCE
OF THE MOLECULAR RESPONSE

In principle, the polarization-dependent response can be
obtained for each pathway individually by specifying its
rovibrational quantum numbers, choosing beam polarizations
and performing the sum over degenerate rotational states in
Eq. (17). However, the expression in its current form obscures
the fact that the polarization dependence is not unique to
each pathway. In fact, in the limit of high Ji quantum number
there are only several distinct polarization response functions,
which can be used to separate all the pathways considered
here into disjoint sets. These sets can then be selectively
suppressed with specific polarization conditions, as shown in
Sec. V. To perform this classification, Eq. (17) first needs
to be factorized into vibrational, angular momentum and po-
larization terms. This task is facilitated by expressing the
polarization-dependent molecular response, Eq. (17), in terms
of the expectation value of the fourfold dipole interaction
operator Oi jkl :

ε̃4 · [R(t3, t2, t1) : ε̃3̃ε2̃ε1]νi,Ji = i
(−1)λ

h̄3 I (t1, t2, t3)〈Oi jkl〉,
(25)

with

〈Oi jkl〉 = Tr(Oi jkl [ρ
(0)(−∞)]νi,Ji ). (26)

The Oi jkl operator is defined as

Oi jkl = (̃εi · �μi )Pj (̃ε j · �μ j )Pk (̃εk · �μk )Pl (̃εl · �μl ), (27)

where Pj is the normalized projection operator onto (2J+1)-
dimensional rovibrational subspace:

Pα =
∑
Mα

|ναJαMα〉〈ναJαMα|. (28)

Subsequently, the density matrix and the Oi jkl operator are
expressed in terms of spherical tensors and spherical tensor
operators. With a judicious use of spherical tensor algebra
and angular momentum recoupling, 〈Oi jkl〉 is formally de-
composed into a form that enables classification of pathways
with regard to their polarization dependence. This decompo-
sition was previously performed by Williams et al. [28,32]
and Vaccaro et al. [33,55], and the details are also provided in

042819-8



THEORY OF ROTATIONALLY RESOLVED … PHYSICAL REVIEW A 106, 042819 (2022)

Appendix A. The expectation value is expressed as

〈Oi jkl〉 = NνiJi

N

1√
2Ji + 1

〈νiJi‖T (0)(μ)‖νiJi〉R(0)
0 (ε; J). (29)

This factorization clearly separates the transition dipole
amplitude factor, 〈νiJi‖T (0)(μ)‖νiJi〉, from the polarization-
angular momentum factor, R(0)

0 (ε; J). For brevity, dipole
operators, polarization vectors and rotational angular momen-
tum numbers were collected into compound arguments:

μ = ( �μi, �μ j, �μk, �μl ), ε = (ε̃i, ε̃ j, ε̃k, ε̃l ), J = (Ji, Jj, Jk, Jl ).

The transition dipole amplitude factor is given by

〈νiJi‖T (0)(μ)‖νiJi〉 = 〈νiJi‖�μ1‖ν1J1〉〈ν1J1‖�μ2‖ν2J2〉
× 〈ν2J2‖�μ3‖ν3J3〉〈ν3J3‖�μ4‖νiJi〉,

(30)

which is a fourfold product of reduced matrix elements of
individual step transitions. Assuming complete separation of
molecular rotational and vibrational degrees of freedom, the
reduced matrix element can be expressed as

〈ν ′J ′‖�μ‖ν ′′J ′′〉 = ±Spol

√
S(J ′, J ′′)〈ν ′| �μ|ν ′′〉, (31)

where Spol = 1/
√

3 for linearly polarized light and Spol = 1
for unpolarized light. S(J ′, J ′′) is the Hönl-London factor and
〈ν ′| �μ|ν ′′〉 is the vibrational band intensity. The reduced matrix
element is positive for R- and Q-branch transitions and neg-
ative for P-branch transitions. Its magnitude is also related to
the Einstein A coefficient by

|〈ν ′J ′‖�μ‖ν ′′J ′′〉|2 = Aν ′J ′→ν ′′J ′′
3ε0hc3(2J ′ + 1)

16π3ν3
ν ′J ′,ν ′′J ′′

. (32)

The polarization-angular momentum factor is given by the
sum

R(0)
0 (ε; J) =

2∑
k=0

T (0)
0 (ε; k, k)G(J; k), (33)

where T (0)
0 (ε; k, k) is the scalar component of the polarization

tensor composed of beam and detection polarizations; see
Eq. (A6) and Appendix. B. The G-factor in Eq. (33) encap-
sulates the dependence of molecular response on J rotational
quantum numbers:

G(Ji, Jj, Jk, Jl ; k)

= (2k + 1)

{
k k 0
Ji Ji Jk

}{
1 1 k
Jk Ji Jj

}{
1 1 k
Jk Ji Jl

}
,

(34)

where the brackets {· · · } denote Wigner 6j coefficients. The
symmetry of Wigner 6j coefficients makes the quantity invari-
ant under exchange of Jl with Jj . It is convenient to express Jj ,
Jk , Jl arguments as Jα = Ji + �Jα . With this convention and
the usual dipole transition selection rules we obtain 19 differ-
ent argument sequences of J values for each k value. Using
analytical formulas for simple cases of Wigner 6j symbols,
compact formulas for G-factors can be derived as a function of
Ji and k; see Tables S3 and S4 in Supplemental Material [37].

An explicit expression for R(0)
0 (ε; J) is obtained by substi-

tuting Eqs. (34) and (B4)–(B6) into Eq. (33). The resulting
formula can be factored into a relatively simple and general
form:

R(0)
0 (ε; J) = c00

60(2Ji + 1)3/2
[c12 cos(θ1 + θ2 − θ3 − θ4)

+ c13 cos(θ1 − θ2 + θ3 − θ4)

+ c14 cos(θ1 − θ2 − θ3 + θ4)]. (35)

The cαβ coefficients originate from the G-factors in Eq. (33)
and in general depend on Ji. To investigate polarization de-
pendence of third-order rovibrational signals within a single
vibrational mode, we considered all the resonant pathways
having at its root a rotational state Ji in the ground vibra-
tional manifold and assigned to them corresponding R-factors.
Collecting the pathways into classes associated with the same
R-factor, we obtain 39 distinct classes. The complete table of
labels identifying the pathways and cαβ coefficients is pro-
vided as Table S5 in the Supplemental Material [37].

