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QED corrections to the Abraham and Aharonov-Casher forces on Rydberg atoms
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We calculate the Abraham force and the Aharonov-Casher force exerted by the electromagnetic quantum
vacuum on alkali-metal atoms in highly excited, long-living Rydberg states. Because of their high polarizability
and long lifetime such atoms are good candidates to observe these forces.
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I. BRIEF CONTEXT

Electromagnetic fields exert forces on charge-neutral ma-
terials and are due to induced polarizations and magnetization
inside the matter. From a practical point of view we can
distinguish dissipative forces, dispersive forces, and a class
that we can summarize by Abraham forces. The first are
due to absorption or scattering of electromagnetic waves and
are very important at optical frequencies. Dispersive optical
forces are governed by spatial gradients of electromagnetic
energy. They are widely employed in optical tweezers and for
the trapping of cold atoms. Abraham forces are created by
time dependence of the fields and can only be observed at low
electromagnetic frequencies. They are small and controver-
sial, but touch a fundamental issue in the interaction between
matter and electromagnetic waves.

For many decades, a so-called Abraham-Minkowski con-
troversy has existed about the description of momentum of
light in matter [1]. This controversy stems from the apparent
ambiguity to identify the force exerted by light on matter,
when relying on the macroscopic momentum conservation
laws that govern the interaction between matter and electro-
magnetic field.

Several versions for the electromagnetic momentum of
light in matter have emerged leading to different forces act-
ing on material media. The two most well-known are the
Minkowski version, for which the momentum density g(r) is
given by gM = D × B/c0, and the Abraham version, for which
gA = E × H/c0, i.e., it is chosen such that it equals to the
Poynting vector for energy flow divided by c2

0. The difference
between the two momenta can be written as

�G ≡ GM − GA = 1

c0

∫
d3r(P × B + E × M)

= 1

c0
(d × B + E × m) (1)
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in terms of polarization density P and magnetization density
M. The second line, featuring total electric dipole and mag-
netic moment, applies when the applied fields vary little over
the volume of the matter, typically true at low frequencies.
The force d�G/dt highlights the Abraham-Minkowski con-
troversy, but is it really an observable force? Both terms in
this equation are conveniently “dual” in electric and mag-
netic response and we will refer to their time derivatives
as the Abraham force and the Aharonov-Casher (AC) force,
respectively. Other versions have been proposed on the ba-
sis of different arguments [1]. Among these we mention the
Einstein-Laub version, insisting on a dual symmetry between
electric and magnetic fields in the optical force, and the Nel-
son version that favors the momentum density gN = E × B/c0

that emerges microscopically [2]. The controversy is fostered
by the weakness of these forces and the experimental diffi-
culty to discriminate between different versions.

Walker et al. [3] were the first to observe (part of) the
Abraham term (∂t d ) × B in a nonmagnetic medium (M =
0), using an electric field oscillating at low frequencies, and a
static orthogonal magnetic field. Their observation favored the
Abraham version but was unable to distinguish between the
Abraham version and the Einstein-Laub version, which would
require magnetic response. A more recent experiment [4] ob-
served the Abraham force with increased accuracy and was
designed to search for or to exclude the existence of even
smaller QED corrections.

On the theoretical side, many efforts have been undertaken
to “solve” the Abraham-Minkowski controversy. The dual
symmetry expressed by Eq. (1) was emphasized by Hinds
and Barnett [5] and deeper exploited. Bliokh et al. proposed
a dual version of the electromagnetism Lagrangian to solve
the problem [6]. Dual symmetry is a remarkable property
of Maxwell’s equations in free space, but is broken as soon
as electric and magnetic moments of matter are included.
More specifically, the standard Maxwell equations involv-
ing nonrelativistic matter do not predict an Aharonov-Casher
force d/dt (E × m)/c0. Only the force −∂t E × m/2c0 can be
identified for a molecule with a permanent magnetic moment
m subject to an electric field slowly varying in time [7].
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In a gauge theory the Abraham momentum d × B/c0 of a
charge-neutral molecule emerges as the difference between
kinetic and conserved pseudomomentum. This puts Eq. (1)
in a new perspective and assigns different roles for both the
Abraham and Minkowski versions [5]. Gauge theory also
associates Abraham momentum with the “longitudinal” mo-
mentum −∑

i qiAi(r) = d × B/2c0 of the electromagnetic
field in the Coulomb gauge. This establishes an interesting
link with the topological Aharonov-Bohm phase, even though
the geometry to observe the topological phase is designed
to have no net force on the charge. Gauge invariance seems
consistent with dual symmetry since the dual equivalent of the
Aharonov-Bohm phase, the so-called Aharonov-Casher phase
involving a permanent magnetic moment rather than a net
charge, has been predicted from elementary arguments [8] and
observed [9]. The AC momentum emerges naturally from the
Dirac Hamiltonian with spin coupled to the electromagnetic
field [8,9].

A number of studies discussed the possible existence of an
optical force associated with the AC momentum (1/c0)E ×
m. Van Dam and Ruijgrok [10] showed that an AC type of
force (1/c0)(g − 2)m × ∂t E emerges in a relativistic, classical
description of a charged particle with spin S and magneti-
zation m = gμBS where g is the spin gyromagnetic ratio.
Another important contribution was made by Horsley and
Babiker [11]. Using the fact that the center of mass R(t ) of
a set of moving particles with total rest mass M is imposed
by their energies and not by their rest masses, it is possible to
derive an equation of motion that takes the simplified form

MR̈ = d

dt

(
1

c0
d × B + 1

c0
E × m

)
+ · · · . (2)

In this equation dispersive forces have been ignored, who
are known to be dual. Duality has been restored, but since
in special relativity MR̈ no longer equals the real force it is
inappropriate to speak about dual symmetry of the Abraham
force. For that reason, the second term in Eq. (2) is sometimes
referred to as a “hidden” force [12], although the notion of
“hidden dual symmetry” is arguably more appropriate.

