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Determination of quadrupolar dispersion coefficients of the alkali-metal
atoms interacting with different material media
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In the present work, we determine the C5 coefficients along with their uncertainties due to quadrupole
polarization effects of all the alkali atoms interacting with a metal (Au), a semiconductor (Si), and four dielectric
materials (SiO2, SiNx , yttrium aluminum garnet, and sapphire). The required dynamic electric quadrupole (E2)
polarizabilities are evaluated by calculating E2 matrix elements of a large number of transitions in the alkali
atoms by employing a relativistic coupled-cluster method. A significant contribution towards the long-range van
der Waals potential is made by the quadrupole polarization effects. Our finding shows that contributions from
the C5 coefficients to the atom-wall interaction potentials are pronounced at short distances (1–10 nm). The
C3 coefficients of a Fr atom interacting with the above material media are also reported. These results could be
useful in understanding the interactions of alkali atoms trapped in different material bodies during high-precision
measurements.
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I. INTRODUCTION

Dispersion coefficients due to van der Waals (vdW) in-
teractions between atoms and material walls have attracted
significant interest in the last two decades [1] after their
numerous applications in physisorption [2,3], storage [4],
nanoelectromechanical systems [5], quantum reflection [6],
atomic clocks [7], atomic chips [8], atom vapor sensors [9],
and so on. The attractive potential between an atom and a
wall arises from quantum fluctuations at the zero-contact point
due to resonant coupling of virtual photons emitted from the
atom with different electromagnetic modes of the surface of
the wall [10]. This phenomenon can be described by non-
pairwise additive Lifshitz theory [11]. However, often crude
approximations have been made in this theory for simplicity
by considering only the dipole polarization effects due to their
predominant contributions. Following the perturbation-theory
analysis, the atom-wall interaction potentials can be expressed
as a sum of contributions from multipole-polarizability (i.e.,
dipole, quadrupole, octupole, etc.) effects of atoms [12].

It has been pointed out that the corrections to the total
potential due to multipole polarizations in atom-wall systems
must be taken into account in the vicinity of physisorption
rendered by the vdW interactions [13]. Liebsch investigated
the importance of the quadrupole contributions of atomic
properties in the determination of atom-metal attractive in-
teraction potentials and found 5%–10% enhancements in the
interaction potentials due to these contributions using the
density-functional theory (DFT) [13]. For atoms placed closed
to surfaces, some of the selective quadrupole resonances could
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play pivotal roles in enhancing the atom-surface interaction
significantly such that their contributions to the potentials
can be higher than the dipole component contributions as
noted by Klimov and Ducloy using an analytical analysis
[14]. The dispersion coefficients arising from dipole (C3) and
quadrupole (C5) interactions with the material walls were
inspected by Tao and Rappe between different atoms and
metal surfaces using the DFT method, and they showed that
the C5 term makes a contribution of about 20% to the long-
range part [15]. There are many other works that highlight
the importance of higher-order multipole contributions to the
atom-wall interaction potentials [16–21], whereas Lach et al.
[21] have provided a more accurate description of the vdW
potentials for the interactions of atoms with the surfaces of
perfect conductors and dielectrics materials by taking into
account contributions from the dipole, quadrupole, octupole,
and hexapole polarizabilities of the atoms within the frame-
work of Lifshitz theory.

In the past decade, alkali atoms have been used to un-
derstand the behavior of vdW interactions with different
materials using various theoretical and experimental tech-
niques due to their fairly simple electronic configuration
[9,22–25]. The Fr atom is being studied keenly for its par-
ity nonconservation effects, in the search for a permanent
electron electric dipole moment, and for other high-precision
spectroscopy measurements using laser-trapping and -cooling
techniques [26–28]. For these applications, measurements are
carried out through atom interferometry [29–31]. In atom
interferometry, fluctuations are induced due to decoherence
coming from surface interactions [32]. It is speculated that
these fluctuations might appear stronger for heavy atoms.
Hence, the study of Fr material can be considered to be as
important as studying other alkali atoms. Although studies
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related to C3 coefficients of Fr with a perfect conductor were
carried out earlier [33,34], these coefficients are not available
for real material media.

