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Convergent close-coupling calculations of electron scattering on HeH+
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We use the molecular convergent close-coupling (MCCC) method to perform calculations of 10–1000 eV
electron scattering on the ground state of HeH+. Cross sections are presented for excitation of the n = 2−3
singlet and triplet states (where n is the united-atoms-limit principle quantum number), as well as ionization. We
also present cross sections for He+ and H+ ion production following dissociative excitation and ionization. The
He+ production cross section is compared with the measurements of Lecointre, Jureta, Urbain, and Defrance [J.
Lecointre, J. J. Jureta, X. Urbain, and P. Defrance, J. Phys. B At. Mol. Opt. Phys. 47, 015203 (2014)]. We find
that the MCCC results are up to 30% higher than experiment.
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I. INTRODUCTION

The helium hydride molecular ion HeH+ is comprised of
the two most universally abundant elements, namely hydrogen
and helium. While the neutral HeH molecule has a repulsive
electronic ground state [1], the HeH+ ion and its isotopo-
logues have an electronic ground state and several excited
states which support a number of bound vibrational levels
[2]. Along with the hydrogen molecule, HeH+ is expected
to form in the cooler edge and divertor regions of fusion
reactors [3], where it is well known that electron collisions
with molecular species play an important role in governing
the plasma dynamics [4].

The HeH+ molecule was the first molecule to form in the
early stages of the universe [5] and is thought to be present in
significant quantities in helium-rich stars, nebulae, and molec-
ular clouds [6,7]. Collisional reactions with the early-forming
molecules such as HeH+, H+

2 , H2, LiH+, and LiH would
have had a significant effect on the gravitational collapse of
interstellar clouds during the formation of the first stars [6].

Understanding the important influence of electron col-
lisions with molecules in plasmas requires accurate cross-
section data for many reactions over a broad range of collision
energies. Previously, we applied the molecular convergent
close-coupling (MCCC) method [8] to studies of electron and
positron scattering on H+

2 and H2 [9–14] and produced a
comprehensive set of cross sections for vibrationally resolved
electronic excitation of H2 and its isotopologues [15–17]. The
accuracy and scope of the MCCC e−-H2 collision data set
allowed it to be implemented in plasma models in fusion
and astrophysical applications [18–20]. We now take the first
step in the production of a similarly accurate data set for
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the helium hydride ion, by applying the MCCC method to
studies of electronic excitation and ionization from the ground
(electronic and vibrational) state of HeH+.

Previous calculations of electron scattering on HeH+ pre-
dominantly focused on low incident energies. Early complex
Kohn calculations by Orel et al. [21] studied the dissocia-
tion of the molecule via electronic excitation of the repulsive
a 3�+ state in the 21–26 eV region, and subsequent work pro-
duced data for resonance-enhanced dissociation through the
vibrational continuum of the ground electronic state [22,23].
More recent Kohn calculations by Ertan et al. [24] revisited
the dissociative excitation process, also including excitation
of the A 1�+ state and considering incident energies up to
40 eV. Numerous calculations were performed of the disso-
ciative recombination of electrons with the HeH+ ion [25,26],
as well as rotational and vibrational excitation below the first
electronically inelastic threshold [27–30].

Measurements for this collision complex are limited.
Strömhom et al. [31] took measurements of dissociative re-
combination and dissociative excitation below 40 eV, while
Lecointre et al. [32] measured cross sections for the produc-
tion of He+ and He2+ fragments following the dissociative
excitation and ionization from threshold to 3000 eV. In both
cases, the measurements do not differentiate between individ-
ual transitions, instead having contributions from a number of
different dissociative processes.

In this paper, we present cross sections for electronic ex-
citation of the first 18 excited electronic states of HeH+,
corresponding to those states which converge to the n = 2
and 3 states of Li+ in the united-atoms limit, as well as
ionization and an estimate of dissociative excitation for com-
parison with experiment. The electronic states considered
in the present work are listed in Table I, along with their
corresponding united-atoms Li+ states and separated-atoms
dissociation fragments. The Latin letters prepended to the
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TABLE I. List of HeH+ states corresponding to the n = 1, 2, and
3 states of Li+ in the united-atoms limit. States are ordered in terms
of increasing energy at the equilibrium internuclear separation.

United atoms Molecular state Separated atoms

n = 1
Li+[1S(1s2)] X 1�+ He[1S(1s2)] + H+

n = 2
Li+[3S(1s2s)] a 3�+ He+(1s) + H(1s)
Li+[1S(1s2s)] A 1�+ He+(1s) + H(1s)
Li+[3P(1s2pπ )] c 3� He[3P(1s2p)] + H+

Li+[3P(1s2pσ )] b 3�+ He[3S(1s2s)] + H+

Li+[1P(1s2pπ )] C 1� He+(1s) + H(2�)
Li+[1P(1s2pσ )] B 1�+ He[1S(1s2s)] + H+

n = 3
Li+[3S(1s3s)] d 3�+ He[3P(1s2p)] + H+

Li+[1S(1s3s)] D 1�+ He+(1s) + H(2�)
Li+[3P(1s3pσ )] f 3�+ He+(1s) + H(2�)
Li+[1D(1s3dσ )] E 1�+ He+(1s) + H(2�)
Li+[3P(1s3pπ )] e 3� He+(1s) + H(2�)
Li+[1D(1s3dπ )] F 1� He[1P(1s2p)] + H+

Li+[3D(1s3dδ)] i 3� He[3D(1s3d )] + H+

Li+[1D(1s3dδ)] I 1� He[1D(1s3d )] + H+

Li+[3D(1s3dπ )] h 3� He[3P(1s3p)] + H+

Li+[1P(1s3pπ )] H 1� He[1D(1s3d )] + H+

Li+[3D(1s3dσ )] g 3�+ He+(1s) + H(2�)
Li+[1P(1s3pσ )] G 1�+ He[1P(1s2p)] + H+

molecular state labels cannot be uniquely assigned based on
energy ordering since there are a number of states whose
potential-energy curves cross. We adopted the HeH+ state
labels as defined by Michels [33], who assigned them based
on energy ordering in the separated-atoms limit. The states
we labeled i 3�, I 1�, h 3�, and H 1� were not studied by
Michels [33], however, we assigned these labels based on the
same rule. In Fig. 1 we show the potential-energy curves of the
HeH+ states under consideration in the present work, as well
as the ground state of the HeH2+ ion. Although some of the
excited electronic states have minima in their potential-energy
curves, they are well outside the Franck-Condon region of the
X 1�+(v = 0) state. Therefore, all excitations, as well as ion-
ization, from the ground electronic and vibrational state can
be considered dissociative. Whenever the effects of nuclear
motion are discussed in the present work we refer only to the
4HeH+ isotopologue; the effects of isotopic substitution can
be explored in future work.