The Aharonov-Casher force has never been observed. To
our knowledge, even the Aharonov-Casher topological phase
has never been observed for a particle the magnetic moment
of which is entirely determined by its orbital angular mo-
mentum. In this paper we shall address two quantum aspects
related to both forces in Eq. (1). In former work [13] we have
demonstrated that the interaction of a hydrogen atom with
the quantum vacuum provides a small QED correction to the
Abraham momentum d × B/c0. We extend this approach to
highly excited Rydberg atoms and investigate how the QED
correction to the Abraham force scales with their principal
quantum number. Highly excited Rydberg atoms are inter-
esting because they have large polarizabilities, behave almost
hydrogenlike, and have large lifetimes. We use the same for-
malism for hydrogenlike atoms put in a quantum state with
orbital angular momentum, exposed to a time-independent
electric field. We show that their coupling to the electromag-
netic quantum vacuum generates an Aharonov-Casher type of
force.

II. QED ABRAHAM FORCE ON EXCITED
RYDBERG STATES

In this section we discuss the Abraham force on an alkali-
metal atom with a single electron excited in a circular Rydberg
state. This discussion extends previous work [13] on the QED
correction of the Abraham force for a hydrogen atom in
its ground state, exposed to a slowly varying, homogeneous
electric field crossed with respect to a static, homogeneous
magnetic field. Circular Rydberg states with large orbits have
a large electric polarizability and are good candidates to ob-
serve the classical Abraham force d/dt (d × B0)/c0, also in
view of their large lifetime. For a magnetic field with am-
plitude B0 = 1 mT oscillating at frequency ω = 104 Hz and
an electric field with E0 = 102 V/m, the force acting on a
Rydberg atom with n = 50 is roughly 103 times larger than the
Abraham force measured on atoms [4]. It is therefore relevant
to find out if QED corrections increase similarly. Rydberg
atoms are relatively easy to describe since they behave hy-
drogenlike. This can be deduced from their energy spectrum
that is well described by quantum defect theory [14]:

En� = E0

(n − δ�)2

where E0 is the ground-state energy of the hydrogen atom.
The quantum defect δ� is nonzero when a small overlap of
the wave function exists with the core that has, unlike in
atomic hydrogen, a finite size. The quantum defect is very
small for large angular momentum � because the excited state
hardly overlaps with the core. For circular Rydberg states the
quantum state is well approximated by the wave function of
atomic hydrogen [14].

In order to calculate the Abraham force on the atom we
consider both an external electric field, that we choose to
be time independent, and an external homogeneous magnetic
field that may slowly vary in time. We will replace the ionic
core by a point charge with mass m1, charge +e, and position
r1. The outer electron is labeled by r2 and has mass m2. The
nonrelativistic Hamiltonian which describes the interaction of
the Rydberg atom with both external classical fields and the
quantum electromagnetic vacuum is

H = HR(B0) + HS + W (B0),

HR(B0) = 1

2μ

(
p + �m

M

e

2c0
B0 × r

)2

+ 1

2M

(
P − e

c0
B0 × r

)2
− e2

r
, (3)

HS = −eE0z. (4)

Here p = μ(p1/m1 − p2/m2) denotes the internal canonical
momentum and P = p1 + p2 is the external canonical mo-
mentum related to the center-of-mass motion; M is the mass
of the atom, �m = m1 − m2 is the mass difference between
the ionic core and the outer electron, and r = r1 − r2 is the
relative position between the ionic core and the outer electron.
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The interaction with the quantum vacuum is

W (B0) = − e

c0m1

(
p + m1

M
P − e

2
B0 × r

)
· A(r1)

− e

c0m2

(
p − m2

M
P + e

2
B0 × r

)
· A(r2) (5)

where A(r) is the gauge field of the electromagnetic quantum
field in the Coulomb gauge,

A(r) =
∑
kλ

Akεkλ[a†
kλ

e−ik·r + akλeik·r]

with Ak = √
2π h̄c0/kV for a quantization volume V . Because

of gauge invariance, the interaction W depends explicitly on
the magnetic field. Although m1 � m2 we do not wish to
make any approximation at this stage because we need both
masses to apply mass renormalization. Apart from the mo-
mentum P canonical to the center of mass R of the atom,
two other linear momenta exist. The momentum K, sometimes
called pseudomomentum [15], commutes with H and is con-
served if the magnetic field is time independent. The kinetic
momentum PK = MṘ is associated with the movement of the
atom. They are related by [7]

K(B0) = PK + e

c0
B0 × r + e

c0
�A +

∑
kλ

h̄ka†
kλ

akλ

= P + e

2c0
B0 × r +

∑
kλ

h̄ka†
kλ

akλ (6)

with �A = A(r1) − A(r2). The pseudomomentum K0(B0) of
the atom alone is given by the first two terms of the first line.
Its continuous eigenvalues are denoted by Q0. The last two
terms of the first line represent longitudinal and transverse
momentum of the quantized electromagnetic field [2]. Be-
cause in the second line K depends explicitly on the magnetic
field it is conserved only if the magnetic field is time indepen-
dent. Since the magnetic field is time dependent here, the force
on the atom will achieve an extra term (1/2c0)∂t B0 × 〈d〉 [7].
Any QED correction to this extra force is not of interest
here since it corresponds to a QED correction to the static
polarizability included in its measured value.