It was shown previously that cαβ coefficients only weakly
depend on Ji [35], therefore instead of considering polariza-
tion dependence of individual pathways or 2D resonances, we
can investigate the dependence of whole branches of rovibra-
tional transitions. The transition to Ji-independent molecular
response is effected by defining a reduced R-factor and taking
the limit

R (0)
0 (ε; J) = lim

Ji→∞
(2Ji + 1)3/2R(0)

0 (ε; J). (36)

The high-J limit greatly simplifies classification of pathways
by reducing the previous 39 classes to only seven, which are
defined by the coefficients in Table I. We label these classes
�1–�7. In all cases c00 = 1. For brevity, in Table I we use
degenerate pathway labels, where X→ X, X, 2X, 2X. For
example, P2P2P, P2PP → PPP, PRR → PRR, RP2R →
RPR.

We now present the decomposition of CH3
35Cl 2D res-

onance maps with regard to polarization classes in the
high-J limit. Figures 6 and 7 show the resonance amplitudes
A(3)

�1,�3
(t2 = 1 ps), Eq. (23), for SI and SII directions, respec-

tively. In both figures, panel (a) shows the total amplitudes
and the remaining panels show contributions limited to the
seven different classes of pathways in Table I. The resonances
involving Q-type transitions, �2, �3, �7, are relatively weak
in CH3Cl, therefore they were multiplied by 5 to make them
more clearly visible.

Here we discuss several general features of the polariza-
tion decomposition. A key point is that this decomposition
separates all RC pathways from non-RC pathways. The
RC pathways are �1, �2, �3, which is evident from the
modulation along the branches for these classes due to the
t2-dependent phase factors in Eq. (23). Comparing classes
�1 and �2 in Figs. 6 and 7, it is clear that RC resonances
mostly do not overlap spectrally for different phase-matching
directions, as was discussed in Sec. II. As an exception, SI and
SII pathways in �3 class do overlap, but their pathway intensi-
ties are different. Each of the three phase-matching directions
contains pathways associated with all polarization classes,
therefore pathway selection with phase cycling is orthog-
onal and complementary to polarization control techniques
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TABLE I. Coefficients defining polarization-angular momentum dependence factors in the high-J limit, R (0)
0 (ε; J). See Eqs. (35) and (36).

Pathway label
Class SI SII SIII c12 c13 c14

�1 PRP, RPR PRR, RPP PPP, RRR 6 1 1
�2 PQQ, QPR, QRP, RQQ PQQ, QPP, QRR, RQQ PQQ, QPP, QRR, RQQ −3 −3 2
�3 PQP, QPQ, QRQ, RQR PQR, QPQ, QRQ, RQP PQP, QPQ, QRQ, RQR −3 2 −3
�4 QQQ QQQ QQQ 4 4 4
�5 PPR, RRP PPP, RRR PRR, RPP 1 6 1
�6 PPP, RRR PPR, RRP PRP, RPR 1 1 6
�7 PPQ, QQP, QQR, RRQ PPQ, QQP, QQR, RRQ PRQ, QQP, QQR, RPQ 2 −3 −3

discussed in the next section. It is worth pointing out that when
Q-type transitions are forbidden, e.g., in diatomic molecules
or for stretching modes of linear molecules, there are only
three polarization classes, �1, �5, and �6.

V. SUPPRESSING PATHWAYS WITH POLARIZATION

Given the variety of applications of 2D IR spectroscopy,
it would be advantageous to have the ability to suppress any
possible subset of polarization classes, in order to measure
only the pathways relevant to the physical or chemical phe-
nomena under study. From another perspective, measurements
of the molecular response under different polarization con-
ditions, combined with a priori knowledge of the pathways
suppressed under these conditions, provide additional con-
straints for the global analysis [56,57] performed on the whole
dataset. In Ref. [38] we present several polarization conditions
that significantly improve signal separation in RR2DIR spec-
tra, especially when the experimental signal is additionally
restricted to pathways phase matched in a particular direction.
These conditions and others that suppress specific pathways
can be obtained by substituting appropriate cαβ coefficients

from Table I and finding the root of Eq. (35). Since R(0)
0 is a

scalar and invariant with respect to rotation, there are only
three independent angles. Assuming θ1 = 0, the root with
respect to θ4 is

θ4 = − tan−1

(
c12 cos θ

(−)
23 + c13 cos θ

(−)
23 + c14 cos θ

(+)
23

c12 cos θ
(−)
23 − c13 cos θ

(−)
23 + c14 cos θ

(+)
23

)
,

(37)

where θ
(±)
23 = θ2 ± θ3. Specific polarization conditions can be

obtained by selecting a subset of polarization classes and find-
ing their common root using Eq. (37). Alternatively, one can
plot R-factor values as a function of polarization angles and
find the common roots graphically. The former can be done
easily by calling appropriate functions in the ROTSIM2D library
and latter by using the POLARIZATIONS tool [39]. Particularly
useful for suppression are two angles, the so-called magic
angle already widely used in nonlinear spectroscopy

θMA = tan−1
√

2 ≈ 54.74◦, (38)

FIG. 6. Polarization decomposition of third-order response of methyl chloride ν3 vibrational mode phase-matched in the SI direction. The
plotted quantity is the 2D resonance amplitude defined in Eq. (23). (a) Total response; (b)–(h) subsets of response associated with polarization
classes �1–�7 (see Table I).
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FIG. 7. Polarization decomposition of third-order response of methyl chloride ν3 vibrational mode phase-matched in the SII direction. The
plotted quantity is the 2D resonance amplitude defined in Eq. (23). (a) total response; (b)–(h) subsets of response associated with polarization
classes �1–�7 (see Table I).