II. THEORY

The MCCC method was developed in both the spherical
and prolate-spheroidal coordinate systems, each with different
strengths depending on the range of internuclear separations
which are relevant to the calculations. In the present work,
where we are concerned only with scattering on the ground
vibrational level, we found that a spherical coordinate system
with the origin centered on the helium atom is the most appro-
priate. The spherical MCCC method and its application to H2

were discussed in detail in previous publications [8,12]. Here,
only a brief overview is given, with particular focus on those

FIG. 1. Potential-energy curves of the n = 1−3 electronic states
of HeH+, taken from Ref. [2], and the HeH2+ ground state, taken
from Ref. [34]. Also shown is the v = 0 vibrational wave function
in the ground electronic state of HeH+ and its associated Franck-
Condon region.

aspects which are different for scattering on heteronuclear
diatomics such as HeH+. Atomic units are used throughout,
unless specified otherwise.

A. Molecular structure

The target is represented in a body-fixed spherical coordi-
nate system, with the z axis aligned with the internuclear axis.
In previous MCCC calculations for H+

2 and H2, the origin was
placed at the geometric center of the nuclei [8], however, for
heteronuclear molecules it is beneficial to allow the flexibility
of placing the origin at any point along the z axis between the
two nuclei. This is illustrated in Fig. 2.

We represent the molecular wave functions within the
Born-Oppenheimer approximation and neglect the rotational
motion, defining the vibronic (vibrational and electronic)
wave function by

	nv (r1, r2, R) = 	n(r1, r2; R)νnv (R), (1)

FIG. 2. Representation of a two-electron heteronuclear diatomic
molecule in a spherical coordinate system with the origin positioned
at an arbitrary point between the two nuclei, and the z axis (indicated
by ẑ) aligned with the internuclear axis).
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where r1 and r2 are the electronic coordinates, R = R1 + R2 is
the internuclear separation, 	n is an electronic wave function
(with R treated as a parameter), νnv is a vibrational wave func-
tion, n indexes the electronic states, and v is the vibrational
quantum number. The electronic states are eigenstates of the
electronic Hamiltonian

Ĥ12 = K̂1 + V̂1 + K̂2 + V2 + V12 + 1

R
. (2)

Here K̂i is the one-electron kinetic-energy operator, Vi is
the electron-nuclei potential, and V12 is the electron-electron
potential:

K̂i = − 1
2∇2

i , (3)

Vi = − Z1

|ri − R1| − Z2

|ri − R2| , (4)

Vi j = 1

|ri − r j | , (5)

where Z1 and Z2 are the nuclear charges. The potentials are
expanded in spherical harmonics

Vi(ri ) = −
∞∑

λ=0

√
4π

2λ + 1
Y 0

λ (r̂i )

× [Z1vλ(ri, R1) + (−1)λZ2vλ(ri, R2)], (6)

Vi j (ri, r j ) =
∞∑

λ=0

λ∑
μ=−λ

4π

2λ + 1
vλ(ri, r j )Y

−μ

λ (r̂i )Y
μ

λ (r̂ j ), (7)

where

vλ(ri, r j ) = [min(ri, r j )]λ

[max(ri, r j )]λ+1
. (8)

At each fixed value of R, the target space is represented
by a set of pseudostates obtained from a configuration-
interaction (CI) calculation using Sturmian basis functions. In
the spherical-coordinate MCCC method we utilize the follow-
ing basis for the one-electron coordinate and spin space

〈r|k�mσ 〉 = 1

r
ϕk�(r)Y m

� (r̂)χ (σ ), k = 1, 2, . . . , (9)

where χ (σ ) is the one-electron spin wave function for spin
projection σ , Y m

� are the spherical Harmonics, and ϕk� are the
following radial Laguerre basis functions:

ϕk�(r) =
√

α�(k − 1)!

(k + �)(k + 2�)!
(2α�r)�+1e−α�rL2�+1

k−1 (2α�r).

(10)

Here L2�+1
k−1 are the associated Laguerre polynomials and α�

are tunable exponential falloff parameters.
For each target symmetry (m, s) we construct a set of

antisymmetrized two-electron configurations

|k1�1m1k2�2m2 : ms〉

= 1√
2(1 + δk1k2δ�1�2δm1m2 )

×
∑
σ1σ2

Csms
1
2 σ1,

1
2 σ2

A|k1�1m1σ1〉|k2�2m2σ2〉, (11)

where A is the antisymmetrization operator, Csms
s1σ1,s2σ2

are the
Clebsch-Gordan coefficients, and we require m1 + m2 = m
due to axial symmetry. The two-electron pseudostates ob-
tained from the CI calculation are given by

|	n : ms〉 =
∑

γ

C(n)
γ |γ : ms〉, (12)

and satisfy

〈ms : 	n′ |Ĥ12|	n : ms〉 = εnδn′n, (13)

where γ = (k1�1m1k2�2m2), C(n)
γ are the CI coefficients, and

εn is the pseudostate energy.

B. Projectile wave functions

For scattering on an ionic target the projectile is asymptot-
ically described by a Coulomb wave function. Additionally, a
short-ranged distorting potential U0 can be incorporated into
the scattering calculations for reasons of numerical stability
and computational performance. Hence we define projectile
distorted waves |k(±)〉 with energy εk by

(ε (±)
k − K̂0 − z0Zasym/r0 − U0)|k(±)〉 = 0, (14)

where Zasym is the asymptotic target charge (Zasym = +1 for
HeH+). The distorted waves are expanded in partial waves

|k(±)〉 = 1

k

∞∑
L=0

L∑
M=−L

iLe±i(σL+δL )|kLM〉Y M∗
L (k̂), (15)

where σL and δL are the Coulomb and distorting phase shifts,
respectively.

The asymptotic Coulomb potential supports an infinite
number of bound projectile states, while the distorting po-
tential supports a finite number of bound states. We combine
these two potentials and define the one-dimensional projectile
Hamiltonian

Ĥ0 = −1

2

d2

dr2
0

+ L(L + 1)

2r2
0

+ z0Zasym

r0
+ U0(r0), (16)

which we diagonalize in the single-particle Laguerre basis
given in Eq. (9) to obtain bound projectile states for each an-
gular momentum L. After suitable normalization these states
can then be included in the scattering equations in addition to
the distorted continuum waves |kLM〉.