A very specific feature of hydrogenlike excited states com-
pared to the ground state is the degeneracy of levels. In the
presence of an electric field, the parabolic basis, with quantum
numbers (n1, n2, m), is more adapted than the spherical basis
(n, l, m) since it diagonalizes both the Stark potential in a
given degenerated subspace and the hydrogen Hamiltonian
without the electric field [16]. The circular Rydberg state
|nC〉 ≡ |n, l = n − 1, m = n − 1〉 is special because it coin-
cides with the parabolic state |n1 = 0, n2 = 0, m = n − 1〉
and is as such also an eigenstate in the degenerated subspace
of the Rydberg Hamiltonian HR. Because n1 = n2 it has no
permanent dipole moment and therefore does not suffer from
the torque d × E0 that would make the angular momentum
rotate in time. This simplifies perturbation theory, because the
electric field along the z axis only couples states with the same
quantum number m. Since n1 + n2 + |m| + 1 = n inside the
subspace of En, no other states exist inside this subspace that
also have m = n − 1. In addition lower subspaces of En′ with
n′ < n do not have this large value of m.

We first ignore the quantum vacuum, so that the only per-
turbations are HS = −eE0z and the Zeeman interaction HZ =
−B0mx with the magnetic moment mx = −(e/2mec0)Lx for a
magnetic field in the x direction. These operators do not com-
mute, which complicates a general analysis. We shall make
the realistic assumption that the Zeeman interaction is small
compared to the Stark interaction. This imposes B0 � E0n/α,
with α the fine-structure constant. In this picture, the mag-
netic field changes the parabolic states without affecting the
degenerate perturbation theory to cope with the electric field.
In that case we can first perturb the atomic state with the Stark
interaction and next deal with the Zeeman term. Perturbation
of the circular Rydberg state by the electric field gives

|nC, E0〉 = |nC〉 +
∑

j /∈μ(En )

| j〉 〈 j|HS|nC〉
E (0)

nC − E (0)
j

+ · · · . (7)

Since m is conserved by HS , the sum excludes any other
state inside the degenerated subspace and nondegenerate
perturbation theory applies. The small parameter in this per-
turbation expansion is ES (n)/ECoulomb(n) ∼ (E0/Eat )n5 with
Eat = e/a2

0 ≈ 5 × 1011 V/m the atomic unit of the electric
field. For n = 50 and an electric field of 102 V/m this ratio
equals 0.06.

With this perturbed state we can first recover the classi-
cal Abraham momentum in Eq. (1) from the second term in
Eq. (6):

〈PA〉 = − e

c0
〈nC, E0|B0 × r|nC, E0〉

= 1

c0
αzz(0)E0 × B0 (8)

with the static electronic polarizability of the circular Rydberg
state [16] given by

αzz(nC) = 2e2
∑
j /∈μn

|〈nC|z| j〉|2
Ej − EnC

= 1

8
n4(17n2 − 9m2 + 19)a3

0 (9)

where m = n − 1. This expression is derived for atomic hy-
drogen, but applies to excited Rydberg states as well because
the sum involves only states far from the ionic core with no
quantum defects. We also verified that for large n the sum over
only all bound states in Eq. (9) is very close to the exact result
in the second line, meaning that ionized continuum states | j〉
hardly contribute to the static polarizability of the Rydberg
state.

Before we calculate the expectation value of the momen-
tum of the electromagnetic quantum vacuum in Eq. (6), we
first need to perturb the Stark eigenfunction by the Zeeman
interaction:

|nC, E0, B0〉 = |nC, E0〉 +
∑
j �=nC

| j, E0〉 〈 j, E0|HZ |nC, E0〉
Ej − EnC

+ · · · (10)

where Ej is the energy of the state | j, E0〉 and EnC is the
energy of the unperturbed state |nC, E0〉. Part of the sum in
this expansion involves states inside the originally degener-
ated subspace μ(En) that have a permanent dipole moment
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and thus achieve a linear Stark shift ES = 3
2 n(n1 − n2)E0a0

from the original level EnC . Some of them are coupled by the
Zeeman interaction. The energies of the states |n1, n2, m, E0〉
and |n1, n2,−m, E0〉 in the subspace μ(En) are still degen-
erated, but are not coupled by the Zeeman effect, so that no
singularities exist in the sum over the states | j, E0〉 inside the
subspace. The modification of the eigenfunction |nC, E0〉 by
the Zeeman effect is small because the Zeeman interaction
was assumed small compared to the Stark interaction.