and a new angle we introduce and name the population-
alignment canceling angle

θPAC = sin−1 2√
7

≈ 49.11◦. (39)

In Ref. [38] we present several example of third-order ampli-
tude spectra, where we use polarization conditions with these
angles to suppress different subsets of polarization classes.
Here we relate the polarization conditions to the 2D res-
onance maps of Figs. 6 and 7. It is well known that the
conventional MA condition (θ1, θ2, θ3, θ4) = (0, 0, θMA, θMA)
suppresses the molecular-orientation dependence of nonlinear
spectroscopy signals. In the current context of rotationally
resolved spectra, this can be better explained by noting that
the MA condition zeros precisely those pathways that include
RC, which coherently evolve during t2, i.e., classes �1, �2

and �3.
In contrast, no polarization condition exactly zeros all

non-RC pathways. However, strong suppression is attain-
able with several new polarization conditions we intro-
duce. The polarization-alignment canceling (PAC) condition,
(0, 0, θPAC,−θPAC), suppresses �5 and �6 classes; the middle
MA condition, (0, θMA, θMA, 0), suppresses �3, �6 and �7;
and the middle PAC condition, (0, θPAC,−θPAC, 0), suppresses
�1 and �5 classes.

In Appendix C we show that the PAC condition suppresses
the orientation part and cancels the population with align-
ment component of the response for �5 and �6 classes. The
same pathways can be eliminated by any sequence of angles
for which θ1 = θ2 = 0 and tan θ3 = −(4/3) cot θ4, but pick-
ing θ3 = θPAC = sin−1(2/

√
7) maximizes the magnitude of

unsuppressed pathways. Analogously, a generalized MA con-
dition can be defined as tan θ4 = 2 cot θ3, but the conventional
condition maximizes the intensity of non-RC pathways.

In addition to the polarization conditions introduced in
Ref. [38], here we introduce two additional conditions:

the alternating MA condition, (0, θMA, 0, θMA), and alternat-
ing PAC condition, (0, θPAC, 0, θPAC). Addition of these two
conditions to the previous four enables total control over
polarization-dependent response of diatomic molecules and
stretching modes of linear molecules, which are limited to
classes �1, �5 and �6. This can be seen in Table II, where we
summarize the effect of polarization conditions on RR2DIR
spectra. The conditions using the MA remove any individual
class, whereas the PAC conditions suppress any given two out
of these three classes.

Vaccarro and coworkers previously derived different
polarizations conditions of the form (π/2, π/4, π/2, θ4),
suppressing parts of the molecular response [33,35]. The key
difference between the cited conditions and those presented
here and in Ref. [38] is that the former were tailored
for degenerate FWM and two-color stimulated-emission
pumping (TC-SEP) experiments with narrowband light
sources, which did not probe RC pathways. For example, the
θ4 = − tan−1(1/3) condition suppresses QQQ pathways but
does not suppress QPP and QRR pathways, while all of them
contribute to Q-Q and Q-2Q branches. The θ4 = − tan−1(3/4)

TABLE II. Summary of the effects of special polarization con-
ditions on the polarization classes in the high-J limit. The values in
the table are the reduced R-factors, Eq. (36), for specified class and
condition.

Condition �1 �5 �6 �2 �3 �4 �7

MA 0 1/9 1/9 0 0 1/9 −1/9
Alt. MA 1/9 0 1/9 0 −1/9 1/9 0
Middle MA 1/9 1/9 0 −1/9 0 1/9 0
PAC 2/21 0 0 −1/21 −1/21 1/21 1/21
Middle PAC 0 0 2/21 1/21 −1/21 1/21 −1/21
Alt. PAC 0 2/21 0 −1/21 1/21 1/21 −1/21
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TABLE III. Amplitudes of SII pathway classes suppressed un-
der (0, θMA, θMA, 0) polarization condition relative to (0,0,0,0)
polarization.

Class Pathway Relative amplitude

PQR, PQR, QRQ, QPQ,
�3 0

QPQ, QRQ, RQP, RQP
PQ2R, QP2Q −5/[3(Ji − 1)]
QR2Q, RQ2P 5/[3(Ji + 2)]

PPQ, PPQ, QQP, QQR,
0

QQR, QQP, RRQ, RRQ
PP2Q 5/[3(Ji + 1)]

�7 QQ2P −5/[3(Ji − 1)]
QQ2R 5/[3(Ji + 2)]
QQ2R −5/3Ji

PPR, PPR, RRP, RRP 0
�6 PP2R 5/[3(4J2

i + 1)]
RR2P 5/[3(4J2

i + 8Ji + 5)]

condition suppresses �1 and �6 classes, just as the alternating
PAC condition, and θ4 = tan−1(1/2) suppresses �2, �5 and
�7 classes, just as the alternating MA condition. In this
case the advantage of the alternating conditions is that they
additionally maximize the amplitude of the remaining
pathways. We can also consider the effect of
(π/4,−π/4, π/2, 0) polarization condition commonly used
in liquid-phase experiments, which removes single-mode
diagonal response [5,27]. In the gas phase, the condition
suppresses classes �1, �4 and �7, which does not simplify
the spectrum since all branches remain present. On the
other hand, it ensures that the sum over pathway amplitudes
phase-matched in all directions is equal to zero, which
intuitively agrees with the liquid-phase effect, where all
rotational transitions are collapsed into single vibrational
response.

