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Higher-order corrections to the spin-orbit and spin-spin tensor interactions in HD+
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Improved values of hyperfine coefficients related to the electronic spin-orbit and electron-nucleus spin-spin
tensor interactions in the HD+ molecular ion are obtained through numerical calculation of relativistic correc-
tions at the mα6 order and radiative corrections at the mα7 ln(α) order. The theoretical accuracy is improved
by more than one order of magnitude. Some deviations with recent high-precision rovibrational spectroscopy
experiments are observed, in contrast with the good agreement obtained in H+

2 .
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I. INTRODUCTION

Laser spectroscopy of HD+ has recently made a significant
leap in precision, as a rotational transition [1] and two vibra-
tional transitions [2,3] were probed in the Lamb-Dicke regime
on ensembles of trapped and sympathetically cooled molecu-
lar ions. Transition frequencies were measured with relative
uncertainties in the 10−11–10−12 range, and comparison with
theoretical predictions [4,5] was used to get improved deter-
minations of the proton-electron mass ratio and constraints on
a “fifth force” between the nuclei [6].

The hyperfine splitting of HD+ rovibrational levels gives
rise to 4, 10, or 12 sublevels for L = 0, L = 1, and L � 2
states, respectively, where L is the rotational quantum number
[7]. In the above-mentioned experiments, a few hyperfine
components of the rovibrational transitions (between 2 and
6) were measured with sub-kHz uncertainties, from which
a “spin-averaged” transition frequency was extracted using
theoretical predictions of the hyperfine structure. A discrep-
ancy between theory and experiment was evidenced in the
hyperfine slitting of the (v = 0, L = 3) → (v′ = 9, L′ = 3)
transition [8], which affects the uncertainty of the extracted
spin-averaged transition frequency [2,9]. Beyond that, con-
stant progress in experimental accuracy opens the way to
highly precise tests of the hyperfine structure theory. It is also
worth noting that the HD+ hyperfine structure is sensitive to
the deuteron’s electric quadrupole moment Qd . A value of Qd

was extracted from the rotational transition measurement [1],
although it is significantly less precise than that obtained from
magnetic resonance measurements in D2 [10,11]. For all these
reasons, it is highly desirable to improve further the hyperfine
structure theory in HD+.
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On the theoretical side, all the coefficients of the effective
spin Hamiltonian introduced by the authors of Ref. [7] were
calculated in the framework of the Breit-Pauli Hamiltonian
with an account of the electron’s anomalous magnetic mo-
ment, which yielded a relative accuracy on the order of α2.
We recently improved the precision of the largest hyperfine
coefficients, i.e., the electron-proton and electron-deuteron
spin-spin scalar interactions, to slightly below 1 ppm [8].
The next largest coefficients are those related to the electron
spin-orbit (denoted by E1 in Ref. [7]) and the electron-proton
(E6) and electron-deuteron (E7) spin-spin tensor interactions.
The effective Hamiltonian describing mα6-order relativistic
corrections to these interactions was derived in Ref. [12] in
the framework of nonrelativistic quantum electrodynamics
(NRQED) and preliminary numerical results were given. In
Ref. [13], the theory was further refined by including logarith-
mic radiative corrections at the following order. The spin-orbit
and spin-spin interaction coefficients were calculated numeri-
cally in the H+

2 ion for a range of rovibrational states, and good
agreement with available rf spectroscopy data was observed.
In the present work, we report on the numerical calculation
of these corrections in HD+, which improves the theoretical
accuracy of the E1, E6, and E7 coefficients by almost one order
of magnitude with respect to Ref. [7]. We then compare our
theoretical predictions of the hyperfine splitting with available
experimental data [1–3]. Significant deviations are evidenced,
possible causes of which are discussed in the last section.