We shall couple the magnetoelectric circular Rydberg state
|nC, Q0, E0, B0〉 ≡ |{a(nC)}〉 to the electromagnetic quantum
vacuum in the usual way. Here Q0 is the quantum number
of the pseudomomentum K0 of the Rydberg atom in Eq. (6).
We define |{a}{n}〉 ≡ |{a}〉 ⊗ |{n}〉 as the direct product states
of the atomic states and the Fock states with photon oc-
cupation nk and energy E{n} = 
knk h̄ωk. In the standard
approach [17] one slowly switches on the interaction with
the quantum vacuum as W (t ) = exp(ηt/h̄)W . At t0 → −∞
the wave function of atom plus photon field is chosen to be
a direct product of empty photon Fock states {0}〉 and the
magnetoelectric Rydberg state with kinetic momentum Q0.
According to time-dependent perturbation theory the wave
function of the circular state behaves as

|�{a(nC)}〉 = exp

(
−i

∫ t

t0

�nCdt ′
)

|{a}{0}〉

+
′∑

{a′}{n}

W (B0){a′}{n},nC{0}
E{a(nC)}{0} − E{a′}{n} + iη

|{a′}{n}〉. (11)

The accent (′) reminds us not to sum over the unperturbed
state |{a(nC)}{0}〉. The complex frequency �nC denotes the
Lamb shift and the spontaneous decay rate to states with
lower energy. Recall that we search for a momentum linear
in magnetic field. We can apply mutadis mutandis previous
work done for hydrogen that identified after mass renormal-
ization two different contributions to the expectation value of
the longitudinal momentum e�A/c0 of the quantum vacuum
featuring in the pseudomomentum (6) [13]. QED corrections
to the Abraham momentum e/c0B0 × r exist as well but will
be considered as corrections to the static polarizability and
as such part of the classical Abraham momentum. In the
first contribution—〈Plong〉1—the magnetic field enters via the
Zeeman splitting of the atomic Hamiltonian; in the second—
〈Plong〉2—the magnetic field enters via the gauge operators
eB0 × r/2mi of the interaction W (B0) with the quantum vac-
uum, given by Eq. (5). To calculate the second, it is enough
to use the perturbation (7) in the electric field, whereas the
first requires the expansion (10) in the magnetic field. Both
contributions point either along or opposite to E0 × B0 ∼ PA

because the quantum state of the atom has its angular momen-
tum chosen along the electric field so that there cannot be a
third direction in this problem. We explicitly checked that for

an atomic angular momentum chosen opposite to the electric
field the same direction for 〈Plong〉 is obtained as required by
time-reversal symmetry. We obtain

〈Plong〉 = 〈Plong〉1 + 〈Plong〉2

with

〈Plong〉1 = 1
2α2a0〈nC, E0, B0|�(r̂) · p|nC, E0, B0〉

≡ α2κ1(n)PA (12)

where �(r̂) = r−1(1 + r̂r̂) is an operator that emerges from
the integration over the wave number k of the virtual photon.
The second contribution is

〈Plong〉2 = e

2
α2a0〈nC, E0|B0 × r̂|nC, E0〉 ≡ α2κ2(n)PA. (13)

We start with the calculation of the first contribution. Inserting
the Stark wave function (10) leads to

〈Plong〉1 = 1

2
α2a0

∑
j �=nC

〈nC, E0|�(r̂) · p| j, E0〉

× 1

EnC − Ej
〈 j, E0|HZ |nC, E0〉 + c.c. (14)

It is convenient to separate this sum into (a) a sum in-
side the original degenerate subset j ∈ μ(En) and (b) a sum
over all states outside j /∈ μ(En). The first case is charac-
teristic for the Rydberg atoms and is absent for hydrogen
in its ground state. For the case (b) the energy-level sep-
aration of quantum states in different subsets is assumed
to be much larger than the Stark shift (which excludes too
large values for n in which case other complications arise
such as ionization). Since [HR,HZ ] = 0, the matrix element
〈 j|HZ |nC〉 = 0 for any state | j〉 outside μ(En). The matrix
element 〈 j, E0|HZ |nC, E0〉 is thus at least linear in E0 so that
we can ignore the Stark shifts in EnC and Ej in Eq. (14), as well
as the electric-field dependence of the first matrix element.
This gives

〈Plong〉1b = 1

2
α2a0

∑
j /∈μ(En )

〈nC|�(r̂) · p| j〉

× 1

E (0)
nC − E (0)

j

〈 j, E0|HZ |nC, E0〉 + c.c. (15)

This only depends on the Stark eigenfunction | j, E0〉, the
correction of which, linear in the electric field, is given by
Eq. (7).

For states inside the subspace μ(En) the energy difference
in the denominator of Eq. (14) is of the order of the Stark shift.
We can collect terms proportional to 1/E0 and E0 by using
higher-order perturbation theory for the Stark eigenfunctions
and eigenvalues:

〈Plong〉1a =1

2
α2a0

[
j∈μ(En )∑

j �=nC

〈nC, E0|�(r̂) · p| j, E0〉〈 j, E0|HZ |nC, E0〉
E (1)

nC − E (1)
j

+(
E (2)

n −E (2)
j

) 〈nC, E0|�(r̂) · p| j, E0〉(
E (1)

j −E (1)
nC

) 〈 j, E0|HZ |nC, E0〉
E (1)

nC − E (1)
j

+ (
E (3)

n − E (3)
j

) 〈nC|�(r̂) · p| j〉(
E (1)

j − E (1)
nC

) 〈 j|HZ |nC〉
E (1)

nC − E (1)
j

+ (
E (2)

n − E (2)
j

)2 〈nC|�(r̂) · p| j〉(
E (1)

j − E (1)
nC

)2

〈 j|HZ |nC〉
E (1)

nC − E (1)
j

+ c.c.

]
. (16)
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FIG. 1. Absolute value of the parameter κ2(n), describing the
QED correction to the Abraham momentum via the magneto-optical
interaction with the quantum vacuum, as a function of the principal
quantum number n of the Rydberg state. The fit shows that κ2(n)
varies as n−2.