In the preceding, we have discussed classification and sup-
pression of pathways with polarization. Now we consider
the validity of the high-J limit assumed in these results.
The commonly used MA condition exhibits no J-dependence,
all RC pathways are exactly zeroed under it. The path-
ways that are suppressed under the middle MA condition,
(0, θMA, θMA, 0), exhibit a varied dependence on the initial
state angular momentum, Ji. We analyze the dependence by
examining the amplitudes of pathways under the specified
polarization condition relative to (0,0,0,0) polarization and
as a function of Ji. Table III presents analytical expressions
for R(0)

0 (ε; J)/R(0)
0 (ε0000; J), for pathway classes zeroed in the

high-J limit. A subset of pathways has zero amplitude regard-
less of Ji value. Out of these pathways, the ones belonging
to �3 and �6 classes had no Ji dependence to start with; see
Table S5 [37]. For �7 class, it is the polarization condition
that removes the Ji dependence. The Ji-dependent amplitudes
converge to the high-J limit as ±1/Ji or as ±1/J2

i . While most
pathways quickly converge to the limit, some of them start
at relative magnitude above unity and contribute significantly
up to Ji ∼ 20; see Fig. 8. Relative magnitude higher than 1
is caused by the contribution from k = 1 term in Eq. (33),

FIG. 8. Amplitudes of selected SII pathways under
(0, θMA, θMA, 0) polarization condition relative to (0,0,0,0)
polarization. See Table III.

which is 0 for (0,0,0,0), maximum for (0, π/2, 0, π/2) [see
Eq. (B5)], and converges to 0 for Ji → ∞. We refrain from
describing the dependence of pathway amplitudes on Ji for
other polarization conditions, because they exhibit similar
behavior: some subsets of pathways are suppressed for all Ji,
others converge as ±1/Ji or as ±1/J2

i , and some pathways are
enhanced at low Ji numbers.

VI. INTERSTATE COHERENCES DURING WAITING TIME

A notable feature of RR2DIR spectroscopy with broadband
pulses is the variety of interstate coherences produced by
the first two excitations. The type of coherent state produced
depends on the phase-matching condition—for SI and SII

directions, it will be a low-frequency rotational coherence in
the ground or first excited vibrational manifold, while for SIII

direction, it will be a high-frequency coherence between the
ground and second excited vibrational manifolds. Here, we
focus on RC pathways phase-matched in SI and SII direc-
tions. We describe notable features of the coherent evolution
during t2 and present several ways to exploit it. A complete
list of RC pathways and frequencies categorized with respect
to branches and subbranches is given in the Supplemental
Material in Tables S1 and S2 [37].

In Sec. V we have found there is no polarization con-
dition that suppresses all non-RC pathways. However, as
long as collisional relaxation occurs on much longer time
scale than rotational coherence evolution, RC pathways can
be isolated by a differential time measurement. Figures 9
and 10 show RR2DIR spectra A(3), including line shapes, for
both CO and CH3

35Cl. Transition amplitudes, energy lev-
els, partition functions and pressure-broadening parameters
from HITRAN [50,53,58,59] were used to generate the spec-
tra. Figures 9(a) and 9(b) show difference between spectra,
A(3)(ω1, t2 = 1 ps, ω3) − A(3)(ω1, t2 = 1.2 ps, ω3), under the
middle MA condition for [Fig. 9(a)] SI and [Fig. 9(b)] SII

direction. The subtraction removes non-RC pathways, �4, �5,
�6, �7, since their amplitudes change minimally on the time
scale of 200 fs. Additionally, the used polarization condition
removes the �3 RC class, which leaves only classes �1 and
�2. For the SII signal, these are the diagonal RC pathways and
for SI the antidiagonal RC pathways.

In RR2DIR spectroscopy, most RC pathways do not
overlap spectrally with other RC pathways in the (�1,�3)
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FIG. 9. CH3
35Cl difference spectra, A(3)(ω1, t2 = 1 ps, ω3) −

A(3)(ω1, t2 = 1.2 ps, ω3), phase matched in the (a) SI and (b) SII di-
rection. In both cases the polarization condition was (0, θMA, θMA, 0).
Logarithmic scale is used for |A(3)| > 0.19 and linear scale for lower
absolute values.

plane, as was shown in Fig. 5. This is in contrast to rota-
tional coherence spectroscopies [60,61], in which the signal
is a sum of contributions from many interfering RC path-
ways. Nevertheless, there can be found several subbranches
that include multiple RC pathways oscillating at different
rotational frequencies and interfering during waiting time. For
the SII direction, these are the diagonal P-P, Q-Q and R-R
branches, which are not split into multiple subbranches. The
P-P branch includes only negative RC frequencies, R-R only
positive frequencies, and Q-Q mixes both. In analogy to sup-
pressing parts of molecular response with specific polarization
conditions, we considered whether all rotational coherences
within a subbranch can be made to interfere destructively by
measuring the response at specific waiting time t2.

We first consider interference of pathways phase matched
in SII direction. For now we limit the analysis to diatomic
molecules and stretching modes of linear molecules, by ex-
cluding pathways with Q-type transitions. In this case, for the
P-P subbranch there is only a pair of pathways: PRR oscillat-
ing at frequency −2B0(2Ji − 1) and PRR at −2B1(2Ji + 1).
The beat signal between them can be approximately expressed
as

e− i
h̄ [4B0Ji−�B(2Ji+1)]t2 cos

[
(2B0 − �B(2Ji + 1))

t2
h̄

]
, (40)

where �B = B0 − B1, Bν is the rotational constant for ν vibra-
tional state, and higher order rotational Hamiltonian terms are
ignored. For the R-R subbranch, the pair of pathways is RPP
at 2B0(2Ji + 3) and RPP at 2B1(2Ji + 1). The beat signal for

the R-R subbranch is approximately

e
i
h̄ [4B0(Ji+1)−�B(2Ji+1)]t2 cos

[
(2B0 + �B(2Ji + 1))

t2
h̄

]
. (41)

The envelope of the P-P branch is slowly modulated at fre-
quency [2B0 − �B(2Ji + 1)]/h̄ whereas for the R-R branch
it is modulated at [2B0 + �B(2Ji + 1)]/h̄. So for one branch
the modulation frequency increases with Ji, and for the other
it decreases. If �B were zero, one could easily cancel all RC
pathways in both branches by recording the signal at t2 =
h̄π/(4B0), but nonzero �B, such complete destructive inter-
ference is not possible. However, a significant suppression of
RC pathways over a broad spectral range is still achievable
if �BJit2/h̄ � 1. For CO, in the ±25 cm−1 range around the
band origin (Ji = −6, . . . , 6) the t2 value giving optimal sup-
pression changes by 0.28 ps [62,63]. For reference, optimal t2
for Ji = 0 is 2.18 ps. Comparing Figs. 10(a) and 10(b), we see
that this approach is successful for CO. Figure 10(b) shows
2DIR spectrum at t2 = 2.08 ps under the PAC condition in
which P-P and R-R resonances are strongly suppressed by
destructive interference and only P-2P and R-2R branches
have appreciable amplitude.