II. NUMERICAL RESULTS

Higher-order corrections to the spin-orbit and spin-spin
tensor interaction coefficients in the hydrogen molecular ions
were studied in our previous works [12,13]. The expressions
of relativistic corrections at orders mα6 can be found in
Ref. [13], Eqs. (17) to (24), and radiative corrections at the
mα7 ln(α) order are given in Eqs. (27) and (29) to (35). In
Tables I, II, and III, we report the results of numerical calcu-
lations of these correction terms for a few rovibrational states
of HD+ of direct interest for experiments [1–3,14]. Complete
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TABLE I. Corrections to the spin-orbit interaction coefficient E1 for a few rovibrational states of HD+ (in kHz). The leading-order (Breit-
Pauli) value E (BP)

1 (Ref. [7]) is given in column 2. Columns 3 to 5 and 6 to 8 are, respectively, the first-order and second-order contributions
(Eqs. (18) and (19) of Ref. [13]) at the mα6 order, and the total correction at this order �E (6)

1 is given in column 9. Columns 10 and 11 are
the first-order contributions at the mα7 ln(α) order (Eqs. (27) and (29) of Ref. [13]) whereas column 12 is the second-order term [Eq. (32)] of
Ref. [13]. The total correction at this order, �E (7 ln)

1 , is given in column 13. The last column is our value of E1. Its estimated uncertainty (equal
to one third of �E (7 ln)

1 ) is indicated between parentheses.

(L, v) E (BP)
1 UY1 UW UCM �Eso-HB �E (1)

so-so �Eso-ret �E (6)
1 UY1 Uq2 �Eso-H(5 ln) �E (7 ln)

1 E1 (this work)

(1,0) 31 984.645 1.170 −2.736 0.021 2.088 0.312 0.257 1.112 −0.026 0.045 −0.367 −0.348 31 985.41(12)
(1,1) 30 280.027 1.110 −2.631 0.027 1.986 0.299 0.243 1.035 −0.025 0.044 −0.345 −0.326 30 280.74(11)
(1,5) 24 076.867 0.893 −2.205 0.042 1.592 0.233 0.193 0.747 −0.020 0.036 −0.268 −0.252 24077.36(8)
(1,6) 22 643.449 0.834 −2.097 0.044 1.498 0.219 0.181 0.679 −0.019 0.035 −0.251 −0.235 22643.89(8)
(3,0) 31 627.353 1.156 −2.694 0.019 2.042 0.308 0.255 1.086 −0.026 0.045 −0.360 −0.341 31 628.10(11)
(3,9) 18 270.560 0.680 −1.732 0.043 1.158 0.182 0.146 0.478 −0.015 0.028 −0.198 −0.185 18 270.85(6)

results for the rovibrational states (1 � L � 4, 0 � v � 9) are
given in the Supplemental Material [15]. These numerical
calculations are performed following the methods presented in
Refs. [12,13] relying on a variational expansion of the three-
body wave function in terms of exponentials of interparticle
distances, with pseudorandomly chosen exponents [16,17].

The numerical and theoretical uncertainties were discussed
in Ref. [13] in the context of the H2

+ ion, and the main con-
clusions remain valid for the results presented here. Briefly,
the numerical uncertainty of E1 (or E6, E7) is estimated to be
smaller than 10 Hz (or 1 Hz), see Ref. [13] from a study of
convergence of a few terms. The overall uncertainty is dom-
inated by the as-yet unevaluated nonlogarithmic mα7-order
contribution, and is estimated to about one third of the total
contribution of order mα7 ln(α). The resulting uncertainties
amount to 3 to 4 ppm for the electronic spin-orbit interaction
and 2 ppm for tensor interactions, respectively. This represents
an improvement by factors of about 15 for E1, and 25 for E6

and E7, over the results of Ref. [7].

III. COMPARISON WITH EXPERIMENTS
AND DISCUSSION

A. Theoretical hyperfine splitting of rovibrational transitions

These results allow us to improve theoretical predictions
of the hyperfine splitting of rovibrational transitions that were
recently measured with high accuracy. These are obtained
by diagonalizing the effective spin Hamiltonian of Ref. [7],

which comprises nine coefficients E1 . . . E9. The values of E1,
E6, and E7 are taken from the present work. For the largest
coefficients, i.e., the electron-proton and electron-deuteron
spin-spin scalar interaction coefficients (“Fermi” contact in-
teraction), E4 and E5, we use the very precise values computed
in Ref. [8]. Finally, the smaller coefficients E2, E3, E8, and E9