C. Scattering equations

Following Ref. [8], we solve the Schrödinger equation with
outgoing spherical-wave boundary conditions [indicated by
the (+) superscript]

(E (+) − Ĥasym)
∣∣ψS(+)

i

〉 = V̂U

∣∣ψS(+)
i

〉
, (17)

where E , S , and ψ are, respectively, the total scattering-
system energy, spin, and wave function for initial target
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state i,

Ĥasym = Ĥ12 + K̂0 + z0Zasym

r0
+ U0 (18)

is the asymptotic Hamiltonian, and the interaction potential is

V̂U = V0 + V01 + V02 − z0Zasym

r0
− U0 + (E − Ĥ )

2∑
j=1

P̂0 j .

(19)

The final term in V̂U is the exchange potential operator (P̂0 j is
the electron permutation operator), which appears as a result
of enforcing the antisymmetry of the total scattering wave
function.

Following standard procedure in the MCCC method [8],
the total scattering wave function is expanded in the ba-
sis formed by the target electronic states. After substituting
this expansion into Eq. (17) and applying the projec-
tile partial-wave expansion (15) we obtain the partial-wave
Lippmann-Schwinger equation

T MS
f L f M f ,iLiMi

(k f , ki ) =V MS
f L f M f ,iLiMi

(k f , ki ) +
∑
nLM

∑∫
dk

V MS
f L f M f ,nLM (k f , k)T MS

nLM,iLiMi
(k, ki )

E (+) − εk − εn
, (20)

where the partial-wave V -matrix elements are defined by

V MS
f L f M f ,iLiMi

(k f , ki ) ≡ 〈MS : k f L f M f 	 f |V̂U |	ikiLiMi :MS〉.
(21)

Equation (20) is solved per total scattering-system angular-
momentum projection M and spin S , using techniques
described in Ref. [8]. The sum and integral over k indicates
the presence of bound projectile states, which are included
in the calculations until convergence is reached. Once the
distorted-wave partial T -matrix elements are computed, the
physical matrix elements are obtained using [35]

T MS
f L f M f ,iLiMi

(q f , qi ) =T MS
f L f M f ,iLiMi

(k f , ki )e
i(δLi +δL f )

− δ f ,iδL f ,LiδM f ,Mi

qi

π
eiδLi sin(δLi ), (22)

where q is used to indicate projectile waves calculated with-
out the presence of the distorting potential (Coulomb waves
in the present case). When solving Eq. (20), we check for
convergence with respect to the number of target states and
maximum projectile partial-wave angular momentum Lmax.
We perform calculations for all |M| � Lmax.

D. Distorting potential

The short-ranged distorting potential U0 is chosen to cancel
the spherical part of the V0, V01, and V02 potentials and is given
in Ref. [8] for the case where the spherical coordinate-system
origin is placed at the geometric center of the nuclei. For the
more general case with the origin placed at an arbitrary point
along the internuclear axis, it is given by

U0(r0) = z0Z1v0(r0, R1) + z0Z2v0(r0, R2) − z0Zasym

r0

− 2z0

∫∫
|	1(r1, r2)|2v0(r0, r1) dr1dr2, (23)

where 	1 is the target ground-state wave function.

E. Fixed-nuclei cross sections and Born completion

At each fixed internuclear separation R, we define the
partial-wave scattering amplitudes

FMS
f L f M f ,iLiMi

(R) = −4π2

q f qi
iLi−L f ei(σLi +σL f )

× T MS
f L f M f ,iLiMi

(q f , qi; R), (24)

which are used to calculate the partial-wave integrated cross
sections (ICS)

σMS
f ,i (R) = 1

4π

q f

qi

∑
L f M f

∑
LiMi

∣∣FMS
f L f M f ,iLiMi

(R)
∣∣2

, (25)

and, in turn, the spin-resolved ICS

σS
f ,i(R) =

∑
M

σMS
f ,i (R). (26)

For scattering on the ground state of HeH+ (spin zero),
only S = 1

2 is possible, so from here on we drop the
dependence on S .

When performing calculations for neutral targets we accel-
erate the convergence with respect to Lmax by a straightfor-
ward application of the analytic Born completion technique,
which is described in Ref. [14]. This technique assumes that
for higher partial waves the partial cross sections converge
to the plane-wave Born partial cross sections, however, for
scattering on ionic targets they converge to the Coulomb-wave
Born partial cross sections. Hence, we adopt the following
approach. First, T -matrix elements are obtained from the
close-coupling calculation for partial waves up to Lmax. These
are then supplemented by partial-wave (Coulomb) V -matrix
elements up to a much larger L̄ (in the present work we
find L̄ = 40 to be more than sufficient). Finally, the standard
plane-wave Born completion technique is applied to account
for partial waves above L̄.

F. Adiabatic-nuclei cross sections

We apply the adiabatic-nuclei (AN) approximation, and
since we are not concerned with the fully vibrationally re-
solved processes at present, we utilize the completeness of the
vibrational spectrum to calculate the total electronic excitation
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cross sections (summed over final rovibrational states)

σ f ,ivi = 〈νivi |σ f ,i(R)|νivi〉, (27)

where the bra-kets imply integration over the internuclear sep-
aration R. The vibrational wave functions νivi (R) are obtained
from a diagonalization procedure similar to what is used in
the electronic structure calculations. More specific details of
the vibrational structure calculation and AN approximation
can be found in Ref. [14]. At energies sufficiently far away
from the excitation threshold, Eq. (27) can be well approxi-
mated by the fixed-nuclei (FN) cross section evaluated at the
mean internuclear separation of the ground vibrational wave
function. In the present work, we utilize both the FN and
AN approximations, with the latter applied at near-threshold
energies where the FN approximation breaks down. This will
be discussed further in Sec. IV.

III. CALCULATION DETAILS

A. Target structure

It is necessary to find a balance between target-structure
accuracy and tractability of the scattering calculations since
increasing the size of the basis for the CI calculation leads
to more pseudostates which must be included in the close-
coupling expansion. As in previous work [12,14,36], we
adopt a hybrid-basis approach which is optimized to yield
sufficiently accurate low-lying target states without the com-
putational expense of the scattering calculations becoming
prohibitive. The main set of basis orbitals is comprised of
Laguerre functions (9) with k � N� and exponential falloffs
α� = 1.4 for each � � �max. A number of models with dif-
ferent N� and �max will be utilized in the convergence studies
discussed later. The 1s and 2p Laguerre functions are replaced
by an accurate HeH2+ ground state (1sσ ) and first excited
state (2pσ ) obtained from a preliminary one-electron diago-
nalization with N� = 15 − �, �max = 8, and α� = 5.0. The 2s,
3p, and 3d orbitals are then replaced with Laguerre functions
with exponential falloffs

α� =
⎧⎨
⎩

2.22, � = 0,

1.92, � = 1,

2.58, � = 2,

(28)

which are chosen to optimize the low-lying target-state
energies. To reduce computational expense, we use a re-
stricted CI calculation with the set of two-electron con-
figurations (11) consisting of all “frozen-core” configura-
tions (1s, n�), and correlation configurations (n�, n′�′) with
both electrons allowed to occupy the 1s, 2s, 2p, 3p, and
3d orbitals.