We now turn to the more general case of a symmetric top
molecule. For CH3

35Cl, in the same spectral range around
the band origin as before (Ji = −29, . . . , 29) the optimal t2
changes by 5.11 ps [64], compared to optimal t2 = 9.81 ps
for Ji = 0. Figure 10(d) shows the 2D spectrum of CH3

35Cl
under the PAC angle condition at t2 = 8.8 ps. Compared to
Fig. 10(c), the R-R branch is partially suppressed but the P-P
branch is largely unaffected, besides the change of phase of
complex 2D resonances. Even in the R-R branch destructive
interference is not as complete as for CO. For one, this is
caused by uneven amplitude of the two interfering pathways.
The ratio of amplitudes is equal to (Ji − 1)/(Ji + 1) for Km =
0, but for maximum Km and in the limit of Ji → ∞ it reaches
1/3. Moreover, symmetric tops include an additional pair of
RC pathways. For the P-P branch these are PQQ oscillating at
−2B0Ji and PQQ at −2B1Ji, and similarly for the R-R branch.
The beat signal between them is approximately given by

e− i
h̄ (B0+B1 )t2 cos

(
�BJi

t2
h̄

)
, (42)

where the period of the real envelope strongly depends on
Ji, which precludes the possibility of destructive interference
over the whole subbranch.

The interference of RC pathways in the Q-Q branch is qual-
itatively different from that in P-P and R-R branches, since
the Q-Q branch includes pathways with both positive and
negative frequency coherences. The total of four RC pathways
can be split into two pairs, such that the pathway amplitudes
are equal within both pairs for all Ji, Km. This could poten-
tially lead to perfect pairwise destructive interference within
both pairs. The two pairs oscillate at frequencies 2B0(Ji + 1),
−2B1(Ji + 1) and −2B0Ji, 2B1Ji, allowing us to write the beat
signal as

AJi,Km e− i
h̄ �B(Ji+1)t2 cos

[
(B0 + B1)(Ji + 1)

t2
h̄

]
+ BJi,Km e

i
h̄ �BJit2 cos

[
(B0 + B1)Ji

t2
h̄

]
. (43)
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FIG. 10. (a), (b) CO spectra under (0, 0, θPAC,−θPAC ) polarization condition at (a) t2 = 0 and at (b) t2 = 2.07 ps. Logarithmic scale is used
for |A(3)| > 0.2 and linear scale for lower absolute values. (c), (d) CH3

35Cl spectra under (0, 0, θPAC, −θPAC ) polarization condition at (c) t2 = 0
and at (d) t2 = 8.8 ps. Logarithmic scale is used for |A(3)| > 0.01 and linear scale for lower absolute values.

In contrast to Eqs. (40)–(42), here both the complex exponen-
tials and the real cosines strongly depend on Ji, which will
unfortunately prevent us from obtaining destructive interfer-
ence over multiple resonances.

For the SI direction, there are several subbranches which
contain interfering RC pathways. An antidiagonal subbranch
of P-R branch contains a pair coherences at frequencies
−2B0Ji, −2B1Ji with interference pattern mimicking Eq. (42).
Analogous interference signal is also present in an R-P sub-
branch with frequencies 2B0(Ji + 1), 2B1(Ji + 1). The four
RC pathways from SII Q-Q branch, Eq. (43), are also present
as SI pathways, but they are essentially split into two Q-Q
subbranches phase matched in SI direction. The AJi,Km pair is
associated with �3 = |1R〉〈0R| subbranch and the BJi,Km pair
with �3 = |1P〉〈0P| subbranch. As we noted when describing
interference of SII pathways, in none of these case can we
expect broadband destructive interference. Finally, the pair
of 2B1Ji and −2B1(Ji + 1) coherences in the |2Q〉〈1Q| sub-
branch of the Q-2Q branch produces a notable beat pattern:

e− i
h̄ B1t2 cos

[
B1(2Ji + 1)

t2
h̄

]
. (44)

Here the complex low-frequency envelopes of all the reso-
nances in the subbranch oscillate in sync at B1 frequency.
Therefore, any observed irregularities could serve as sensitive
probes for higher order terms of the rotational Hamiltonian,
which we omitted in present analysis.

VII. CONCLUSIONS

In this article we have presented the fundamental back-
ground and notation for description of RR2DIR spectra. We
discussed the features of RR2DIR spectroscopy unique to
it among third-order spectroscopies, including the band and
branch structure and the separation of the molecular response
into polarization classes. The presented theory was used to
explain the imbalance of rephasing vs nonrephasing path-
ways and the effect of various polarization conditions on
RR2DIR spectra. The key results most immediately appli-
cable to applications are highlighted in a concise letter-style
paper [38]. These results were supplemented by two addi-
tional polarization conditions which enable complete control
over polarization-dependent response of diatomic molecules
and stretching modes of linear molecules. Furthermore, we

have discussed the influence of rotational coherence evolution
during waiting time on the spectra and the conditions for
collective destructive interference over whole 2D branches.
Since most results apply to whole branches, we emphasize
that the presented theory is also highly relevant for gas-phase
2DIR measurements that do not resolve individual lines, for
example, the recent work of Ziegler and coworkers [6,7],
because of either insufficient resolution, high line density, or
large pressure broadening. While simulations were performed
on a simple diatomic molecule and a symmetric top molecule,
our results are fully applicable to the more prevalent asym-
metric tops.

