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Tune-out wavelengths for the 2 3S1 state of the Li+ ion
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Configuration interaction calculations are performed to determine the dipole polarizabilities and tune-out
wavelengths for the 2 3S1 state in Li+ ion. The finite nuclear mass correction is given by including the mass
shift operator in the Dirac-Coulomb-Breit Hamiltonian directly, while the QED correction to dynamic dipole
polarizabilities is evaluated by using the perturbation theory. The tune-out wavelengths for the 2 3S1 (MJ = 0)
and 2 3S1 (MJ = ±1) states are 159.620 55(6) nm and 159.631 14(6) nm, respectively. And the QED correction
for 159 nm tune-out wavelength is 43 ppm. In addition, we obtain the static dipole polarizability for the
2 3S1 (MJ = ±1) state to be 46.857 03(4) a.u., in which the contribution from QED is 70 ppm. The 159 nm
tune-out wavelength and the static dipole polarizability of 2 3S1 state might provide a test of atomic structure
theory.
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I. INTRODUCTION

High-precision theoretical calculations and spectroscopic
measurements of transition frequencies for light atoms and
molecules are actively studied as a way of testing quantum
electrodynamics (QED) theory in the last decade [1–7]. For
helium, the relative precision of frequency measurements for
some transitions has reached the 10−12 level [3,4]. This ex-
perimental precision is sufficient to determine the nuclear
charge radii of 3He and 4He. However, the nuclear charge radii
extracted from 2 3S → 2 3P and 2 3S1 → 2 1S0 transitions
have a 4σ discrepancy [1,3,8–11]. Even combined with the
theoretical investigations [12,13], the discrepancy still exists.
Recently, Patkóš et al. have performed the calculations of the
complete mα7-order QED effects for the 2 3S and 2 3P states
[6], but the discrepancy between theory and experiment for
the 2 3S → 3 3D and 2 3P → 3 3D transitions has not been
solved.

In 2013, Mitroy and Tang proposed that the 413 nm tune-
out wavelength for the metastable state of helium would
provide a nonenergy test of atomic structure theory [14].
Henceforth, Henson et al. performed the first measurement
for this tune-out wavelength [15] in 2015. And the tune-out
wavelength including the relativistic, finite nuclear mass, and
QED effects was calculated by Zhang et al. using the relativis-
tic configuration interaction method [16]. These results are
consistent at the ppm level. In recent research, the accuracy
of experimental result for 413 nm tune-out wavelength has
reached 0.4 ppm, which differs from theory by 1.7 times the
measurement uncertainty [17]. Compared with helium, the
leading order QED effect of Li+ is about five times larger,
since the leading order QED correction increases in propor-
tion to the Z4 (Z is the nuclear charge number). Therefore,
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Li+ ion is also a suitable system to test the atomic structure
theory.

For the Li+ ion, the theoretical energies that account for all
relativistic and QED effects up to mα6 order of the low-lying
states are given in Ref. [18]. And there are many theoretical
results of the dipole polarizability for the low-lying states
based on different methods [19–32]. However, only a few
works have investigated the dynamic polarizabilities of the
2 3S state [21,22,32]. The rigorous upper and lower bounds
to the dynamic polarizabilities of the 2 3S state are given
by Glover and Weinhold [21,22]. Zhang et al. obtained the
dynamic dipole polarizabilities and tune-out wavelengths for
the four lowest triplet states, and magic wavelengths for
the 2 3S → 3 3S, 2 3S → 2 3P, and 2 3S → 3 3P transitions
by using the nonrelativistic configuration interaction method
[32]. To our knowledge, the relativistic, finite nuclear mass,
and QED effects of dynamic dipole polarizabilities for the
2 3S state have rarely been investigated.

Recently, the Zemach radii of 6Li+ and 7Li+ ions have
been extracted by comparing high-precision calculations and
measurements [33]. The difference of Zemach radii for
the 6Li+ ion between the value in Ref. [33] and nuclear
physics value [34] reveals the anomalous nuclear structure
for the 6Li+ ion. The measurements of hyperfine and fine-
structure splittings for the 2 3S1 and 2 3PJ states have now
attained an uncertainty less than 100 kHz [35]. The re-
sults of the 2 3PJ state are one order of magnitude more
accurate than those of previous measurements [36]. These
precise calculations and measurements make it possible to
explore the nuclear structure and test the atomic structure
theory.