are calculated in the framework of the Breit-Pauli Hamiltonian
[7]. We updated the E9 coefficient, which corresponds to the
effect of the deuteron’s quadrupole moment Qd , with the latest
and most precise determination of Qd [11]. The values of all
the coefficients used here can be found in Appendix A. The
fractional uncertainties of E4 and E5 are estimated to 0.93 and
0.57 ppm, respectively [8]. Those of the smaller coefficients
(E2, E3, E8, E9) were taken as equal to α2 � 53 ppm in pre-
vious works (see, e.g., Refs. [1,13]), which corresponds to the
expected accuracy level of the Breit-Pauli Hamiltonian. How-
ever, in this specific case, crossed second-order contributions
(in the sense of perturbation theory) involving larger hyperfine
interaction terms can be significantly larger than this limit
[18]. For example, the second-order perturbation term induced
by spin-orbit (E1) and electron-proton spin-spin (E4) inter-
actions contributes to the proton spin-orbit interaction (E2).
From numerical evaluation of these second-order terms, we
estimate the fractional uncertainty of Ek to 5α2 � 270 ppm for
k = 2, 3, 8. In the case of E9, crossed second-order terms are
smaller than α2E9, and we thus confirm our previous uncer-
tainty estimate. However, the 82 ppm uncertainty of Qd [11]
should be taken into account. Adding it quadratically to the α2

TABLE II. Corrections to the electron-proton spin-spin tensor interaction coefficient E6 for a few rovibrational states of HD+ (in kHz). The
leading-order (Breit-Pauli) value E (BP)

6 (Ref. [7]) is given in column 2. Columns 3 to 4 and 5 are, respectively, the first-order and second-order
contributions (Eqs. (22) and (23) of Ref. [13]) at the mα6 order. The total correction at this order, �E (6)

6 , is given in column 6. Column 7 is the
second-order contribution at the mα7 ln(α) order (Eq. (35) of Ref. [13]). The last column is our value for E6. Its estimated uncertainty (equal
to one-third of �E (7 ln)

6 ) is indicated between parentheses.

(L, v) E (BP)
6 U (2)

W U (2)
CM �E (2)

ss-HB
�E (6)

6 �E (7 ln)
6 E6 (this work)

(1,0) 8611.112 −0.806 0.093 0.955 0.242 −0.055 8611.299(18)
(1,1) 8136.686 −0.770 0.090 0.905 0.225 −0.052 8136.859(17)
(1,5) 6421.232 −0.632 0.079 0.726 0.172 −0.041 6421.364(14)
(1,6) 6027.810 −0.599 0.076 0.678 0.154 −0.039 6027.925(13)
(3,0) 948.5222 −0.0883 0.0101 0.1042 0.0260 −0.0060 948.5421(20)
(3,9) 538.9906 −0.0544 0.0070 0.0593 0.0119 −0.0035 538.9991(12)
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TABLE III. Same as Table II, for the electron-deuteron spin-spin tensor coefficient E7.

(L, v) E (BP)
7 U (2)

W U (2)
CM �E (2)

ss-HB
�E (6)

7 �E (7 ln)
7 E7 (this work)

(1,0) 1321.7673 −0.1237 0.0142 0.1467 0.0371 −0.0085 1321.7960(28)
(1,1) 1248.9359 −0.1182 0.0138 0.1390 0.0346 −0.0080 1248.9624(27)
(1,5) 985.5868 −0.0971 0.0121 0.1115 0.0264 −0.0063 985.6069(21)
(1,6) 925.1895 −0.0919 0.0115 0.1040 0.0237 −0.0060 925.2072(20)
(3,0) 145.5938 −0.0136 0.0016 0.0160 0.0040 −0.0009 145.5969(3)
(3,9) 82.7237 −0.0083 0.0010 0.0091 0.0018 −0.0005 82.7250(2)

theoretical uncertainty yields a total fractional uncertainty of
98 ppm. It should be stressed that the reevaluated error bars for
small coefficients have negligibly small influence on the total
theoretical uncertainty of the hyperfine splitting and do not
question uncertainty estimates made in previous works [1,13].

The theoretical uncertainties of hyperfine intervals fi j =
f j − fi, where i ( j) denotes the lower (upper) hyperfine states
and fi, f j their respective hyperfine shifts are then calculated
by propagating the uncertainties of the hyperfine coefficients,
using the derivatives

γi,k = ∂ fi

∂Ek
, 1 � k � 9. (1)

The values of these derivatives for the hyperfine states
involved in the v = 0 → 9 transition [2] are given in Ap-
pendix B. For the states relevant to the rotational transition
and to the v = 0 → 1 transition, they can be found in Ref. [1]
and the Supplementary Material [3], respectively.