The equilibrium separation of the X 1�+-state potential-
energy curve is at R = 1.463 [37], and we have calculated
the mean separation of the v = 0 vibrational wave function
to be R = 1.518. In Fig. 3 we show the HeH+ ground-state
potential-energy curve calculated by Loreau et al. [2], along
with our calculated vibrational wave function. The equilib-
rium and mean internuclear separations are indicated in the
figure.

In the convergence studies discussed later in Sec. III B
we use a target basis with �max = 4 and N� = Nmax − �, with

FIG. 3. Potential-energy curve of the HeH+ X 1�+ state calcu-
lated by Loreau et al. [2] and the v = 0 vibrational wave function.

Nmax = 10, 12, and 14. The energies for the n = 1−3 states
in the Nmax = 12 and 14 models are in agreement up to
the third decimal place (in Hartrees). The absolute energies
and excitation energies calculated at R = 1.5 are presented
in Table II and compared with accurate calculations from
Jungen and Jungen [34]. The agreement is very good, with
the errors in the excitation energies all being less than 0.1 eV
(less than 0.3%).The static dipole polarizability of the ground
state and dipole moments for a selection of transitions are
presented in Table III and compared with available results
from the literature. The present dipole moments compare fa-
vorably with the accurate calculations with all errors being
less than 5% and several less than 1%. Compared to our
previous calculations of electron scattering on H2 [12], this
level of accuracy in the target structure is very good and
when it comes to estimating the uncertainty in the calculated
cross sections later we expect that the small errors here will
be negligible compared to the uncertainty due to the level of
convergence in the scattering calculations, and hence can be
neglected.

B. Scattering models and target-state convergence

We first verify convergence with respect to the number
of target states included in the calculations, while keeping
the partial-wave expansion fixed with Lmax = 6. In Table IV
we describe a number of models with increasing numbers of
target states. The models are labeled in the format MCC(N) or
MCCC(N), where N is the number of states (counting degen-
eracy) and the MCC label indicates that only bound states are
included while MCCC indicates that continuum pseudostates
are also present to model coupling to ionization channels. To
ensure convergence in both the discrete and ionization cross
sections, we include all states generated from the structure cal-
culation in the close-coupling expansion, with two exceptions.
First, states with orbital angular-momentum projection m > 3
are not included in any of the models. Second, we exclude
all states with a 1s core-orbital spectroscopic factor less than
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TABLE II. Two-electron energies and vertical excitation energies
for the n = 1−3 states of HeH+ calculated at an internuclear separa-
tion of R = 1.5 a0. Comparison is made between the MCCC energies
and the accurate calculations of Jungen and Jungen [34]. In the final
row the same is shown for the ground state of HeH2+.

Energy (Ha) �E (eV)

State MCCC Ref. [34] MCCC Ref. [34] Error

n = 1
X 1�+ −2.9677 −2.9780 - - -

n = 2
a 3�+ −2.1905 −2.2036 21.056 21.072 −0.016 (0.08%)
A 1�+ −2.0248 −2.0357 25.673 25.641 0.032 (0.12%)
c 3� −1.8408 −1.8451 30.739 30.827 −0.088 (0.29%)
b 3�+ −1.8014 −1.8056 31.844 31.901 −0.057 (0.18%)
C 1� −1.8000 −1.8042 31.874 31.940 −0.066 (0.21%)
B 1�+ −1.7616 −1.7652 32.916 33.000 −0.084 (0.25%)

n = 3
d 3�+ −1.6476 −1.6501 36.078 36.132 −0.054 (0.15%)
D 1�+ −1.6226 −1.6254 36.775 36.806 −0.031 (0.08%)
f 3�+ −1.5918 −1.5954 37.636 37.621 0.015 (0.04%)
E 1�+ −1.5901 −1.5929 37.682 37.690 −0.008 (0.02%)
e 3� −1.5901 −1.5904 37.686 37.757 −0.071 (0.19%)
F 1� −1.5873 −1.5881 37.751 37.819 −0.068 (0.18%)
i 3� −1.5791 −1.5788 37.998 38.073 −0.075 (0.20%)
I 1� −1.5788 −1.5784 38.009 38.083 −0.074 (0.19%)
h 3� −1.5809 −1.5781 38.059 38.091 −0.032 (0.08%)
H 1� −1.5737 −1.5672 38.398 38.389 0.009 (0.02%)
g 3�+ −1.5742 −1.5650 38.460 38.448 0.012 (0.03%)
G 1�+ −1.5681 −1.5534 38.846 38.765 0.081 (0.21%)

HeH2+ −1.3606 −1.3621 43.731 43.971 −0.240 (0.55%)

0.1. The definition of the spectroscopic factor and further
discussion of the procedure for removing states based on this
quantity is given in Ref. [39]. We verified that all states we
exclude make an insignificant contribution to the ionization
cross section in the Coulomb-Born approximation and hence

TABLE III. Static dipole polarizability of the HeH+ X 1�+ state
and dipole moments for a selection of electronic transitions. A com-
parison is made between the present MCCC structure calculation and
the accurate calculations of Michels [33] and Bishop and Cheung
[38]. The internuclear separation R at which each quantity is calcu-
lated varies depending on the data available in Refs. [33,38], and is
indicated in the table.

Quantity R MCCC Ref. Error

Parallel polarizability 1.46 1.542 1.542a 0.0%
Perpendicular polarizability 1.46 0.857 0.851a 0.6%
Total polarizability 1.46 1.086 1.081a 0.5%
X 1�+ → A 1�+ dipole moment 1.5 0.810 0.798b 1.2%
X 1�+ → C 1� dipole moment 1.5 0.576 0.579b 0.3%
X 1�+ → A 1�+ dipole moment 2.0 0.856 0.870b 1.4%
X 1�+ → C 1� dipole moment 2.0 0.597 0.586b 1.1%
A 1�+ → C 1� dipole moment 2.0 0.415 0.384b 3.1%
a 3�+ → c 3� dipole moment 2.0 0.546 0.589b 4.3%

aBishop and Cheung [38].
bMichels [33].

TABLE IV. Description of the various target models used in the
present MCCC calculations. The number in parentheses after the
MCC or MCCC labels indicates the number of target states, counting
degeneracy. The united-atoms principle quantum number is denoted
by n, while m refers to the orbital angular-momentum projection and
S refers to the spectroscopic factor discussed in the text.