Except for the first term, all terms in this expansion are of
the same order but behave differently as n increases. The first
term generates a momentum proportional to (1/E0)B0 × ẑ.
Because the Rydberg state was given an angular momentum
along the z axis the matrix element in the numerator of the
first term survives even when E0 = 0. By choosing the an-
gular momentum opposite to E0 we verified that the same
direction is found, consistent with time-reversal symmetry. It
decays rapidly as n−4 whereas all others grow with n. For
a typical electric field E0 ≈ 102 V/m and n = 50 it is much
smaller than the other terms. Among all terms in Eq. (16), the
dominating contribution is obtained by applying second-order
perturbation of the Stark wave function in the first term that
we will not specify in detail. This compensates the factor E0

in the denominator, and produces a momentum of the form
E0 × B0.

We have evaluated Eqs. (15) and (16) numerically and have
omitted the negligible term proportional to (1/E0)B0 × ẑ in
the first term of Eq. (16). The results are shown in Figs. 1–3.
We have included only the eigenfunctions associated with the
discrete spectrum. For the ground state the continuum makes
a relevant contribution [13], but as was mentioned earlier to
be the case for the static polarizability (9) we expect the
contribution of the continuous spectrum to be negligible. The
momenta 〈Plong〉1a and 〈Plong〉2 point in the same direction
as PA whereas the correction 〈Plong〉1b is in the opposite di-
rection. Figure 3 shows that the correction κ1a(n) ∼ a + b ×
(50/n) + c × (50/n)2 dominates over the corrections κ2 and
κ1b. We conclude that the quantum vacuum correction to the
classical Abraham momentum of a highly excited Rydberg
state is positive and of relative order 0.028α2. The same order
of magnitude was found for the ground state of hydrogen, that
has however a much smaller classical Abraham momentum.

III. QED AHARONOV-CASHER TYPE OF FORCE
ON A RYDBERG ATOM

In this section we consider an atom in a single excited
Rydberg state exposed to only a homogeneous electric field.

FIG. 2. Absolute value of the parameter κ1b(n), describing the
QED correction to the Abraham momentum via the Zeeman splitting
of the atomic energy levels outside the subspace associated with the
level |nC, E0〉, as a function of the principal quantum number n. The
fit shows that κ1b(n) varies as n−2.

The electric field is assumed time independent, so that no
classical optical force of the kind m × (dE0/dt )/c0 is exerted
on the atom [7]. Contrary to the previous section, the atom is
assumed to be in a quantum state associated with an angular
momentum L that is not aligned with the electric field. This
geometry is not conserved in time and L(t ) will either oscil-
late or rotate in a plane perpendicular to the applied electric
field [16]. In the following we will derive an Aharonov-Casher
force proportional to (dm/dt ) × E/c0 caused by the interac-
tion with the quantum vacuum.

If we couple this atom to the electromagnetic field, the non-
relativistic Hamiltonian H of atom and quantized radiation in
Eq. (3) simplifies to

H = Hat + W + HF (17)

FIG. 3. Absolute value of the parameter κ1a(n), describing the
QED correction to the Abraham momentum via the Zeeman split-
ting of the atomic energy levels inside the subspace associated with
the level |nC, E0〉, as a function of the principal quantum number
n. The fit shown is f (n) = 2.78 + 5788 × 10−2(50/n)2 − 1.05 ×
10−1(50/n).
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with

Hat = p2

2μ
+ P2

2M
− e2

r
+ HS,

with the Stark interaction and the transverse photon
Hamiltonian given by

HS = −eE0z, HF =
∑
kλ

h̄ωka†
kλ

akλ,

and the interaction with the quantum vacuum given by

W = e

c0m1

(
−p − m1

M
P
)

· A(r1) − e

c0m2

(
p − m2

M
P
)

· A(r2).

Particle 1 is the Rydberg ion with charge +e, and particle
2 is the electron. We choose the external electric field again
along the z axis. Photonic operators A2 have been ignored.
The pseudomomentum defined in Eq. (6) becomes

K = PK + e

c0
A(r1) − e

c0
A(r2) +

∑
kλ

h̄ka†
kλ

akλ. (18)

If |�(t )〉 is the quantum state of atom and electromagnetic
field at time t , the expectation value 〈K〉 = 〈�(t )|K|�(t )〉 can
be separated into a kinetic, an electromagnetic longitudinal,
and an electromagnetic transverse momentum. Since K is
conserved in time we find for the force on the atom

F = d〈PK〉
dt

= − d

dt
[〈Plong〉 + 〈Ptrans〉].

Without the quantum vacuum, this force vanishes since the
atom is neutral and no classical Aharonov-Casher force ex-
ists. QED corrections can come from both terms in this
expression, but we find the transverse part typically a factor
α2 = (e2/h̄c0)2 smaller than the longitudinal momentum (see
Appendix A). Because we cannot concentrate on a single
circular Rydberg state with angular momentum directed along
the electric field (in which case the Aharonov-Casher momen-
tum m × E0 would vanish) we have to be more careful with
degenerated perturbation theory of the Stark interaction than
in the previous section. A parabolic state |�〉 = |n1, n2, m〉 in
the subspace μ�, defined by the set of eigenfunctions of Hat

with equal eigenenergy, is linearly perturbed by the electric

field according to [16]

|�E0〉 = |�〉 +
∑
n/∈μ�

〈n|HS|�〉
E (0)

� − E (0)
n

|n〉

+
E (1)

�
�=E (1)

�′∑
�′∈μ� �=�

∑
n/∈μ�

|�′〉
E (1)

�′ − E (1)
�

〈�′|HS|n〉〈n|HS|�〉
E (0)

� − E (0)
n

(19)

with E (1)
� = 〈�|HS|�〉 the first-order Stark shift of the

parabolic state |�〉. If |�〉 is not a circular state, the third
complicated term does not necessarily vanish.