The results presented in the article were obtained with
the help of ROTSIM2D library and applications, which enables
the user to simulate 2DIR spectra, inspect their structure and
study their polarization dependence, and derive other polar-
ization conditions. These computer resources have been made
freely available for download here [39]. We expect in the
future that machine learning will be applied to deciphering
RR2DIR spectra, as has been applied to linear multispecies
spectra [65,66]. The first-principles framework and computer
simulation tools presented here can be used for generating
spectra for training machine learning algorithms for interpret-
ing RR2DIR spectra and extracting species concentrations.
With this solid theoretical foundation, rapidly advancing
progress in temporally coherent mid-IR and long-wave IR
light sources, and advances in computation, rotationally
resolved 2DIR spectroscopy is well poised to become a pow-
erful tool for molecular spectroscopy.
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APPENDIX A: DECOMPOSITION OF Oi jkl

The expectation value of the fourfold dipole interaction
operator, 〈Oi jkl〉, encapsulates the dependence of the response
on beam polarization, molecular orientation and alignment,
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and molecular transition dipoles. The main task of the current
section is to decompose 〈Oi jkl〉 into polarization and angular
momentum part and transition dipole part, as in Eq. (29).
Analyzing the former will allow us to find polarization con-
ditions useful for 2D spectroscopy. The form of 〈Oi jkl〉 most
useful for our purposes is obtained by expressing all involved
quantities as spherical tensors or spherical tensor operators,
and subsequently by manipulating them with angular momen-
tum algebra techniques [67,68].

The dot product of a polarization vector and the dipole
interaction operator can be expressed in terms of spherical
tensor operators as

ε̃i · �μi = −
√

3[T (1) (̃εi ) ⊗ T (1)(�μi )]
(0)
0

=
∑

q

(−1)qT (1)
q (̃εi )T

(1)
−q (�μi ), (A1)

where the above is a special case of general spherical tensor
product:

[T (k1 ) ⊗ T (k2 )](K )
Q =

∑
q

(−1)k1−k2+Q
√

2K + 1

×
(

k1 k2 K
q Q − q −Q

)
T (k1 )

q T (k2 )
Q−q.

(A2)

In a similar manner we can express the projection operators
Pα as rank zero spherical tensor operators:

Pα =
√

2Jα + 1T (0)
0 (ναJα ), (A3)

where

T (K )
Q (ν ′J ′; ν ′′J ′′) =

∑
m′′,m′

(−1)J ′−m′√
2K + 1

×
(

J ′ K J ′′
−m′ Q m′′

)
|ν ′J ′m′〉〈ν ′′J ′′m′′|

(A4)

are the so-called state multipoles [69]. Subsequently, we
collect the polarization tensors into (at most) fourth-order
spherical tensor, T (K )(ε; k1, k2), and separately collect dipole
interaction operators with projection operators into another
fourth-order spherical tensor operator, T (K )(μ; k1, k2). This
is effected by using the recoupling transformation for four
angular momenta [28,68], which allows us to express the total
fourfold interaction operator as

Oi jkl = √
(2Jj + 1)(2Jk + 1)(2Jl + 1)

[
4∑

K=0

K∑
Q=−K

(−1)K−Q

×
2∑
k1

2∑
k2

T (K )
Q (ε; k1, k2)T (K )

−Q (μ; k1, k2)

]
. (A5)

The compound polarization tensor is explicitly given by

T (K )(ε; k1, k2) = [[T (1) (̃εi) ⊗ T (1) (̃ε j )]
(k1 )

⊗ [T (1) (̃εk ) ⊗ T (1) (̃εl )]
(k2 )](K ), (A6)

and the compound dipole tensor operator by

T (K )(μ; k1, k2)

= [[T (1)( �μi ) ⊗ T (0)(ν jJ j ) ⊗ T (1)( �μ j )]
(k1 ) ⊗ T (0)(νkJk )

⊗ [T (1)( �μk ) ⊗ T (0)(νl Jl ) ⊗ T (1)( �μl )]
(k2 )](K ). (A7)

The polarization tensor, Eq. (A6), cannot be reduced further
and it only remains to express it explicitly in terms of po-
larization angles, Eq. (7); see Appendix B. The dipole tensor
operator in Eq. (A7) can be further factored into physically
meaningful components when taking the expectation value of
Oi jkl . For this, we express ρ as a sum of state multipoles,
Eq. (A4):

ρ =
∑

J ′,J ′′,K,Q

Tr
[
ρT (K )

Q (ν ′J ′; ν ′′J ′′)†
]
T (K )

Q (ν ′J ′; ν ′′J ′′), (A8)

with the expansion coefficients given by

Tr[ρT (K )
Q (ν ′J ′; ν ′′J ′′)†]

=
∑

M ′,M ′′
(−1)J ′−M ′√

2K + 1

(
J ′ J ′′ K

−M ′ M ′′ Q

)
× 〈ν ′J ′M ′|ρ|ν ′′J ′′M ′′〉. (A9)

For the initial density matrix, we restrict the above to J ′ = J ′′.
In this case, different K orders represent angular distribution
anisotropies, with K = 0 term corresponding to population
averaged over M sublevels, odd K terms corresponding to
orientation and even K terms to alignment of the popula-
tion. Here orientation implies preferential occupation of some
|J, M〉 vs |J,−M〉 state and alignment implies preferential oc-
cupation of some pair of |J, M〉 and |J,−M〉 states over other
pairs of |J, M ′〉 and |J,−M ′〉 states. Furthermore, we restrict
our treatment to initial density matrix in thermal equilibrium,
Eq. (16), which implies that only K = Q = 0 term is nonzero.
In this case, the state multipole expansion of [ρ (0)(−∞)]νi,Ji

is particularly simple:

[ρ (0)(−∞)]νi,Ji = NνiJi

N

1√
2Ji + 1

T (0)
0 (νiJi ), (A10)

where T (0)
0 (νiJi ) ≡ T (0)

0 (νiJi; νiJi ), N is the total concentration
of the active molecule, and NνiJi is the concentration of the
molecules in the νiJi state.