Model Laguerre basis States included

MCC(9) N� = 10 − �, � � 4 All n = 1–2 states
MCC(27) N� = 10 − �, � � 4 All n = 1−3 states
MCC(98) N� = 10 − �, � � 4 All bound m � 3 states
MCCC(357) N� = 10 − �, � � 4 All m � 3 states with S � 0.1
MCCC(448) N� = 12 − �, � � 4 All m � 3 states with S � 0.1
MCCC(546) N� = 14 − �, � � 4 All m � 3 states with S � 0.1

it is reasonable to exclude them from the close-coupling cal-
culations. Although excluding states from the close-coupling
expansion significantly reduces the use of computational re-
sources, it comes at the cost of not being able to resolve
the problem of nonuniqueness in the scattering calculations.
This issue, which has been discussed previously [8], can
lead to some numerical instability in the calculated cross sec-
tions and at present our only solution is an algebraic technique
which requires the inclusion of all pseudostates gener-
ated from the Laguerre basis (for two-electron targets). We
found previously that the instabilities in the integrated cross
sections are generally minor and predominantly affect tran-
sitions with small cross sections. The particular nonunique
off-shell solution one obtains when solving Eq. (20) numeri-
cally is determined by the choice of Gaussian quadrature knots
used to represent the integral over k. A given integration mesh
will generally lead to unstable results at a few different inci-
dent energies, and hence it is straightforward to repeat those
affected calculations with a different choice of knots to force
a different off-shell solution and obtain cross sections which
are smooth functions of energy.

The convergence studies were performed at the mean in-
ternuclear separation of R = 1.518. Figure 4 compares the
ionization cross section calculated with the MCCC(357),
MCCC(448), and MCCC(546) models (the three which in-
clude continuum pseudostates), along with the Coulomb-Born
approximation applied using the MCCC(546) pseudostates.
The cross section is sufficiently converged over the en-
tire energy range with the MCCC(546) model, and the
limit in which the Coulomb-Born approximation is valid
is reached at around 1000 eV. Although it is normally ex-
pected that Born or Coulomb-Born cross sections should be
larger than the result of close coupling, the present Coulomb-
Born ionization cross section is smaller than the MCCC
calculation for energies around 150 eV and above. The rea-
son for this is that the contribution to the ionization cross
section from exchange transitions (which are not accounted
for in the Coulomb-Born calculation) is sufficiently large for
this target as to exceed the difference between Coulomb-Born
and MCCC for the direct transitions. Hence, the total MCCC
ionization cross section can become larger than the Coulomb-
Born cross section. This point is illustrated in Fig. 5, where the
MCCC(546) ionization cross section is decomposed into con-

042818-6



CONVERGENT CLOSE-COUPLING CALCULATIONS OF … PHYSICAL REVIEW A 106, 042818 (2022)

FIG. 4. Convergence studies for ionization of the X 1�+ of
HeH+ at R = 1.518 a0. Convergence is tested with respect to the
number of target states included in the close-coupling expansion. See
the text for a description of the different scattering models. CB(546)
refers to the Coulomb-Born approximation applied using the same
continuum pseudostates present in the MCCC(546) model.

tributions from excitation of singlet and triplet pseudostates,
for internuclear separations R = 0 and 1.518. For R = 0 we
compare with CCC calculations for ionization of atomic Li+

[40], which is the united-atoms limit of HeH+, to verify the
validity of the MCCC calculations. In the atomic case, the
exchange contribution reaches a peak at twice the ionization
threshold and then decays and becomes negligible by ten
times the ionization threshold. However, in the molecular case
the decay is slower and exchange effects must still be ac-
counted for at energies up to 20 times the ionization threshold
(approximately 1000 eV). The reason for the flatter peak in
the exchange contribution at R = 1.518 is that higher-energy
triplet pseudostates with excitation energies up to four times
the ionization threshold are still important, which is not the
case at R = 0. Since the HeH+ electrons are less tightly bound
than the Li+ electrons, it is expected that the exchange inter-
action will be more important.

In Fig. 6 we present convergence studies for excitation of
the n = 2 states (a 3�+, A 1�+, c 3�, b 3�+, C 1�, and
B 1�+). Since the excitation cross sections for a charged tar-
get are generally nonzero at threshold, the threshold energies
for all FN calculations presented in this paper are indicated
by vertical lines on the figures. The MCC(9) and MCC(27)
models were run on a finer energy grid to show the pres-
ence of a large number of resonances below the ionization
threshold (≈44 eV), as well as pseudoresonances at higher
energies. A more detailed view of the resonance structures
in the MCC(27) X 1�+ → a 3�+ cross section is given in
Fig. 7. To allow comparison with the FN complex Kohn
calculations of Orel et al. [21], the cross section presented
in Fig. 7 is calculated at the equilibrium internuclear sepa-
ration (R = 1.455) rather than the mean. We indicated three
features in the figure that are present in both the MCC(27) and
Kohn cross sections. Feature number one is not a resonance,

FIG. 5. Electron-impact ionization cross section for HeH+,
comparing the contribution from direct and exchange transitions
(excitation of singlet and triplet pseudostates, respectively). In the top
panel, the MCCC(546) model is run at zero internuclear separation
and compared with the CCC calculations for electron scattering on
atomic Li+ [40]. In the bottom panel, the MCCC(546) model is
run at the HeH+ mean internuclear separation of R = 1.518 a0. The
cross sections are presented as a function of the incident energy in
threshold units (the ionization threshold is 74.8 eV for R = 0 and
43.5 eV for R = 1.518 a0).

but simply the sharp rise in the cross section at threshold
characteristic of exchange transitions, followed by a rapid
decay. The location of this feature differs by about 0.4 eV
between the two calculations since the target wave functions
in the present calculations are slightly more accurate (the
key difference is likely a lower ground-state energy in the
MCCC structure model leading to higher excitation energies
compared to Ref. [21]). Feature number three was identified
in Ref. [21] as a Feschbach resonance and it is reproduced in
the present calculations, also at a slightly higher energy. The
remaining resonances above 24 eV are all Feschbach reso-
nances, and aside from some which are missing in the Kohn
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FIG. 6. Convergence studies for excitation of the n = 2 elec-
tronic states from the X 1�+ state of HeH+ at R = 1.518 a0.
Convergence is tested with respect to the number of target states
included in the close-coupling expansion. The Coulomb-Born (CB)
cross sections are also shown for the singlet states. See the text for a
description of the different scattering models.

calculations due to insufficient energy resolution, the two
calculations appear to predict the same structures in the cross
section (once the shift in energy is taken into account). Feature
number two was identified in Ref. [21] as a shape resonance
and we find that there is essentially perfect agreement between
the two calculations here. It is unclear why the systematic
energy shift is not present for this feature. We performed test
calculations with less accurate target structure and found that
the position of feature two is just as sensitive to changes in
the target energies as the other features, so it appears that the
agreement between the MCCC and Kohn calculations here is a
coincidence. Overall, the similar magnitude of the background
scattering cross section and appearance of similar resonance
structures in the two calculations is a useful verification that
the MCCC method was correctly implemented for HeH+.