We next add the quantum vacuum using the same pro-
cedure as in the previous section [17]. This time, the wave
function of atom plus photon field at t0 → −∞ is chosen to
be a direct product of empty photon Fock states {�E0}〉 and
some superposition of parabolic states

∑
� β�|�E0〉 with same

energy E (0)
� and same kinetic momentum Q0. The coefficients

β� will later be chosen such that this state has a well-defined
orbital momentum and remains Rydberg-like in time. Accord-
ing to time-dependent perturbation theory, the wave function
behaves as

|�(t )〉 =
∑
�∈μ�

βl e
− i

h̄ E�E0{0}t

[
e− i

h̄

∫ t
t0

�l dt ′ |�E0{0}〉

+
′∑

�′E0{n}

W�′E0{n},�E0{0}
E�E0{0} − E�′E0{n} + iη

|�′E0{n}〉
]
. (20)

The complex coefficient �l contains the Lamb shift and
the decay rate for the state |�E0{0}〉. Using the wave function
in Eq. (20), the longitudinal momentum defined in Eq. (18) is
given by

〈Plong(t )〉 =
∑

�,�′∈μ�

γ��′ (t )
′∑

j{n}
〈�′E0{0}| e

c0
�A| jE0{n}〉

× WjE0{n},�E0{0}
E�E0{0} − EjE0{n} + iη

+ c.c. (21)

For brevity we introduced γ��′ (t ) ≡ β�β
∗
�′ exp[−i(E�E0 −

E�′E0 )t/h̄]. Because the Stark potential lifts the energy degen-
eracy in the subspace μl this coefficient oscillates in time with
the Stark frequency. Restricting to the creation and annihila-
tion of one virtual photon to stay in the same state we obtain

〈Plong〉 = − 2
e2

c2
0

Re
∑

�,�′∈μ�

γ��′ (t )
∑

k

A2
k

{
〈�′E0|(1 − e−ik·r)

[
E�Q0{0} − Hat

(
p − m2

M
h̄k, Q0 − h̄k

)
− h̄ωk + iη

]−1

× �k ·
(

p
m1

+ Q0

M

)
|�, E0〉 + 〈�′, E0|(eik·r − 1)

[
E�Q0{0} − Hat

(
p + m1

M
h̄k, Q0 − h̄k

)
− h̄ωk + iη

]−1

× �k ·
(

p
m2

− Q0

M

)
|�E0〉

}
. (22)

In this lengthy expression, momentum operators have been
reintroduced so that the recoil momentum h̄k induced by the
virtual photon on both proton and electron is highlighted. If
E�′ < E� the denominators can actually vanish, meaning that

real photons can come in provided they have precisely de-
fined energy and momentum. As η → 0, the delta distribution
around this transition gives a finite k integral and is negligible.
Dominant contributions can be identified that simplify signifi-
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cantly. The terms involving an exponential e±ik·r do not suffer
from a divergence in the integral over k. Such terms consti-
tuted the leading contribution to the Abraham force in the
previous section. In this case the leading terms are the matrix
elements involving the momentum operators ±p/mi + Q0/M.
The k integrals involving the external momentum Q0/M di-
verge and can be regularized by mass renormalization [13].
The divergent parts can be extracted upon taking the large-k
limit where atomic interactions can be ignored:〈

Pdiv
long

〉 = δm1 + δm2

M
Q0 = δM

M
Q0 (23)

with the logarithmically diverging masses

δmi = 4αh̄2

3π

∫ ∞

0
dk

k

h̄ωk + h̄2k2

2mi

.

The diverging inertial mass (23) disappears in the classical
momentum MṘ by redefining the atom mass as M + δM.
The two terms proportional to the internal momenta ±p/mi

have opposite sign and quite remarkably their divergencies at
large k cancel. The dominant contribution comes from virtual,
energetic photons for which we can ignore atomic energies in
the denominators. This simplifies to

〈Plong〉 = − 8α

3π
log

(m1

m2

) ∑
�,�′∈μ�

γ��′ (t )〈�′E0|p|�E0〉

= − 8α

3π
log

(m1

m2

)
〈p(t )〉 (24)

where we used that

δm1

m1
− δm2

m2
= 4αh̄

3π

∫ ∞

0
dk

[
1

m1c0 + h̄k
2

− 1

m2c0 + h̄k
2

]

= − 8α

3π
log

(m1

m2

)
< 0 (25)

with m2 = me the mass of the electron and m1 the mass of the
nucleus. We have written 〈p(t )〉 for the expectation value of
the internal momentum associated with the Stark wave func-
tion |�(t )〉 = ∑

� β�(t )|�E0〉. The above integral over photon
wave numbers has significant contributions from energetic but
still nonrelativistic photons with momenta

h̄

an
≈ α

n2
mec0 < h̄k < mec0

and for which the present approach should be valid. Photons
with k < 1/an make a positive contribution to Eq. (24), but
since their wavelength compares to the orbital size an atomic
energies can no longer be neglected and small corrections to
Eq. (24) exist. Photons with k > mec2

0 give a finite contribu-
tion but should be given a relativistic approach. This can in
fact be done and changes Eq. (24) by exactly a factor of 1/4
(Appendix B). We emphasize that this integral must converge
in any more advanced description as no classical term exists
that can be regularized by mass renormalization.