The expectation value of Oi jkl is given by the trace of its
product with [ρ (0)(−∞)]νi,Ji , Eq. (26). Having expressed the
density matrix in terms of state multipoles, the evaluation of
the trace is simplified by the following equality, which is valid
for an arbitrary state multipole T (K1 )

Q1
(ν ′J ′; ν ′′J ′′) and spherical

tensor operator T (K2 )
Q2

(Â):

Tr
[
T (K1 )

Q1
(ν ′J ′; ν ′′J ′′)T (K2 )

Q2
(Â)

]
=

∑
m′

〈ν ′J ′m′|T (K1 )
Q1

(ν ′J ′; ν ′′J ′′)T (K2 )
Q2

(Â)|ν ′J ′m′〉

= (−1)J ′+J ′′+Q1

√
2K1 + 1

〈ν ′′J ′′‖T (K2 )(Â)‖ν ′J ′〉δK1,K2δQ1,−Q2 .

(A11)

The latter equality is obtained by inserting expansion (A4),
using the Wigner-Eckhart theorem on T (K2 )

Q2
(Â) and using the
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orthogonality of Wigner-3j coefficients to perform the summation. Note that for T (K1 )
Q1

(ν ′J ′; ν ′′J ′′) = T (0)
0 (νiJi ), Eq. (A11) reduces

to

Tr
[
T (0)

0 (νJ )T (K2 )
Q2

(Â)
] = 〈νJ‖T (K2 )(Â)‖νJ〉δ0,K2 . (A12)

Substituting the density matrix, Eq. (A10), and the fourfold dipole operator, Eq. (A5), into Eq. (26), we obtain

〈Oi jkl〉 = NνiJi

N

√
(2Jj + 1)(2Jk + 1)(2Jl + 1)√

2Ji + 1

4∑
K=0

K∑
Q=−K

(−1)K−Q
2∑
k1

2∑
k2

T (K )
Q (ε; k1, k2) Tr

[
T (0)

0 (νiJi )T
(K )

−Q (μ; k1, k2)
]

= NνiJi

N

√
(2Jj + 1)(2Jk + 1)(2Jl + 1)√

2Ji + 1

2∑
k=0

T (0)
0 (ε; k, k)〈νiJi‖T (0)(μ; k, k)‖νiJi〉

= NνiJi

N

1√
2Ji + 1

〈νiJi‖T (0)(μ)‖νiJi〉
2∑

k=0

T (0)
0 (ε; k, k)G(Ji, Jj, Jk, Jl ; k), (A13)

which brings us to Eqs. (29) and (33). The first equality was
obtained by applying Eq. (A12), which collapses sums over K
and Q to a single term. The sum over k1 and k2 was collapsed
to a single sum over k since contraction of a tensor product to a
scalar (K = Q = 0) requires k1 = k2. The second equality was
obtained by repeatedly applying the Wigner-Eckhart theorem
for tensor product operators [68] on 〈νiJi‖T (0)(μ; k, k)‖νiJi〉
[Eq. (A7)]:

〈ναJα‖[T (k1 ) ⊗ T (k2 )]k‖νβJβ〉 = (−1)k+ jα+ jβ
√

2k + 1

×
∑
ν ′′,J ′′

{
k1 k2 k

Jβ Jα J ′′

}
〈ναJα‖T (k1 )|ν ′′J ′′〉

× 〈ν ′′J ′′‖T (k2 )‖νβJβ〉. (A14)

The presence of T (0)(ναJα ) operators in Eq. (A7) reduces
applications of Eq. (A14) to only a single term in the sum
with (ν ′′, J ′′) = (να, Jα ) and cancels the

√
2Jα + 1 factors

in Eq. (A13). The Wigner-6j coefficients are collected into
the G-factor, Eq. (34), and the reduced matrix elements into
〈νiJi‖T (0)(μ)‖νiJi〉, Eq. (30).

APPENDIX B: COMPOUND POLARIZATION TENSOR

The spherical components of an arbitrary Cartesian vector,
�v = xêx + yêy + zêz, are given by

T (1)
±q (�v) = ∓ 1√

2
(x + iy), T (1)

0 (�v) = z. (B1)

Given the parametrization of polarization vectors, Eq. (7), the
spherical components are given by

T (1)
±q (ε̂) = ∓ 1√

2
e±iθ , T (1)

0 (ε̂) = 0. (B2)

Using Eq. (A2), we explicitly expand T (0)
0 (ε; k, k), Eq. (A6),

in terms of the component vectors:

T (0)
0 (ε; k, k) = (2k + 1)

k∑
q=−k

∑
q′,q′

(
k k 0
q −q 0

)

×
(

1 1 k
q′ −q′ −q

)(
1 1 k
q′′ −q − q′′ q

)
× T (1)

q′ (̃εi)T
(1)

q−q′ (̃ε j )T
(1)

q′′ (̃εk )T (1)
−q−q′′ (̃εl ). (B3)

Evaluating the sums for different k components and express-
ing the results in terms of cosines of four angles obtains

T (0)
0 (ε; 0, 0) = 1

6
[cos(θi − θ j − θk + θl )

+ cos(θi − θ j + θk − θl )]

= 1

3
cos(θi − θ j ) cos(θk − θl ), (B4)

T (0)
0 (ε; 1, 1) =

√
3

12
[cos(θi − θ j − θk + θl )

− cos(θi − θ j + θk − θl )]

=
√

3

6
sin(θi − θ j ) sin(θk − θl ), (B5)

T (0)
0 (ε; 2, 2) =

√
5

60
[cos(θi − θ j − θk + θl )

+ cos(θi − θ j + θk − θl )

+ 6 cos(θi + θ j − θk − θl )]. (B6)