It is important to take correlations into account to get
reliable uncertainty estimates. There are strong correlations
between theoretical errors of a given coefficient Ek in different
rovibrational states, which can be understood as follows. First,
these errors are dominated by yet uncalculated QED con-
tributions (numerical uncertainties being negligibly small),
which are given by expectation values of the same effective
operators, evaluated with different wave functions. Second,
the uncalculated terms are corrections to the bound electron
and essentially depend on the electronic part of the wave
function, which varies only slowly with the rovibrational state.
Correlations may also exist between errors of different coeffi-
cients Ek , El for the same rovibrational state if they originate
from similar QED terms. The hypotheses we adopted for our
uncertainty estimates are presented in Appendix C.

B. Comparison with experimental data

A comparison between experiment and theory is shown in
Table IV. Regarding the hyperfine splitting of the (v = 0, L =
0) → (v′ = 1, L′ = 1) transition [3] and of the (v = 0, L′ =
3) → (v = 9, L′ = 3) transition [2], the theoretical precision
is significantly improved and previous conclusions remain
essentially valid: reasonable agreement between theory and
experiment is observed in the first case, whereas a clear dis-
crepancy appears in the second case, becoming even more
significant (nine combined standard deviations) due to the
reduced theoretical error bar. The cause of this discrepancy
is currently unknown, but it is clear that it has no relationship
with the corrections calculated in the present work that shift

the theoretical prediction by only −0.3 kHz with respect to the
previous evaluation [8].

We now discuss the rotational transition [1], which repre-
sents the most stringent test of our improved values of the
E1, E6, and E7 coefficients, in view of the higher absolute
precision of the measurements and of their much lower sen-
sitivity to the Fermi coefficients E4 and E5 (due to strong
cancellation between the lower and upper states). Comparison
between theory and experiment is more involved in this case,
as six hyperfine components of this transition were measured,
from which 15 hyperfine intervals can be deduced (the val-
ues of which are, of course, partially redundant). A detailed
comparison for these 15 intervals is shown in Appendix D,
revealing significant discrepancies for several lines. These
data are, however, difficult to interpret, and a useful overview
of the results can be obtained by extracting experimental val-
ues of E1, E6, and E7 from a least-squares adjustment of the
experimental data whose results are shown in the last line of
Table IV. The difference between experimental and theoreti-
cal values is above 3 σc for the spin-orbit coefficient and 2 σc

for spin-spin tensor coefficients. Details of the least-squares
adjustment procedure can be found in Appendix E.

C. Discussion

The observed deviations could be due to a problem in the
theory, in the experiment, or both; let us discuss here the first
of these possibilities.

The largest discrepancy in terms of absolute magnitude
(8.5 kHz, or a fractional difference of 4.8×10−5) is in the hy-
perfine splitting of the v = 0 → 9 transition. As discussed in
Ref. [8] it points towards the largest hyperfine coefficients E4

and/or E5 because the error that would be required in the other
coefficients to explain the discrepancy is much larger than
the expected order of magnitude of any corrections beyond
the Breit-Pauli Hamiltonian. However, a mistake in the calcu-
lation of the electron-proton spin-spin coefficient E4 would
also affect at a similar level the corresponding coefficient
(denoted by bF ) in H2

+, where agreement with experiments at
a sub-kHz level is observed [8]. This suggests that the problem
might come from the electron-deuteron interaction coefficient
E5 (note that this hypothesis is not contradictory with the
reasonably good agreement obtained for the v = 0 → 1 tran-
sition frequency because the latter only weakly depends on
E5).

What could then be missing in the theory of the electron-
deuteron spin-spin interaction? The difference between proton
and deuteron cases resides in the nuclear structure and recoil
corrections. The first include the Zemach correction [19] that
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TABLE IV. Comparison between experimental and theoretical hyperfine intervals (unit: kHz). In parts (a) and (b), hyperfine components
are identified by their label (following the notations of the original publications [2,3]) and by the hyperfine states in the lower and upper
rovibrational states (columns 1 to 4). Experimental values and previous theoretical predictions of the hyperfine intervals are given in columns
5 and 6. Our predictions are shown in column 7. The deviations �i j = f exp

i j − �theor
i j are given in kHz in column 8 and in units of the combined

uncertainty σc = ([u( f exp
i j )]2 + [u( f theor

i j )]2)1/2 in the last column. In part (c), column 2 contains the values of the E1, E6, and E7 hyperfine
coefficients extracted from the experimental data of Ref. [1] using a least-squares adjustment described in Appendix E. Previous theoretical
predictions are given in column 3. Our predictions are shown in column 4. Deviations �Ek = E exp

k − E theor
k are given in kHz in column 5, and

in units of the combined uncertainty in the last column.