The larger models in Fig. 6 are run on a courser energy grid
and hence the apparent numerical instability near threshold
is, in fact, a result of slight changes in resonance energies
between the models (e.g., the three MCCC models differ at the
first energy point after threshold for the C 1� excitation, but

FIG. 7. Resonances in the fixed-nuclei X 1�+ → a 3�+ ex-
citation cross section calculated at the equilibrium internuclear
separation (R = 1.455 a0). Comparison is between the present
MCC(27) model and the complex Kohn calculations of Orel et
al. [21]. Circled numbers indicate features which are discussed in
the text.

are otherwise in perfect agreement). Since the adiabatic-nuclei
and fixed-nuclei approximations break down near resonances,
the positions and magnitudes of the resonances in these cross
sections are not physically significant. A proper study of these
resonances would require a different technique, such as the
electronic and vibrational close-coupling method of Scarlett
et al. [41], the R-matrix approach of Schneider et al. [42,43],
or one of several methods based on Feschbach’s projection-
operator formalism [44]. In Ref. [41], we showed that for the
case of e−-H2 scattering the true resonances are much smaller
than those in the fixed-nuclei cross sections. Taking these facts
into consideration, we make no attempt to map out resonances
in our converged results. For most transitions the models
which neglect the target continuum [MCC(9), MCC(27), and
MCC(98)] differ substantially from those which include it,
demonstrating the importance of coupling to ionization chan-
nels. The MCCC(546) model yields sufficiently converged
cross sections over the entire energy range. The rates of con-
vergence for the n = 3 excitations are similar and we find
that the MCCC(546) model is appropriate for all transitions of
interest. For completeness, convergence studies for the n = 3
states are presented in the Appendix.

C. Partial-wave convergence

With convergence established with respect to the number
of target states included in the close-coupling expansion, we
now verify convergence with respect to the projectile partial-
wave expansion. The calculations in Sec. III B had Lmax = 6
(with Coulomb-Born completion applied on top of this) and
we now repeat the MCCC(546) calculation using partial-wave
expansions with Lmax = 4 and 8.

In Fig. 8 we present partial-wave convergence studies for
ionization of the X 1�+ state. The Lmax = 4 calculation is
clearly not converged, while the Lmax = 6 and 8 calculations
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FIG. 8. Convergence studies for ionization of the ground elec-
tronic state of HeH+ at R = 1.518 a0. Convergence is tested with
respect to the size of the projectile partial-wave expansion Lmax

used with the MCCC(546) model. CB refers to the Coulomb-Born
approximation.

are in agreement except for a small (≈5%) discrepancy at the
cross-section maximum, indicating the that Lmax = 8 model
is sufficient. In Fig. 9, partial-wave convergence studies are
presented for excitation of the n = 2 electronic states. The
exchange transitions are clearly converged with Lmax = 8,
however, for excitation of the singlet states there is still a
small discrepancy between the Lmax = 6 and 8 results at
the cross-section peak. As with the ionization cross section
the difference is only around 5% and we expect the error in the
Lmax = 8 cross section compared to a fully converged result to
be smaller than that. Therefore, we conclude that the Lmax = 8
model is satisfactory and will account for an uncertainty of
5% in the final results. We also found the Lmax = 8 model to
yield sufficiently converged cross sections for excitation of the
n = 3 electronic states, as shown in the Appendix.

D. Adiabatic-nuclei calculations

Performing AN calculations is much more computationally
expensive than in the FN approximation since each energy
requires the electronic scattering problem to be solved at a
number of different internuclear separations. At present, we
have conducted AN calculations using the MCC(27) model at
low energies to extend the excitation cross sections down to
the correct threshold.

AN calculations were performed up to 40 eV using a fine
R mesh (steps of 0.01 between 1 and 2) to ensure the accuracy
of the integration over R in Eq. (27). This range covers the
extent of the v = 0 vibrational wave function (see Fig. 3). In
Fig. 10 we compare the FN and AN cross sections for the
X 1�+ → a 3�+ transition in the MCC(27) model, and in
Fig. 11 we give examples of the R-dependent cross section at
20 and 25 eV incident energies. There are a large number
of resonances in both the FN and R-dependent cross sections,
and the AN cross section we calculated shows that the res-

FIG. 9. Convergence studies for excitation of the n = 2 states
from the ground electronic state of HeH+ at R = 1.518 a0. Conver-
gence is tested with respect to the size of the projectile partial-wave
expansion Lmax used with the MCCC(546) model. The Coulomb-
Born (CB) cross sections are also shown for the singlet states.

FIG. 10. Calculations of the X 1�+(v = 0) → a 3�+ cross
section using the MCC(27) model. The fixed-nuclei (FN) result
shows a large number of resonances, which are diminished in the
adiabatic-nuclei (AN) calculations.
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FIG. 11. The MCC(27) X 1�+ → a 3�+ cross section at 20
and 25 eV incident energies presented as a function of internuclear
separation. Also shown is the square of the v = 0 vibrational wave
function (on an arbitrary scale).

onances are reduced in magnitude substantially, but do not
disappear altogether. It is likely that the remaining spikes in
the AN cross section are numerical artifacts which would be
further reduced by the use of a denser R grid. Since the AN
approximation is not accurate near resonances we must accept
that the cross section in this region is inherently uncertain and
hence there is little to be gained from attempting to improve
on these calculations. Instead, in Fig. 10 we drew a smooth
cross section which best represents the raw AN calculation
without any jagged behavior. The small shoulder in the cross
section around 21 eV is likely a result of averaging over the
broader shape resonance near the threshold of the fixed-nuclei
calculation. It is interesting to note that while the FN cross
section is nonzero at threshold, the AN cross section is zero
at threshold and rises slowly as the incident energy increases.
This behavior is a result of the vibrational dynamics and is
characteristic of cross sections for excitation of states with
repulsive potential-energy curves (see the same for H2 in
Ref. [45]).