APPENDIX C: THE MAGIC ANGLE
AND POPULATION-ALIGNMENT

CANCELING CONDITIONS

The form of Oi jkl operator adopted here, Eq. (27), is
convenient because it allows us to express the macroscopic
polarization in terms of the expectation value of the operator
in the molecule’s initial state, Eq. (26), and because it involves
only rank zero state multipoles, Eq. (A3). The zero-rank state
multipoles are involved only trivially in angular momentum
recoupling and contribute only a factor of δJ ′′,Jα

/
√

2Jα + 1 to
the reduced matrix elements, Eq. (A14).
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The price for this formal convenience is that the ordering
of dipole operators (and polarization vectors) in Eq. (27) no
longer matches the experimental order of interactions [28].
See, for example, Eq. (24), where the sum over Mα states for
an RC pathway was written in this way and where i jkl →
2341. This means that in general ijkl need not be 1234 or 4321,
except for purely bra-side or ket-side sequences of transitions,
respectively. For RC pathways in particular, the indices are
either 2 jk1 or 1 jk2, so the polarization vectors of the first two
pump beams, which produce the RC state, are not directly
coupled to each other. While it does not prevent us from
deriving the magic angle, Eq. (41), and other polarization con-
ditions, it prevents us from providing physical interpretation
of the invididual k components of the total polarization tensor,
Eq. (A6), and dipole tensor, Eq. (A7).

In the case of RC pathways, we can partially regain the
experimental ordering by performing a cyclic permutation of
indices, 2 jk1 → jk12 or 1 jk2 → jk21, which maintains the
convenience of using rank zero state multipoles but at the
same time directly couples the first two interactions which
produce RC. For all RC pathways, we obtain matrix elements
of the form

〈JjMj |(̃ε j · �μ j )Pk (̃εk · �μk )Pl (̃ε2 · �μ2)Pi (̃ε1 · �μ1)|JjMj〉. (C1)

Pi is the projection operator onto the initial rotational subspace
(Ji). The RC is between states with angular momenta Jl and
Jj . The first interaction (ε̃1 · �μ1) induces transition to the Jj

state and the second one (ε̃2 · �μ2) to the Jl state. Due to the
permutation, we only need to consider the coupling between
these two interactions to find the magic angle condition. From
Eq. (A14), the Wigner-6j coefficient for coupling of Jl , Ji, Jj ,
ε̃2, ε̃1 is {

1 1 k
Jj Jl Ji

}
,

which imposes the triangle condition on Jj , Jl , and k. By
definintion Jj �= Jl for RC pathways, hence the coupling coef-
ficient is nonzero only for k > 0. We can therefore conclude
that the general magic angle condition is the one which zeros
k = 1, 2 components of the total polarization tensor, Eqs. (B5)
and (B6), under this recoupling. Solving both equalities gives
the condition from Sec. V.

The population-alignment canceling angle condition can
be analyzed similarly. After performing a permutation of in-
dices that couples first two interactions together, we find that
pathways in classes suppressed by the PAC condition have
the same ratio of k = 0 (population) to k = 2 (alignment)
component of the G-factor, Eq. (34), equal to 2

√
5. There-

fore, the general PAC condition is a condition that suppresses
k = 1 component, which is easily obtained by setting θ1 = θ2

[Eq. (B5)], and for which

T (0)
0 (ε; 2, 2)

T (0)
0 (ε; 0, 0)

= −2
√

5, (C2)

under the permuted coupling scheme.

APPENDIX D: EXAMPLE CALCULATION: PPP PATHWAY
UNDER (0,0,0,0) POLARIZATION

The current article and the Supplemental Material [37]
contain all the information necessary to calculate the po-
larization and angular momentum dependence of third-order
pathways. As an example, we show the evaluation of the
R-factor, Eq. (33), for the PPP pathway and (0,0,0,0) polar-
ization.

The polarization tensor components can be evaluated using
Eqs. (B4)–(B6) to give

T (0)
0 (ε; 0, 0) = 1

3
, (D1)

T (0)
0 (ε; 1, 1) = 0, (D2)

T (0)
0 (ε; 2, 2) = 2

√
5

15
. (D3)

For PPP pathway, �Jα values are as follows:
(�Jj,�Jk,�Jl ) = (−1, 0,−1), hence the G-factors can be
obtained from the third row of Table S3 in the Supplemental
Material [37]. By summing k = 0 and k = 2 components, we
obtain

R(0)
0 (ε0000; PPP) = 4J2

i + 1

15Ji
√

2Ji + 1
(
4J2

i − 1
) . (D4)

Since 〈Oi jkl〉 is equal to the sum over Mα states in Eq. (17),
the R-factor can also be expressed in terms of the sum. This is
done by using the Wigner-Eckhart theorem on each transition
dipole element:

〈JαMα|εx · μx|JβMβ〉 = (−1)Jβ−Mβ 〈Jβ‖μ(1)‖Jα〉

×
∑

q

(−1)qε (1)
q

(
Jβ 1 Jα

−Mβ −q Mα

)
,

(D5)

and canceling the reduced matrix elements and the zero-
order density matrix, ρ (0)(−∞)αi,Ji,Mi , both in Eq. (17) and
in Eq. (A13) to obtain

R(0)
0 (ε; J) =

∑
Mi,Mj ,Mk ,Ml

(−1)Ji+Jj+Jk+Jl −Mi−Mj−Mk−Ml

×
∑

qi,q j ,qk ,ql

(−1)qi+q j+qk+ql ε (1)
qi

ε (1)
q j

ε (1)
qk

ε (1)
ql

×
(

Ji 1 Jj

−Mi −qi Mj

)(
Jj 1 Jk

−Mj −q j Mk

)
×

(
Jk 1 Jl

−Mk −qk Ml

)(
Jl 1 Ji

−Ml −ql Mi

)
.

(D6)

By setting all qα = 0, ε (1)
qa

= 1, substituting appropriate Jα

values and summing over Mα states, it can be verified that
Eqs. (D4) and (D6) give the same value. For example, for
Ji = 5 it is 0.004101.
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