(a) (v = 0, L = 0) → (v′ = 1, L′ = 1)
i FSJ → F ′S′J ′ j FSJ → F ′S′J ′ f exp

i j [3] f theor
i j [3] f theor

i j (this work) �i j �i j/σc

12 122 → 121 16 122 → 123 41 294.06(32) 41 293.81(44) 41 293.66(12) 0.40 1.2

(b) (v = 0, L = 3) → (v′ = 9, L′ = 3)

i FSJ → F ′S′J ′ j FSJ → F ′S′J ′ f exp
i j [2] f theor

i j [8] f theor
i j (this work) �i j �i j/σc

F = 0 014 → 014 F = 1 125 → 125 178 254.4(9) 178 246.2(1.8) 178 245.89(28) 8.5 9.0

(c) (v = 0, L = 0) → (v′ = 0, L′ = 1)

Coefficient E exp
k E theor

k E theor
k (this work) �Ek �Ek/σc

E1 31 984.9(1) 31 985.76(35) [12] 31 985.41(12) −0.5 −3.3
E6 8 611.17(5) 8 611.1(5) [7] 8 611.299(18) −0.13 −2.4
E7 1 321.72(4) 1 321.77(7) [7] 1 321.7960(28) −0.08 −2.0

is the leading-order contribution to the Bohr-Weisskopf effect
[20], as well as the nuclear polarizability correction. The sum
of all these corrections was determined phenomenologically
from the experimental ground-state hyperfine splitting of the
hydrogen and deuterium atoms [8] under the assumption that
they are state independent, i.e., they can be described by a
contact (delta-function) term. Possible errors induced by this
approximation are linked to the existence of state-dependent
corrections. The largest such term is a recoil correction of
order (Zα)2(m/M )EF [21], which contributes to the ground-
state hyperfine splitting of the deuterium atom at a level
of only 39 Hz. An error on the electron-deuteron spin-
spin interaction at a level of ∼10 kHz thus seems extremely
unlikely.

Regarding the rotational transition, the deviations between
theory and experiment could be explained by errors in the
spin-orbit (E1) and spin-spin tensor coefficients (E6, E7) co-
efficients, as revealed by the adjustment described in the
previous section (see last line of Table IV). However, any
error in the calculation of E1 for the (L = 1, v = 0) would
affect the (L = 1, v = 1) level at a similar level. If one
assumes, for example, that E1 is shifted by −0.5 kHz for
both states with respect to our present theoretical value, this
would improve the agreement for the rotational transition, but

increase the deviation from 0.4 kHz to about 0.9 kHz for the
v = 0 → 1 transition. Moreover, it would affect the value of
the corresponding coefficient (denoted by ce) in H2

+, which
we calculated in our previous work [13], and cause signif-
icant tension with rf spectroscopy data. Overall, it appears
that available measurements are not fully consistent with each
other.

Apart from errors or missed contributions in theoretical
hyperfine coefficients, another possible cause of deviations
between theory and experiment is the incompleteness of the
effective spin Hamiltonian introduced in Ref. [7]. Only the
terms that appear at the leading order (Breit-Pauli Hamilto-
nian) were included so far, but other spin couplings appear
at the order mα6 and higher. The largest one is the spin-spin
contact interaction between proton and deuteron (Ip ·Id ). This
term is already present in the Breit-Pauli Hamiltonian, but
was not included in the effective spin Hamiltonian because the
associated coupling coefficient is proportional to the proton-
deuteron delta function expectation value, which is negligibly
small due to the strong Coulomb repulsion. However, a larger
coupling appears at the mα6 order due to the second-order
contribution mediated by the electron. This contribution was
studied in Ref. [22], where it was shown that the coupling
constant is on the order of 100 Hz, but shifts the hyperfine

TABLE V. Hyperfine coefficients for a few rovibrational states of HD+ (in kHz). The values of E4, E5 (or E2, E3, E8) are taken from
Ref. [8] (or Ref. [7]). The value of E9 has been updated with the latest determination of the deuteron’s quadrupole moment [11]. Uncertainties
are discussed in Sec. III A of the main text.