The next step is to evaluate Eq. (24) by inserting the Stark
wave function in Eq. (19). Because ih̄p/μ = [r,Hat] any con-
tribution to Eq. (24) with E�E0 = E�′E0 vanishes. This is the
case for parabolic states that differ only in the sign of the quan-
tum number m and that have the same Stark shift. We can also

see that 〈�′′|p|�〉 = 0 for pure parabolic states � and �′′ inside
the same subspace μ�. As a result, the second, more compli-
cated, part of the Stark wave function (19) conveniently drops
out in the calculation. We can write 〈p(t )〉 = (μ/e)d〈d〉/dt ,
with d = er the atomic dipole moment. Because, for a pure
Stark state |�, E0〉, 〈Plong〉 vanishes, we choose a superposition
that corresponds to a finite expectation value of the angular
operator L in the xy plane. This involves parabolic states
that possess a permanent dipole moment in the xy plane. The
angular momentum is not conserved because the electric field
exerts a torque on the atom, as described by

d〈L〉
dt

= 1

ih̄
〈[Hat, L]〉 = 〈d〉 × E0. (26)

This is equivalent to

d2〈L〉
dt2

× E0 = −eE2
0

μ
〈p〉.

We can check that the angular momentum rotates in the
xy plane with the Stark frequency ωn = 3

2 nea0E0/h̄, so that
d2〈L〉/dt2 = −ω2

n〈L〉. We can therefore write Eq. (24) as

〈Plong(t )〉 = 3

π

[
n2

α
log

(m1

m2

)](
1

c0
E0 × 〈m〉(t )

)
. (27)

We inserted a0 = h̄/αmec0, used m = −(e/2mec0)L for the
magnetic moment of the Rydberg state, and included the
relativistic factor of 1/4. Expression (27) describes an
Aharonov-Casher type of momentum with a prefactor that
is actually much larger than the one put forward in Eq. (1)
although it will turn out to be very small because the allowed
external field is constrained by the atomic physics. We can
now choose a convenient superposition state in the expres-
sion (27):

|nR(t )〉 = 1√
2

[|0, 0, n − 1〉 + e−iωnt |1, 0, n − 2〉]. (28)

For large n, this is the superposition of a circular Rydberg
state and a nearly circular Rydberg state. This state has the
advantage of having a large lifetime needed for the Aharonov-
Casher force on the atom to be observable, much larger than
the Stark period 1/ωn. If we choose n = 50 and E = 1 V/m
we find a typical Stark cycle 1/ωn ≈ 8 × 10−3 ms whereas the
lifetime of the atom is of order τ ≈ 1 ms. For the superposi-
tion above the angular momentum rotates along the electric
field according to

〈L(t )〉 = h̄

(√
n − 1

2
cos(ωnt ),

√
n − 1

2
sin(ωnt ), n − 3

2

)
so that the momentum oscillates with amplitude

|〈Plong〉| = 3

4π
n2

√
n − 1

ea0E0

c0
(29)

and frequency ωn. This is equivalent to an oscillation

�x ≈ 1/4 × 4n
√

n − 1α
me

M
a0 ≈ n

8

√
n − 1 × 10−15 mp

M
m

(30)

of the atom, independent of the applied electric field. For this
choice of parameters, the Aharonov-Casher force on the atom
is F ≈ 5 × 10−29 N. This force is still very small but actually a
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factor 103 larger than the Abraham force observed in Ref. [4].
In this experiment we estimated �x = 3 × 10−14 m. The
Aharonov-Casher type of force found here is directly related
to the different mass renormalization by the electromagnetic-
field quantum vacuum of electron and nucleus.

IV. CONCLUSIONS

In this paper we have discussed QED corrections to the
electromagnetic Abraham force exerted on a highly excited
Rydberg atom, for two different cases. First, we have in-
vestigated the Abraham force F = (1/c0)〈d〉 × ∂t B0 on a
singly excited Rydberg atom subject to a time-dependent,
homogeneous magnetic field crossed with respect to a static,
homogeneous electric field that induces a dipole moment d.
This extends previous work done on the ground state of the
hydrogen atom [13]. The significant degeneration of energy
levels and the presence of a large orbital angular momentum
are characteristic for the Rydberg states, and are both absent
for atomic hydrogen in its ground state. Despite this different
picture the dominant contribution stemming from the longi-
tudinal momentum of the electromagnetic quantum vacuum
(proportional to its vector potential) relative to the classical
Abraham force is of the same relative order 0.03α2, with α

the fine-structure constant, though with opposite sign. This
reveals that both classical and quantum force grow as fast as
n6 with the principal quantum number n of the Rydberg state.
More precisely, the relative QED correction to the Abraham
force for n = 50 is only a factor 4 smaller than the one found
for ground-state hydrogen and directed along the direction of
the classical force. We conclude that Rydberg atoms behave
more or less hydrogenlike with respect to the Abraham force
and are therefore good candidates to observe the QED Abra-
ham force, especially because they are more convenient to
handle experimentally and have large enough lifetimes.