In addition, the technology of the optical frequency comb
in the extreme ultraviolet (XUV) region has been developed in
the past two decades [37–39]. With the advent of the XUV fre-
quency comb, the measurement of the 1S → 2S two-photon
transition in He+, He, and Li+ has been achieved [40–43].
The development of experimental technology will prompt
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new research into testing the atomic structure theory of the
Li+ ion.

In this paper, the relativistic configuration interaction
(RCI) calculations including finite nuclear mass correction
are performed for the dynamic dipole polarizabilities for the
2 3S1 state of the Li+ ion. QED correction of dynamic dipole
polarizability is evaluated by the perturbation method using
nonrelativistic energies and wave functions. The accuracy of
static dipole polarizability has achieved 0.4 ppm. We also de-
termine the tune-out wavelengths for the 2 3S1 (MJ = 0) and
2 3S1 (MJ = ±1) states to be 159.620 55(6) nm and 159.631
14(6) nm, respectively. The finite nuclear mass and QED
corrections of the 159 nm tune-out wavelength are 261 ppm
and 43 ppm, respectively. The 159 nm tune-out wavelength is
sensitive to finite nuclear mass, relativistic, and QED effects,
which would provide an independent nonenergy testing for
the atomic structure theory of Li+ ion. Atomic units (a.u.) are
used throughout this paper unless otherwise specified.

II. THEORETICAL METHOD

The present calculations are based on the Dirac-Coulomb-
Breit (DCB) Hamiltonian, which includes the mass shift (MS)
operator HMS directly,

H =
2∑

i=1

[
cαi · pi + βmec2 − Z

ri

]
+ 1

r12

− 1

2r12
[α1 · α2 + (α1 · r̂12)(α2 · r̂12)] + HMS, (1)

where c = 137.035999074 is the speed of light [44], αi and β

are the Dirac matrices, pi is the momentum operator for the
ith electron, me is the electron mass, Z is the nuclear charge,
r̂12 is the unit vector of the electron-electron distance r12, and
the first term in the second row of Eq. (1) is the Breit operator
with the retardation effect excluded. The MS operator HMS

includes the normal (HNMS) and specific mass shift (HSMS)
operators [45],

HMS = HNMS + HSMS, (2)

HNMS = 1

2M

∑
i

[
p2

i − αZ

ri

(
αi + (αi · ri )ri

r2
i

)
· pi

]
, (3)

HSMS = 1

2M

∑
i �= j

[
pi · p j − αZ

ri

(
αi + (αi · ri )ri

r2
i

)
· p j

]
, (4)

where M is the nuclear mass, and α is the fine-structure con-
stant. The Notre Dame basis sets [46] of N number of B-spline
functions are used to construct the single-electron wave func-
tions. And the wave function for a state of Li+ with angular
momentum (J, MJ ) is expanded as a linear combination of
the configuration-state wave functions, which are constructed
by the single-electron wave functions. The negative-energy
B-spline orbitals of single-electron are excluded in present
RCI calculations.

The dynamic dipole polarizability for the magnetic sub-
level |γgJgMJg〉 in the linearly polarized light is

α1(ω) = αS
1 (ω) +

3M2
Jg

− Jg(Jg + 1)

Jg(2Jg − 1)
αT

1 (ω), (5)

where αS
1 (ω) and αT

1 (ω) are, respectively, the scalar and tensor
dipole polarizabilities, which can be expressed as the sum-
mation over all intermediate states |γnJnMJn〉, including the
nonrelativistic forbidden transition and the continuum,

αS
1 (ω) =

∑
n �=g

f (1)
gn

(�Egn)2 − ω2
, (6)

αT
1 (ω) =

∑
n �=g

(−1)Jg+Jn

√
30(2Jg + 1)Jg(2Jg − 1)

(2Jg + 3)(Jg + 1)

×
{

1 1 2
Jg Jg Jn

}
f (1)
gn

(�Egn)2 − ω2
. (7)

In the above equations, the dipole oscillator strength f (1)
gn is

defined as

f (1)
gn = 2|〈NgJg‖T ‖NnJn〉|2�Egn

3(2Jg + 1)
, (8)

where �Egn = En − Eg is the transition energy from the initial
state |γgJg〉 to the intermediate state |γnJn〉, ω is the photon
energy of the external field, and T is the dipole transition
operator.