To gain insight into the importance of quadrupole polar-
izability contributions from alkali atoms to their interaction
potential with different material walls, we have evaluated
the vdW dispersion coefficients arising due to the dipole
term (C3) and next-higher-order quadrupole term (C5) for all
alkali-metal atoms with different materials, including met-
als, semiconductors, and dielectrics over an arbitrary range
of separation distance. Our work is in agreement with pre-
vious studies that indicated the dominance of quadrupole
polarization effects evaluated using other methods [13–15].
Particularly, we have probed the range of separation distance
for which quadrupole effects are more significant. The C3 and
C5 coefficients depend upon the polarizabilities of atoms and
the permittivity of the material walls at imaginary frequencies.
The accuracy of these coefficients can be achieved by using
the appropriate methods to calculate these properties. We
have used a relativistic all-order (AO) method to calculate the
polarizabilities of the alkali atoms, and the Kramers-Kronig
relation is used to determine the permittivity of materials
at imaginary frequencies. Using these vdW coefficients, we
have computed and investigated the potential curves for the
considered atom-wall systems.

In the following section, we provide a brief theory related
to the interaction potential at arbitrary separation. Then we
provide the method to evaluate the required properties of
the materials and atom and an evaluation of the uncertainty
in the dispersion coefficients in Sec. III and the results and
discussion in Sec. IV. Finally, we conclude our work in
Sec. V. Unless stated otherwise, atomic units (a.u.) are used
throughout.

II. THEORY

The exact theory for the calculation of the vdW interac-
tion potential between an atom and the material surface was
given in Ref. [21]. Here, we give only a brief outline of the
expressions for the atom-wall vdW interaction potentials due
to multipole dispersion coefficients. The general expression
for the total attractive interaction potential Utotal arising from
the fluctuating multipole moments of an atom interacting with
its image on the surface is given by [20]

Utotal(z) = Ud (z) + Uq(z) + · · · , (1)

where Ud , Uq, and so on are the contributions from the dipole,
quadrupole, etc., and z is the separation distance between the
atom and wall in nanometers. Due to the predominant na-
ture of the dipole component, often, Utotal(z) is approximated
as Ud (z), but we also estimate contributions from Uq(z) in
this work. In terms of the permittivity values of the material
and dynamic polarizabilities of the atoms, we can express
[21,35,36]

Ud (z) = −α3
fs

2π

∫ ∞

0
dωω3αd (ιω)

×
∫ ∞

1
dχe2χαfsωzH (χ, εr (ιω)) (2)

and

Uq(z) = − α5
fs

12π

∫ ∞

0
dωω5αq(ιω)

×
∫ ∞

1
dχe2χαfsωz(2χ2 − 1)H (χ, εr (ιω)). (3)

In the above two expressions, αfs is the fine-structure constant,
χ is the Matsubara frequency, and αd (ιω) and αq(ιω) are the
dynamic dipole and quadrupole polarizabilities of the ground
state of the considered atom at imaginary frequencies. The
expression for function H (χ, ε(ιω)) is given by [37]

H (χ, ε) = (1 − 2χ2)
χ ′ − εrχ

χ ′ + εrχ
+ χ ′ − χ

χ ′ + χ
, (4)

where χ ′ =
√

χ2 + εr − 1 and εr is the real part of the
dynamic permittivity of the material wall at imaginary fre-
quency. Approximating the total potential until quadrupole
effects, at short distances (z → 0), the preceding formulas are
now given by

Utotal(z) = −C3

z3
− C5

z5
, (5)

where the C3 and C5 coefficients are defined as

C3 = 1

4π

∫ ∞

0
dωαd (ιω)

εr (ιω) − 1

εr (ιω) + 1
(6)

and

C5 = 1

4π

∫ ∞

0
dωαq(ιω)

εr (ιω) − 1

εr (ιω) + 1
. (7)

III. METHOD OF EVALUATION

As mentioned in the previous section, the evaluation of
the C3 and C5 coefficients requires knowledge of εr (ιω) and
α(ιω) of the material media and atoms, respectively. The
real part of the permittivity at imaginary-frequency εr (ιω)
values cannot be obtained experimentally, but their values
can be inferred from the imaginary part of the permittivity
at real frequencies using the Kramers-Kronig relations. Sim-
ilarly, accurate determination of dynamic values of αd and
αq at imaginary frequencies are challenging in the ab initio
approach. However, for alkali atoms, these can be evaluated
very accurately using the sum-over-states approach. Below,
we discuss evaluation procedures for εr (ιω) and α(ιω).