In the second part of this paper we have calculated the
QED force on a Rydberg atom in an external static, homo-
geneous electric field E0. If the magnetic moment m of the
atom is not parallel to the electric field we have found a force
of the Aharonov-Casher type F = (1/c0)E0 × d〈m〉/dt . To
our knowledge, this force has no classical equivalent. Our
approach reveals a contribution from the quantum vacuum
that grows with the principle quantum number n. The force
is directly related to the mass renormalization in QED that is
different for electron and nucleus. Again we conclude that this
small force should be in reach of experimental observation.

APPENDIX A: TRANSVERSE MOMENTUM OF THE
ELECTROMAGNETIC QUANTUM VACUUM

The transverse electromagnetic momentum is associated
with real photons with transverse polarization, and given by
the operator

Ptrans =
∑
kλ

h̄ka†
kλ

akλ. (A1)

We calculate the expectation value for a Stark state |�, E0〉 and
an empty electromagnetic vacuum. We consider the exchange
of only one photon with arbitrary wave number k with the
quantum vacuum as it is slowly turned on and set Q0 = 0. We

obtain, similar to the approach in Sec. III,

〈Ptrans〉 = e2 exp(2ηt/h̄)
∑

�,�′∈μ�

γ��′ (t )
∑

k

A2
k h̄k

〈�′, E0| p
me

· �k
1

H�′ + D − iη

1

H� + D + iη
· p

me
|�, E0〉

where H� = h̄2k2/2me + h̄c0k + Hat − E� is the operator as-
sociated with the change in energy by the emission of the
photon and includes photon recoil and photon energy, and Hat

is the Hamiltonian introduced in Eq. (17). The “Doppler” op-
erator D = p · h̄k/me discriminates between emitted photons
along and opposed to the electron movement without which
the k integral would clearly vanish. Since 〈p〉/me � c0 we
can expand both denominators in D to give

〈Ptrans〉 = 2πe3h̄3e2ηt/h̄

c0m3
e

∑
�,�′∈μ�

γ��′ (t )
∑

k

k̂ik j (�k)mh

× 〈�′, E0|pm

[
1

H�′ − iη
p j

1

H�′ − iη

1

H� + iη

+ 1

H�′ − iη

1

H� + iη
p j

1

H� + iη

]
ph|�, E0〉.

If intermediate atom states are inserted as a complete set, con-
tributions appear where the denominators vanish as η → 0.
They contribute to spontaneous emission releasing real pho-
tons [17] and possibly to d〈Ptrans〉/dt �= 0 if this emission is
anisotropic for some reason. Here we focus on 〈Ptrans〉 itself
corresponding to terms that are finite when η → 0. Large
photon energies dominate and we can approximate H� ≈
h̄2k2/2me + h̄c0k. Using

∫ ∞
0 dkk3/H3

� = me/h̄4c2
0,

〈Ptrans〉 ≈ α3
(a0

h̄

)2 ∑
�,�′∈μ�

γ��′ (t )〈�′, E0|p3|�, E0〉. (A2)

If we acknowledge that p2 ∼ α2m2
ec2

0 we see that〈Ptrans〉 is
smaller than 〈Plong〉 found in Eq. (24) by a factor α2.

APPENDIX B: RELATIVISTIC TREATMENT OF HIGHLY
ENERGETIC VIRTUAL PHOTONS

Our calculations involve the creation and annihilation of
virtual photons. Virtual photons with energies h̄ω > mec2

0 are
seen to give a significant contribution. For the highly energetic
photons to be correctly treated a relativistic description is
needed. Concerning the Abraham force on Rydberg atoms we
know that highly energetic virtual photons are negligible due
to the presence of the operator e±ik·r in the k integrals. It is not
the case for the Aharonov-Casher type of force on Rydberg
atoms. Hence, to get a better estimation of the k integrals in
Eq. (25) it is possible to give a relativistic treatment to the
problem. The nonrelativistic Hamiltonian for free particles is
replaced by the corresponding relativistic Hamiltonian with-
out spin. We also include the free particle relativistic energy
in the interaction Hamiltonian at leading order in the coupling
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constant. Thus, the atomic Hamiltonian and the interaction
with the quantum vacuum operator are modified as

HR
at =

2∑
i=1

c0

√
p2

i + m2
i c2

0 − e2

r
+ HS, (B1)

W R =
2∑

i=1

−qi pi · A(ri )√
p2

i + m2
i c2

0

(B2)

where q1 = e and q2 = −e. The superscript R stands for “rel-
ativistic.” Expression (18) for the conserved momentum K
remains unchanged. We can do the same calculation as we
have done with the nonrelativistic expressions. The k integral
in (25)∫ ∞

0
dk

[
1

m1c0 + h̄k
2

− 1

m2c0 + h̄k
2

]
= −2

h̄
log

(m1

m2

)
(B3)

is replaced by

∫ ∞

0
dk

⎡
⎣ h̄k√

h̄2k2 + m2
1c2

0

(√
h̄2k2 + m2

1c2
0 + h̄k − m1c0

)

− h̄k√
h̄2k2 + m2

2c2
0

(√
h̄2k2 + m2

2c2
0 + h̄k − m2c0

)
⎤
⎦. (B4)

The comparison of the integrand of (B3) to the one of (B4)
reveals that the error made is mostly concentrated in the
momentum window m1c0 < h̄k < m2c0 as expected. The in-
tegral (B4) equals exactly 1/4 times the integral (B3).
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