Orel et al. [21] performed FN and AN calculations of the
X 1�+ → a 3�+ transition between 21 and 26 eV and re-
ported similar resonance structures in the FN cross section (as
discussed above and shown in Fig. 7). However, rather than
accounting for the R dependence of the cross sections (as seen
in Fig. 11), Orel et al. [21] took the FN cross section (in
their case calculated at an internuclear separation of 1.455)
and shifted it to reflect the R dependence of the excitation
thresholds:

σ (Ei, R) ≈ σ [Ei − ε(R0) + ε(R), R0], (29)

where Ei is the incident energy, R0 is the equilibrium sepa-
ration, and ε is the (R-dependent) vertical excitation energy.
This shifted cross section was then used in place of the
R-dependent cross section in Eq. (27). The effect of this ap-
proach was to produce a cross section representing the smooth
background scattering contribution without the presence of

FIG. 12. Comparison of the adiabatic-nuclei MCC(27) calcula-
tions with the complex Kohn calculations of Orel et al. [21] and Ertan
et al. [24] for excitation of the a 3�+ and A 1�+ states.

resonances. The later complex Kohn calculations of Ertan
et al. [24] applied the AN approximation with a proper ac-
count of the R dependence of σ (Ei, R) and produced cross
sections for excitation of the a 3�+ and A 1�+ states up
to 40 eV. In Fig. 12 we compare the AN MCC(27) calcu-
lations for the a 3�+ and A 1�+ excitations with the two
sets of Kohn calculations. Ertan et al. [24] also found reso-
nance structures in their AN cross sections and produced a
smooth curve with the resonances removed, which is what
we compare with here. The MCC(27) calculation for the
a 3�+ state is in agreement with the 1991 calculation of Orel
et al. [21] at 20 eV, but is larger at the cross-section peak.
Since the two calculations have a similar magnitude of the
FN cross section at all energies, the difference here is a re-
sult of different ways in which the AN approximation was
applied. Although the 2016 Kohn calculations of Ertan et al.
[24] apply the AN approximation in the same way that we
have, their cross section for the a 3�+ state is much lower
than ours at nearly all energies, and also lower than the 1991
Kohn calculations. The FN cross section for this transition
in the 2016 calculations (see Fig. 2 of Ref. [24]) is about
30% smaller than what was obtained in the 1991 calculations,
which explains the difference. The reason for the discrepancy
between the two FN Kohn calculations is unclear, and is not
discussed in Ref. [24]. For the A 1�+ excitation, the MCC(27)
and 2016 Kohn calculations are in good agreement from 20 to
27 eV, with differences in shape but similar overall magnitude
between 27 and 40 eV.

IV. RESULTS AND DISCUSSION

In Figs. 13 and 14 we present the MCCC cross sections for
excitation of the n = 2−3 electronic states and ionization of
HeH+ from the X 1�+(v = 0) state. The final results for
the discrete excitations were produced by merging the AN
MCC(27) Lmax = 6 and FN MCCC(546) Lmax = 8 models to
improve the accuracy at low energies and enforce the correct
excitation thresholds. The two models are joined between
30 and 40 eV, depending on the transition, at a point where
both MCC(27) and MCCC(546) produce a similar FN cross
section. For transitions where the MCC(27) model is not fully
converged in this region (several of the n = 3 excitations) the
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FIG. 13. Cross sections for excitation of the n = 2−3 singlet
states and ionization of HeH+ by electron impact.

AN MCC(27) cross section is simply scaled to match the
converged MCCC(546) cross section at the matching point.
While this is not perfect, it is only a small energy region
which is affected and this approach allows us to produce
cross sections for all excitations which smoothly approach the
correct threshold. As mentioned in Sec. III D, although this is
a charged target the AN cross sections for these dissociative
transitions are all zero at threshold due to the vibrational
dynamics. The ionization cross section is less accurate near
threshold since it is obtained only from the FN calculation, but
with convergence now established in the FN cross section it
will be possible to perform larger-scale AN calculations in the
future should the need arise. This would also allow the study
of scattering on excited vibrational levels, as we recently did
for the e−-H2 system [15,16].

FIG. 14. Cross sections for excitation of the n = 2−3 triplet
states of HeH+ by electron impact.

In Fig. 15 we present a selection of differential cross
sections (DCS) for excitation of the n = 2 states at five
different incident energies between 30 and 90 eV. No pre-
vious calculations or measurements of DCS exist for this
system. If required, DCS for additional transitions or inci-
dent energies can be calculated and made available upon
request.

There are very few measurements available for compari-
son and aside from the calculations of the a 3�+ excitation
from Orel et al. [21] and the a 3�+ and A 1�+ excitations
from Ertan et al. [24], there are no previous calculations
of electronic excitation or ionization of HeH+ (that we are
aware of). Lecointre et al. [32] and Strömholm [31] both
measured cross sections for electron-impact dissociation of
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FIG. 15. Differential cross sections for electron-impact excita-
tion of the n = 2 states of HeH+ at a selection of incident energies.

HeH+ leading to He+ fragments, and hence we now utilize
the calculated cross sections to estimate the cross section for
He+ production. Referring to Table I, the electronic states
under present investigation which produce He+ fragments
upon dissociation are a 3�+, A 1�+, D 1�+, f 3�+, E 1�+,
e 3�, and g 3�+. Additionally, the ground electronic state of
HeH2+ is repulsive and produces He+ fragments. Since all
electronic excitations and ionization from the X 1�+(v = 0)
state lead to dissociation (see Fig. 1), the dissociation cross
section for particular atomic fragments is obtained simply
by summing the cross sections for the relevant transitions.
Lecointre et al. [32] also measured He2+ fragment resulting
from the ionization-with-excitation process producing HeH2+

in its first electronically excited state, however, their cross
section for this process is two orders of magnitude smaller
than it is for ionization producing He+ and can be neglected.

In Fig. 16 we present our estimates for dissociative exci-
tation (DE) and ionization (DI) leading to He+ fragments, as
well as the total He+ production cross section (DE + DI). The
threshold in the measurements of Lecointre et al. [32] is lower
than the first electronically inelastic threshold due to the con-
tribution from resonance-enhanced dissociation through the
X 1�+ vibrational continuum, a process which was studied by
Orel and Kulander [23]. Strömholm et al. [31] presented their
measurements of the direct and indirect processes separately,
and it is only the first which we present in the figure. The

FIG. 16. Cross sections for production of He+ from electron-
impact dissociative excitation (DE) and ionization (DI) of HeH+. A
comparison is made between the MCCC calculations, the complex
Kohn calculations of Orel et al. [21] and Ertan et al. [24], and the
measurements of Lecointre et al. [32] and Strömholm et al. [31].