(v, L) E2 E3 E4 E5 E8 E9

(0,0) 925 394.159(860) 142 287.556(84)
(0,1) −31.345(8) −4.809(1) 924 567.718(859) 142 160.670(84) −3.057(1) 5.660(1)
(1,1) −30.463(8) −4.664(1) 903 366.501(839) 138 910.266(82) −2.945(1) 5.653(1)
(0,3) −30.832(8) −4.733(1) 920 479.981(855) 141 533.075(83) −0.335 0.612
(9,3) −21.304(6) −3.225(1) 775 706.122(721) 119 431.933(73) −0.219 0.501
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TABLE VI. Sensitivity coefficients for the hyperfine states involved in the v = 0–9 transition in HD+. Here γn,v = ∂Eh f s(v, L, F, S, J )/∂En.
Note that for the F = 1 level, the sensitivities are the same in v = 0 and v = 9, which is due to (F = 1, S = 2, J = 5) being a “pure” state.

(L, v, F, S, J ) γ1,v γ2,v γ3,v γ4,v γ5,v γ6,v γ7,v γ8,v γ9,v

(3,0,0,1,4) −0.414 0.424 2.986 −0.726 −0.215 0.274 3.079 −3.328 −7.400
(3,9,0,1,4) −0.359 0.372 2.984 −0.730 −0.201 0.193 2.474 −2.722 −7.385
(3,0,1,2,5) 1.50 1.50 3.00 0.250 0.500 −7.50 −15.00 −15.00 −7.50
(3,9,1,2,5) 1.50 1.50 3.00 0.250 0.500 −7.50 −15.00 −15.00 −7.50

components of the rotational transition by less than 2 Hz due
to cancellation between the lower and upper levels.

In conclusion, we did not identify any contribution that
could potentially have the required order of magnitude to
explain the observed discrepancies and there is a strong need
for additional measurements of the HD+ hyperfine structure
to give new insight on this problem.
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APPENDIX A: OTHER COEFFICIENTS OF THE
EFFECTIVE SPIN HAMILTONIAN

We give in Table V the values of all the coefficients of the
HD+ effective spin Hamiltonian (see Eq. (3) of Ref. [7]) in
the rovibrational states considered in Sec. III (see Table IV).

APPENDIX B: DEPENDENCE OF HYPERFINE SHIFTS
ON THE HYPERFINE COEFFICIENTS

The values of the derivatives γi,k [as defined in Eq. (1)], for
the hyperfine states probed in spectroscopy of the (L = 3, v =
0) → (L = 3, v = 9) transition [2], are given in Table VI.
These quantities are required to estimate the uncertainty of
the theoretical hyperfine interval.

APPENDIX C: CORRELATIONS BETWEEN THE
HYPERFINE COEFFICIENTS

In this Appendix, we present and justify our hypotheses
regarding correlations between theoretical errors in the hyper-
fine coefficients, which are summarized in Table VII.

Let us first discuss the correlations between errors on a
given coefficient Ek in different rovibrational states. In the
case of the largest hyperfine coefficients E4 and E5, related
to the Fermi contact interaction between the electron and both
nuclei, uncertainties and correlations can be controlled very

well thanks to the fact that these interactions were studied
in great depth in the context of the hydrogen and deuterium
ground-state hyperfine splitting. This allowed us to estimate
the unevaluated QED terms from their value in the hydrogen
(deuterium) atom ground state using the LCAO approxima-
tion. The uncertainties of E4 and E5 are conservatively taken
as equal to the full estimated term [8]. Then, for the evaluation
of uncertainties of hyperfine shifts in rovibrational transitions,
we assume perfect correlations between different rovibra-
tional states, i.e., the uncertainty of a transition frequency
is obtained by subtracting the uncertainties due to the upper
and lower states. We tested this assumption by applying it
to lower-order terms that were actually calculated by us, and
found that the uncertainty estimated in this way matches well
the magnitude of the actual correction.