QED corrections to dynamic polarizability and tune-out
wavelength are evaluated by the perturbation theory using
nonrelativistic energies and wave functions, which are ob-
tained by nonrelativistic configuration interaction (NRCI)
calculations [47,48]. The QED correction of the dynamic po-
larizability [16] for |g〉 state is

δα
QED
1 (ω) = 2

[ ∑
n

〈g|D|n〉〈n|D|g〉〈g|δHQED|g〉[(En − Eg)2 + ω2]

[(En − Eg)2 − ω2]2
− 2

∑
nm

〈g|D|n〉〈n|D|m〉〈m|δHQED|g〉(En − Eg)

[(En − Eg)2 − ω2](Em − Eg)

−
∑
nm

〈g|D|n〉〈n|δHQED|m〉〈m|D|g〉[(En − Eg)(Em − Eg) + ω2]

[(En − Eg)2 − ω2][(Em − Eg)2 − ω2]

]
, (9)

where |n〉 and |m〉 are the intermediate states, and δHQED is the QED operator, expanded to mα5 and mα6order [18],

H (3)
QED = 4Zα3

3

{
19

30
+ ln[(Zα)−2] − ln

(
k0

Z2

)}
[δ3(r1) + δ3(r2)] + O(r12), (10)

H (4)
QED = α4

{[
− 9ζ (3)

4π2
− 2179

648π2
+ 3 ln(2)

2
− 10

27

]
πZ +

[
427

96
− 2 ln(2)

]
πZ2

}
[δ3(r1) + δ3(r2)]. (11)
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TABLE I. Convergence test of energy (in a.u.) for the 2 3S1 state
of Li+ ion. The numbers in parentheses are computational uncertain-
ties.

(N, �max) NRCI RCI RCI(7Li+)

(40,7) −5.110 727 210 −5.111 343 477 −5.110 942 441
(40,8) −5.110 727 267 −5.111 343 542 −5.110 942 480
(40,9) −5.110 727 296 −5.111 343 559 −5.110 942 533
(40,10) −5.110 727 311 −5.111 343 576 −5.110 942 545
(45,10) −5.110 727 330 −5.111 343 611 −5.110 942 544
(50,10) −5.110 727 338 −5.111 343 595 −5.110 942 555
Extrap. −5.110 727 36(4) −5.111 343 63(4) −5.110 942 55(4)
Ref. [18] −5.110 727 373 −5.111 343 494 −5.110 942 448

Here ln k0 = 5.17107628(2) is the Bethe logarithm for the
2 3S1 state of Li+ ion [49], ζ (x) is the Riemann Zeta function,
and O(r12) represents the remaining term connected with r12

of mα5 order.

III. ENERGIES AND OSCILLATOR STRENGTHS

In the present calculations, we used the N B-spline func-
tions of order k = 7 with the maximum partial wave �max in
a cavity with radius of 150, which accommodates the initial
state and the corresponding intermediate states for calculating
the dynamic dipole polarizabilities for the 2 3S1 state.

Table I gives the convergence test of energy for the 2 3S1

state of Li+ ion. The NRCI and RCI columns represent non-
relativistic and relativistic energies without finite nuclear mass
effect, respectively. The last column represents the energy of
7Li+ ion including relativistic and finite nuclear mass cor-
rections. The extrapolation was done by assuming that the
ratio between two successive differences in energies stays
constant as the maximum number of partial wave �max and the
number of B-spline functions N become infinitely large. The
nonrelativistic result −5.110 727 36(4) without finite nuclear
mass correction agrees well with the value −5.110 727 373 in
Ref. [18]. The relativistic results in the last two columns have
seven same digits compared with the perturbation results [18],
which includes the mα4-order relativistic correction and lead-
ing order finite nuclear mass correction. From the NRCI and
RCI columns, the relativistic correction to the energy of the
2 3S1 state is −0.000 616 27(6). Comparing the extrapolated
values between RCI and RCI(7Li+) columns, it is found that
the finite nuclear mass effect for the 7Li+(23S1) state is 0.000
401 08(6).

For 2 3PJ states, the present NRCI energy is −5.027 715
62(4), which has eight same digits with the result of −5.027
715 681 [18]. The RCI energies of 2 3PJ states, seen from
Table II, are in good agreement with the perturbation results
in Ref. [18]. Comparing the NRCI and RCI energies, the
relativistic corrections of the 2 3P0, 2 3P1, and 2 3P2 states
are −0.000 522 61(6), −0.000 546 24(6), and −0.000 536
72(6), respectively. And the finite nuclear mass effect 0.000
369 31(6) for 7Li+ ion is obtained by comparing the values in
Table II.