first three experimental points of Strömholm et al. [31] above
threshold are somewhat larger than the MCCC calculation,
then between 20 and 24 eV there is good agreement between
the two, and at the peak of the DE cross section the MCCC
calculation is about 20% larger than the highest experimental
point. The 1991 Kohn calculations are considerably lower
than the Strömholm et al. [31] measurements and somewhat
lower than the measurements of Lecointre et al. [32]. Al-
though the 2016 Kohn calculation for the a 3�+ state is
lower than the 1991 Kohn cross section (see Fig. 12), their
inclusion of the A 1�+ state increases the DE cross sec-
tion to be in better agreement with the measurements. Since
there is reasonable agreement between the MCCC calcula-
tions and the 2016 Kohn calculations for the a 3�+ and
A 1�+ states at 40 eV, the slightly higher DE cross sec-
tion obtained in the present work for this energy is due to our
inclusion of higher electronic states. However, the much larger
discrepancy around 25 eV is due entirely to the much smaller
a 3�+ cross section obtained by Ertan et al. [24]. Given the
discrepancy between the two experiments around 25 eV, and
the unsatisfactory agreement between the three calculations,
there is insufficient information to draw any meaningful con-
clusions here other than more experimental and theoretical
investigation would be most welcome.

From the peak of the DE cross section to high energies the
MCCC calculation is systematically larger than the measured
DE cross section of Lecointre et al. [32]. It is worth noting that
the ion source used in the experiment of Ref. [32] produced
HeH+ in various vibrational levels, with populations ranging
from 0.52 for v = 0 to 0.01 for v � 5. However, we showed
previously [9,10,46] that cross sections for dissociation of vi-
brationally excited H2 and H+

2 are larger than for scattering on
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FIG. 17. Cross sections for production of He+ and H+ from
electron-impact dissociation of HeH+, as well as total dissociation
(sum of He+ and H+ production).

the ground vibrational level, and if the same is true for HeH+

then the presence of excited vibrational states cannot explain
the present discrepancy between theory and experiment. This,
of course, should be explored further in future work.

The agreement between MCCC and experiment is better
for DI, though there is still some deviation at the peak and
at high energies. The MCCC DI cross section is not correct
at near-threshold energies since it is calculated in the FN
approximation, but this does not account for the much lower
threshold in the measured ionization cross sections. It can,
however, be explained by the presence of vibrationally excited
ions in the experiment since their ionization energy is smaller.
Due to the discrepancy between the measured and calculated
DE cross sections, the total MCCC He+ production cross sec-
tion (sum of DE and DI) is larger than the results of Lecointre
et al. [32], with the difference being as large as 30% at the
cross-section maximum.

In Fig. 17 we present the cross sections for production
of He+ and H+ ions. Referring again to Table I, the cross
section for production of H+ via DE is obtained by summing
cross sections for excitation of the c 3�, b 3�+, B 1�+,
d 3�+, F 1�, i 3�, I 1�, h 3�, H 1�, and G 1�+ states
(we expect the contribution from direct dissociation of the
X 1�+ continuum to be negligible). The DI process leads to
production of both He+ and H+ ions.

V. CONCLUSION

We presented calculations of 10–1000 eV electron scat-
tering on the X 1�+ (v = 0) state of HeH+ using the
molecular convergent close-coupling (MCCC) method. Cross
sections were calculated for ionization, as well as excitation
of the a 3�+, A 1�+, c 3�, b 3�+, C 1�, B 1�+, d 3�+,
D 1�+, f 3�+, E 1�+, e 3�, F 1�, i 3�, I 1�, h 3�,
H 1�, g 3�+, and G 1�+ electronic states, representing all
states which converge to the n = 2 and 3 states of Li+ in the
united-atoms limit.

FIG. 18. Convergence studies for excitation of the n = 3 elec-
tronic states from the X 1�+ state of HeH+ at R = 1.518 a0.
Convergence is tested with respect to the number of target states
included in the close-coupling expansion. The Coulomb-Born (CB)
cross sections are also shown for the singlet states. Refer to Sec. III B
for discussion.

Detailed convergence studies were performed, with the
largest calculation having 549 electronic states in the close-
coupling expansion and a maximum projectile partial-wave
angular momentum of 8. Higher partial waves were accounted
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FIG. 19. Convergence studies for excitation of the n = 3 states
from the ground electronic state of HeH+ at R = 1.518 a0. Conver-
gence is tested with respect to the size of the projectile partial-wave
expansion Lmax used with the MCCC(546) model. The Coulomb-
Born (CB) cross sections are also shown for the singlet states. Refer
to Sec. III C for discussion.

for using the Coulomb-Born approximation to ensure the cal-
culated cross sections are accurate over the entire incident
energy range. Convergence was verified within 5% with re-
spect to both the number of target states and projectile partial
waves included in the close-coupling expansion. Together,
we estimate an uncertainty of 10% in the calculated cross
sections. The MCCC target excitation energies are accurate
to within 1%, as verified by comparison with the calculations
of Jungen and Jungen [34].

Calculations were performed in the fixed-nuclei approx-
imation, however, the adiabatic-nuclei approximation was
applied to the excitation cross sections at low energies where
the fixed-nuclei approximation breaks down. Although the
fixed-nuclei excitation cross sections are nonzero at the fixed-
nuclei threshold, as is characteristic of charged targets, the
adiabatic-nuclei cross sections all approach zero at threshold
due to the effects of vibrational motion. We found that the
relative contribution of exchange scattering to the ionization
cross section is much larger for HeH+ than for the corre-
sponding atomic system (e−-Li+), and must be included for
incident energies up to 20 times the ionization threshold. Con-
sequently, the Coulomb-Born approximation does not become
valid for ionization of HeH+ until 1000 eV.

Cross sections for H+ and He+ ion production following
dissociative excitation and ionization were also produced, and
comparison with measurements of the latter found in Ref. [32]
showed a discrepancy of up to 30% between theory and ex-
periment. Further theoretical and experimental investigation
is required to understand the source of the disagreement and
produce recommended cross sections.

With convergence now established in the ionization and
n = 2−3 excitation cross sections in the fixed-nuclei ap-
proximation, future work can be directed towards studies
of scattering on vibrationally excited HeH+ and its isotopo-
logues using the adiabatic-nuclei approximation. This would
also allow kinetic-energy-release distributions to be calculated
for the atomic fragments following dissociation, as we have
done previously for H+

2 [47].
The results presented here can be downloaded from the

MCCC database [48].
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APPENDIX: ADDITIONAL CONVERGENCE STUDIES

Convergence studies for excitation of the n = 3 elec-
tronic states of HeH+ are presented in Figs. 18 and 19.
Refer to Secs. III B and III C for discussion. Note that the
MCC(9) model does not contain the n = 3 states so it is not
included here.
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