For other hyperfine coefficients, we used cruder uncer-
tainty estimates based on the expected order of magnitude of
the largest unevaluated QED terms. For example, for coeffi-
cients calculated at the Breit-Pauli, we estimate the relative
uncertainty to be α2. In this case, it is harder to correctly
evaluate the degree of correlation between theory errors, but
all correlations are expected to be positive. In this work, we
assumed that the theory errors of the lower and upper levels
are uncorrelated, which provides an upper limit of uncertain-
ties on transition frequencies.

Let us now discuss correlations between errors in different
coefficients Ek , El for the same rovibrational state. Such cor-
relations occur if the uncalculated QED terms that limit the
theoretical precision are of the same nature. This is the case
for the E2 and E3 coefficients that correspond to the proton
(E2) and deuteron (E3) spin-orbit interactions. Both coeffi-
cients were calculated in the framework of the Breit-Pauli
Hamiltonien [7], and their theoretical errors are associated
with (Zα2)-order relativistic corrections. These corrections
will be described by the same effective potentials, the only dif-
ference being the substitution between proton and deuteron.
Similarly, errors in the E6 and E7 coefficients that correspond
to the electron-proton (E6) and electron-deuteron (E7) spin-
spin tensor interactions are caused by the same QED term, that

TABLE VII. Summary of our assumptions on correlations between errors in the theoretical hyperfine coefficients.

First coefficient Second coefficient Correlation coefficient

Ek (v, L) Ek (v′, L′) 1 if k = 4 or 5; 0 otherwise.
1 if (k, l ) = (2, 3), (3,2), (6,7), or (7,6);

Ek (v, L) El (v, L)
0.4016 if (k, l ) = (4, 5) or (5,4); 0 otherwise.

Ek (v, L) El (v′, L′) 0.4016 if (k, l ) = (4, 5) or (5,4); 0 otherwise.
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TABLE VIII. Comparison between experimental and theoretical hyperfine intervals (unit: kHz). All definitions are identical to those of
Table IV.

(v = 0, L = 0) → (v′ = 0, L′ = 1)
i FSJ → F ′S′J ′ j FSJ → F ′S′J ′ f exp

i j [1] f theor
i j [1] f theor

i j (this work) �i j �i j/σc

12 122 → 121 14 100 → 101 24 134.211(75) 24 134.5(1.1) 24 134.465(23) −0.254 −3.2
12 122 → 121 16 011 → 012 31 073.752(43) 31 073.7(1.2) 31 074.102(56) −0.350 −4.9
12 122 → 121 19 122 → 123 43 283.419(54) 43 283.4(2.2) 43 284.10(12) −0.677 −5.0
12 122 → 121 20 122 → 122 44 944.338(72) 44 944.6(1.9) 44 945.289(64) −0.951 −9.8
12 122 → 121 21 111 → 112 44 996.486(61) 44 996.4(1.9) 44 997.14(11) −0.652 −5.3
14 100 → 101 16 011 → 012 6 939.541(66) 6 939.2(1.2) 6 939.636(42) −0.095 −1.2
14 100 → 101 19 122 → 123 19 149.208(74) 19 148.8(2.0) 19 149.63(11) −0.423 −3.2
14 100 → 101 20 122 → 122 20 810.127(88) 20 810.1(1.8) 20 810.823(62) −0.696 −6.5
14 100 → 101 21 111 → 112 20 862.275(79) 20 861.9(2.0) 20 862.673(91) −0.398 −3.3
16 011 → 012 19 122 → 123 12 209.667(41) 12 209.7(1.5) 12 209.994(72) −0.327 −4.0
16 011 → 012 20 122 → 122 13 870.586(62) 13 870.9(1.4) 13 871.187(43) −0.601 −7.9
16 011 → 012 21 111 → 112 13 922.734(49) 13 922.7(1.0) 13 923.037(51) −0.303 −4.3
19 122 → 123 20 122 → 122 1 660.919(70) 1 661.2(2.6) 1 661.19(10) −0.274 −2.2
19 122 → 123 21 111 → 112 1 713.067(59) 1 713.0(0.7) 1 713.042(25) 0.025 0.4
20 122 → 122 21 111 → 112 52.148(76) 51.8(1.9) 51.850(75) 0.298 2.8

is, the nonlogarithmic mα7-order radiative corrections (see
Sec. II). We thus assume perfect correlations between theory
errors of E2 and E3, as well as between E6 and E7.