In present RCI calculations, the single-electron wave
functions are obtained by solving the single-electron Dirac
equation. The Breit operator and the mass shift operator HMS

TABLE II. Comparison of energies (in a.u.) for the 2 3PJ states of
Li+ ion. The numbers in parentheses are computational uncertainties.

RCI RCI(7Li+)

2 3P0 −5.028 238 23(4) −5.027 868 92(4)
−5.028 238 151 [18] −5.027 868 829 [18]

2 3P1 −5.028 261 86(4) −5.027 892 55(4)
−5.028 261 761 [18] −5.027 892 438 [18]

2 3P2 −5.028 252 34(4) −5.027 883 03(4)
−5.028 252 310 [18] −5.027 882 990 [18]

are added in the Hamiltonian directly. Therefore, the relativis-
tic correction of single-electron and all corrections from the
Breit operator and the mass shift operator HMS are included in
the RCI results; i.e., the present RCI results include the mα4-
and higher-order single-electron relativistic corrections, the
mα4-order and a part of the mα6-order relativistic corrections
of the electron-electron interaction, and the nonrelativistic and
leading order relativistic finite nuclear mass corrections. How-
ever, the perturbation results from Ref. [18] only can extract
the mα4-order relativistic corrections and the nonrelativistic
and leading order relativistic finite nuclear mass corrections,
since the sum of the mα6-order relativistic and QED correc-
tions are given in Ref. [18], and none of them can not be
extracted separately. Therefore, the main difference between
the present RCI results and the values of the perturbation
method is a part of the mα6-order relativistic corrections.

The oscillator strengths for the 2 3S1 → n 3PJ (n = 2, 3)
transitions of Li+ ion are shown in Table III. The NRCI
and RCI results have six or seven significant digits. The
nonrelativistic results for the listed transitions in Table III
are consistent with the explicitly correlated wave function
calculations of Ref. [50]. For the 2 3S → 2 3P transition,
the present nonrelativistic result of 0.307 940 4(1) is more
accurate than the value of 0.307 944 [50] by one order of
magnitude, and has six same digits with the value of 0.307 940
2 in Ref. [51]. By comparing the RCI and RCI(7Li+) columns
in Table III, the finite nuclear mass correction of the oscillator
strengths for 2 3S1 → 2, 3 3PJ transitions is at the 10−5 level.

IV. STATIC POLARIZABILITIES AND TUNE-OUT
WAVELENGTHS

With the energies and oscillator strengths obtained,
the dipole polarizabilities can be calculated by using the

TABLE III. Comparison of oscillator strengths for 2 3S1 →
n 3PJ (n = 2, 3) transitions of Li+ ion. The numbers in parentheses
are computational uncertainties.

n 3PJ NRCI RCI RCI(7Li+)

2 3P0 0.034 250 63(1) 0.034 240 81(1)
2 3P1 0.307 940 4(1) 0.102 717 35(4) 0.102 687 87(4)
2 3P2 0.171 221 26(6) 0.171 171 20(6)
3 3P0 0.020 762 22(1) 0.020 770 73(1)
3 3P1 0.187 054 2(1) 0.062 305 22(2) 0.062 330 73(2)
3 3P2 0.103 829 50(8) 0.103 872 06(8)
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TABLE IV. Convergence test of static dipole polarizability α1(0) and tune-out wavelength λt (in nm) for the 2 3S1 state of Li+ ion. The
numbers in parentheses are computational uncertainties.

RCI RCI(7Li+)

(N, �max) α1(0) (MJ = 0/ ± 1) λt (MJ = 0/ ± 1) α1(0) (MJ = 0/ ± 1) λt (MJ = 0/ ± 1)

(40,7) 46.826 935/46.831 204 159.571 709/159.582 300 46.849 371/46.853 645 159.613 337/159.623 940
(40,8) 46.826 970/46.831 239 159.571 817/159.582 411 46.849 428/46.853 702 159.613 490/159.624 092
(40,9) 46.826 993/46.831 263 159.571 879/159.582 475 46.849 422/46.853 698 159.613 494/159.624 103
(40,10) 46.827 010/46.831 278 159.571 924/159.582 516 46.849 440/46.853 715 159.613 545/159.624 149
(45,10) 46.826 993/46.831 262 159.571 896/159.582 489 46.849 460/46.853 732 159.613 583/159.624 181
(50,10) 46.826 997/46.831 268 159.571 906/159.582 505 46.849 453/46.853 726 159.613 571/159.624 172
Extrap. 46.826 98(4)/46.831 25(4) 159.571 88(6)/159.582 48(6) 46.849 47(4)/46.853 74(4) 159.613 61(6)/159.624 20(6)

sum-over-states method. Then, the tune-out wavelengths are
extracted by making the dynamic dipole polarizabilities equal
to zero. In the nonrelativistic calculations, the static dipole
polarizability of 2 3S state is 46.879 80(1), which agrees well
with the Hylleraas result of 46.879 802 3(7) [30]. Table IV
presents the convergence test of the static dipole polarizability
α1(0) and the tune-out wavelength λt for the 2 3S1 state in RCI
calculations. The relativistic static dipole polarizabilities are
46.826 98(4) and 46.831 25(4) for the MJ = 0 and MJ = ±1
sublevels, respectively. The averaged values of relativistic
static dipole polarizabilities over the magnetic sublevels for
∞Li+ and 7Li+ are 46.830 18(4) and 46.852 67(4), respec-
tively.

The 159 nm tune-out wavelength for the 2 3S1 state is
located at the edge of the 2 3S → 3 3P resonance transitions;
it is seen clearly from Fig. 1. The NRCI result of tune-out
wavelength for the 2 3S1 state is 159.671 74(2) nm. From
Table IV, the RCI tune-out wavelengths are convergence to
seven digits. The tune-out wavelengths for the 2 3S1 (MJ =
0) and 2 3S1 (MJ = ±1) states of ∞Li+ are 159.571 88(6)
and 159.582 48(6) nm, respectively. Comparing the results
of 159 nm tune-out wavelength between RCI and RCI(7Li+)
columns, it is found that the finite nuclear mass effect in-

FIG. 1. Dynamic dipole polarizabilities of Li+ ion for the wave-
length 100 nm � λ � 600 nm. The solid blue line represents the
dynamic dipole polarizabilities for 2 3S1 (MJ = ±1) state. The tune-
out wavelength marked as a solid magenta circle, and the blue dash
lines denote the resonance transitions.

creases the 159 nm tune-out wavelength by 0.0417 3(8) nm.
The averaged value of RCI tune-out wavelengths over the
magnetic sublevels ∞Li+ and 7Li+ are 159.579 83(6) nm and
159.621 55(6) nm, respectively.

In addition, the QED corrections to the static dipole polar-
izabilities and the tune-out wavelengths for 2 3S state are also
evaluated. The mα5-order QED correction to energy of 2 3S1

state given by Yerokhin and Pachucki is 0.000 075 206 [18].
In our calculations, the mα5-order QED correction omitting
the O(r12) term of Eq. (11) is 0.000 075 234. This indicates
that the contribution from the O(r12) term is −2.8 × 10−8.
And the mα6-order QED correction is 2.25 × 10−6, which
is two orders of magnitude larger than the contribution from
the O(r12) term. So in this work, the QED corrections to
the static dipole polarizabilities and tune-out wavelengths are
calculated by omitting the O(r12) contribution. Furthermore,
the recoil effect contribution to the mα5-order QED correction
of static dipole polarizability and tune-out wavelength is at
the 10−6 level for 7Li+, which is smaller by one order of
magnitude than the uncertainty of RCI result. Therefore, the
recoil effect contribution to the mα5-order QED correction
can be neglected at the present calculation accuracy.

The convergence test for the mα5- and mα6-order QED
corrections to the static dipole polarizability and the 159 nm
tune-out wavelength of the 2 3S1 state is given in Table V.
The extrapolated values of QED correction for static dipole
polarizability and tune-out wavelength have five converged
digits. The δα

QED
1 (0)(mα5) and δα

QED
1 (0)(mα6) are 0.003 188

89(2) and 0.000 095 535(1), respectively. The mα5-order QED
correction contributes 6.734 40(2) pm to 159 nm tune-out
wavelength, which is 33 times larger than the mα6-order QED
correction.

Moreover, the finite nuclear size correction of the
static dipole polarizability and the tune-out wavelength of
2 3S1 state are also evaluated by adopting the operator of
4πr2

7Li+ [δ3(r1) + δ3(r2)]/3 for a uniform charge distribution.
The nuclear charge radius r7Li+ of 7Li+ ion is 2.444(42) fm
[52]. The finite nuclear size correction increases the static
dipole polarizability and the tune-out wavelength by 3.5 ×
10−6 and 7.3 fm, respectively. Under the current calculation
accuracy, this correction can be ignored. In particular, the cor-
rection from the electric-field dependence term ∂2

ε ln k0 of the
Bethe logarithm is not evaluated in the present calculations.