The case of the electron-proton (E4) and electron-deuteron
(E5) Fermi contact interactions is slightly more involved. In-
deed, errors in these coefficients originate from both nonrecoil
QED corrections, which will have the same expressions apart
from substitution of proton and deuteron, and from recoil
corrections, which depend on the nucleus [8]. We assume
that errors associated with nonrecoil (or recoil) terms are
fully correlated (or uncorrelated), which yields a correlation
coefficient.

r(E4, E5) = unon−rec(E4)unon−rec(E5)

utot(E4)utot(E5)
= 0.4016. (C1)

Here, unon−rec(Ek ) is the uncertainty of Ek due to nonrecoil
QED corrections and utot(Ek ) its total uncertainty. These un-
certainties are estimated to unon−rec(Ek ) = 0.47 × 10−6E (F )

k ,
utot(E4) = 0.93 × 10−6E (F )

4 , and utot(E5) = 0.59 × 10−6E (F )
4

(see Ref. [8] for details).

APPENDIX D: DETAILED COMPARISON BETWEEN
THEORY AND EXPERIMENT FOR THE HYPERFINE

SPLITTING OF THE ROTATIONAL TRANSITION

A full comparison between the experimental results of
Ref. [1] and our theoretical predictions is shown in Table VIII.

APPENDIX E: LEAST-SQUARES ADJUSTMENT OF THE
SPIN-ORBIT AND SPIN-SPIN TENSOR COEFFICIENTS IN
THE (v = 0, L = 1) STATE FROM EXPERIMENTAL DATA

The frequencies of the hyperfine components of the ro-
tational transition (measured in Ref. [1]) can be written as
a sum of the “spin-averaged” transition frequency, fSA and
a hyperfine shift. In Ref. [1] (see also Ref. [9]), a value of

fSA is extracted from the experimental data. Here, our goal is
instead to extract experimental values of three hyperfine coef-
ficients, E1, E6, and E7. We do this in a way that is completely
independent of the value of fSA, which we describe in the
following.

From the six measured transition frequencies, we deduce
five independent hyperfine intervals by choosing one of the
lines fi as reference and computing the differences fi j = f j −
fi for j �= i. We then perform a least-square adjustment taking
into account experimental and theoretical uncertainties. The
latter are due to uncertainties in hyperfine coefficients (other
than E1, E6, E7), and are accounted for by additive corrections
δ[Ek (v, L)] that are treated as additional adjusted parameters,
as done in the CODATA adjustments [23]. Correlations between
theoretical errors are taken as described in the Appendix C.
Experimental uncertainties are assumed to be uncorrelated.
For illustration, the input data used in the adjustment are
shown in Table IX for the case where the line labeled 12 is
chosen as reference line.

We repeated this procedure for all possible choices of a ref-
erence line and found that the adjusted values slightly depend
on the chosen line. In our final results (reported in Table IV),
we increased the error bars to make the values compatible with

TABLE IX. Input data for the least-squares adjustment of the E1,
E6, and E7 coefficients, where the line 12 is chosen as reference line.

f14 − f12 = 24 134.211(75) kHz
f16 − f12 = 31 073.752(43) kHz
f19 − f12 = 43 283.419(54) kHz
f20 − f12 = 44 944.338(72) kHz
f21 − f12 = 44 996.486(61) kHz
δ[E4(v = 0, L = 0)] = 0.000(860) kHz
δ[E5(v = 0, L = 0)] = 0.000(84) kHz
δ[E2(v = 0, L = 1)] = 0.0000(17) kHz
δ[E8(v = 0, L = 1)] = 0.00000(16) kHz
δ[E9(v = 0, L = 1)] = 0.00000(55) kHz
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all possible choices. We also checked that the dependence of
our results on the hypotheses made on correlations between
theoretical errors (see Appendix C) is negligibly small.

It is worth stressing that the adjustments give satisfactory
results (with residuals below 1σ ), indicating that experimental
data are well explained by the effective spin Hamiltonian

introduced in Ref. [7] and in good agreement with the theo-
retical values of the six other coefficients. The only exception
is the hyperfine interval involving line 16 (such as f16 − f12

in Table IX), which has 2 − 3σ residuals in all cases. This
might be an indication of some experimental problem for this
specific line.
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