The contributions to the static dipole polarizability α1(0)
and the 159 nm tune-out wavelength λt for the 2 3S1 state of

042816-4



TUNE-OUT WAVELENGTHS FOR THE 2 3S1 STATE … PHYSICAL REVIEW A 106, 042816 (2022)

TABLE V. Convergence test of QED correction of static dipole polarizability α1(0) and tune-out λt (in nm) for the 2 3S state of Li+ ion.
δα

QED
1 (0)(mα5) and δα

QED
1 (0)(mα6) represent the mα5- and mα6-order QED corrections to α1(0), respectively. The numbers in parentheses are

computational uncertainties.

(N, �max) δα
QED
1 (0)(mα5) δα

QED
1 (0)(mα6) δλ

QED
t (mα5) δλ

QED
t (mα6)

(40,7) 0.003 188 869 516 0.000 095 534 388 0.006 734 360 956 0.000 201 747 252
(40,8) 0.003 188 878 459 0.000 095 534 656 0.006 734 381 680 0.000 201 747 873
(40,9) 0.003 188 882 681 0.000 095 534 783 0.006 734 391 565 0.000 201 748 168
(40,10) 0.003 188 884 839 0.000 095 534 848 0.006 734 396 653 0.000 201 748 321
Extrap. 0.003 188 89(2) 0.000 095 535(1) 0.006 734 40(2) 0.000 201 749(1)

Li+ ion can be seen clearly from Table VI and Fig. 2. The sum
of finite nuclear mass and QED corrections of 0.025 77(4)
is added to the RCI static dipole polarizability; we obtained
the α1(0) of 2 3S1 (MJ = ±1) state as 46.857 03(4). Taking
the finite nuclear mass and QED corrections into account,
the tune-out wavelengths for 2 3S1 (MJ = 0) and 2 3S1 (MJ =
±1) states are 159.620 55(6) and 159.631 14(6) nm, respec-
tively. The QED correction for the tune-out wavelength of the
2 3S1 state is 43 ppm. If the measurements for this tune-out
wavelength achieve an accuracy of 0.001 nm, the influence
of QED effects would to be identified. Therefore, the 159 nm
tune-out wavelength for the Li+(2 3S1) state might provide the
nonenergy test for the atomic structure theory.

V. CONCLUSION

We have calculated the dynamic dipole polarizabilities of
the 2 3S1 state for Li+ ion based on the DCB Hamiltonian with
the finite nuclear mass effect included directly. The QED cor-
rections on the dynamic dipole polarizabilities are estimated
by using perturbation theory. The tune-out wavelengths for the
2 3S1 (MJ = 0) and 2 3S1 (MJ = ±1) states are 159.620 55(6)
nm and 159.631 14(6) nm, respectively. The finite nuclear
mass correction of 159 nm tune-out wavelength for the 2 3S1

TABLE VI. Contributions to the static dipole polarizability α1(0)
and the 159 nm tune-out wavelength λt (in nm) for the 2 3S1 (MJ =
0, ±1) state of Li+ ion. FNM and FNS represent the finite nuclear
mass and finite nuclear size corrections, respectively. The numbers
in parentheses are computational uncertainties.

Contrib. MJ α1(0) λt

RCI 0 46.826 98(4) 159.571 88(6)
±1 46.831 25(4) 159.582 48(6)

RCI+FNM 0 46.849 47(4) 159.613 61(6)
±1 46.853 74(4) 159.624 20(6)

mα5 QED 0.003 188 89(2) 0.006 734 40(2)
mα6 QED 0.000 095 535(1) 0.000 201 749(1)
FNS 0.000 003 5 0.000 007 3
Total 0 46.852 76(4) 159.620 55(6)

±1 46.857 03(4) 159.631 14(6)

state is 0.041 73(8) nm, and the QED correction is 43 ppm.
This tune-out wavelength may be used to test the atomic
structure theory in the future. In addition, the static dipole
polarizabilities for the MJ = 0 and MJ = ±1 sublevels of the
2 3S1 state are 46.852 76(4) and 46.857 03(4), respectively.
The hyperfine structure correction of static dipole polariz-
ability and tune-out wavelength for the 2 3S1 state will be
calculated in the future.
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FIG. 2. The relative contributions of finite nuclear mass (FNM),
QED, finite nuclear size (FNS) and corrections to the static polariz-
ability α1(0) and tune-out wavelength λt for 2 3S1 (MJ = ±1) state
of 7Li+ ion.
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