A. Dynamic electric permittivity

The imaginary part of the dynamic electric permittivity
εi(ω) can be given by

εi(ω) = 2n(ω)κ (ω), (8)

where n(ω) and κ (ω) are the refractive indices and extinction
coefficients of the materials at real frequencies, respectively.
Discrete n(ω) and κ (ω) values of the considered material
media for a wide range of frequencies are tabulated in the
Handbook on Optical Constants of Solids by Palik [38].
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Using these values, we have extrapolated values of εi(ω)
for continuous frequencies for a large range. Now using the
Kramers-Kronig relation, we can express the real part of dy-
namic permittivities εr (ιω) at imaginary frequencies such that

εr (ιω) = 1 + 2

π

∫ ∞

0
dω′ ω′εi(ω′)

ω2 + ω′2 . (9)

For the case of the semiconductor (Si) and dielectrics [SiO2,
yttrium aluminum garnet (YAG), ordinary sapphire (OS), and
extraordinary sapphire (ES)], we have used optical constants
ranging from 0.1 to 10000 eV from Palik [38]. For the case
of Au, the ε values at very small energies are very significant;
hence, in addition to the experimental values from Ref. [38],
we have extrapolated the values of real permittivity at imagi-
nary frequencies using the Drude model for metals as

εr (ιω) = 1 − ω2
p

ω(ω + ιγ )
, (10)

where ωp is the plasma frequency and γ is the relaxation
frequency. We have used ωp = 9.0 eV and γ = 0.035 eV as
in [36,39]. For the case of SiNx, an amorphous dielectric
material, we use the Tauc-Lorentz model for amorphous ma-
terials [40] to estimate the electric permittivity at imaginary
frequencies, the expression of which is given as

εr (ιω) = ω2 + (1 + g0)ω2
0

ω2 + (1 − g0)ω2
0

, (11)

where the parameters g0 = 0.588 and ω0 = 0.005 are SiN′
xs

response functions [40].

B. Dynamic polarizabilities

We already reported αd (ιω) values for the Li to Cs al-
kali atoms in our previous works [37,41]. Here, we give
αd (ιω) values for the Fr atom and αq(ιω) values for all the
alkali-metal atoms by evaluating them using the following
procedures.

Total electron correlation contributions to αd (ιω)
and αq(ιω) for atomic states of alkali atoms can be
expressed as [42]

αl (ιω) = αl,core(ιω) + αl,vc(ιω) + αl,val(ιω), (12)

where l = d corresponds to dipole polarizability and l =
q corresponds to quadrupole polarizability. Subscripts core,
vc, and val correspond to core, valence-core, and valence
contributions to the total polarizability, respectively. In the
alkali atoms, αl,val(ιω) contributes predominantly, followed
by αl,core(ιω), and contributions from αl,vc(ιω) are negligibly
small. These contributions are estimated in the following way.

To begin with, the electronic configuration of alkali atoms
is divided into a closed core and a valence orbital in order
to obtain the mean-field Dirac-Fock (DF) wave function of
the respective closed shell (|0c〉) using the DF method. The
mean-field wave functions of the atomic states of the alkali
atoms are then defined by appending the respective valence
orbital v as

|φv〉 = a†
v|0c〉. (13)

Using these mean-field DF wave functions, we calculated the
vc contributions to the dipole and quadrupole polarizability
using the following formula:

αl,vc(ιω) = 2

(2L + 1)(2Jv + 1)

×
Nc∑
m

(Em − Ev )|〈ψv||OL||ψm〉DF|2
(Em − Ev )2 + ω2

, (14)

where Jv corresponds to the total angular momentum of the
state. Similarly, the core contributions can be given by

αl,core(ιω) = 2

(2L + 1)

×
Nc∑
a

B∑
m

(Em − Ea)|〈ψa||OL||ψm〉|2
(Em − Ea)2 + ω2

, (15)

where the first sum for core orbitals is restricted from a to
total core orbitals Nc, the second sum is restricted by involving
intermediate states m up to allowed bound states B using the
respective dipole and quadrupole selection rules, L = 1 and
O1 = D are required for the dipole operator to give αd , L = 2
and O2 = Q are required for the quadrupole operator to give
αq, and Ei is the DF energy of the state. We have adopted
the random-phase approximation (RPA) to evaluate the above
expression to account for the core correlations [43].

The major contributions to the total dipole and quadrupole
polarizabilities are provided by the valence contributions;
Hence, it is important to calculate the valence polarizability
using accurate methods. We divide the valence contributions
into two parts: main and tail. The main part corresponds to
polarizability contributions by the low-lying dominant tran-
sitions responsible for very large polarizability contributions.
For the evaluation of the main part of the valence contribution
of total polarizability, we have employed the AO method to
evaluate accurate wave functions. These wave functions |ψv〉,
with v denoting the valence orbital, are represented using a
singles and doubles (SD) approximation of the AO method as
[44]

|ψv〉SD =
[

1 +
∑
ma

ρmaa†
maa + 1

2

∑
mrab

ρmraba†
ma†

r abaa

+
∑
m �=v

ρmva†
mav +

∑
mla

ρmrvaa†
ma†

r aaav

]
|φv〉, (16)

where a† and a represent the second-quantization creation and
annihilation operators, respectively, whereas the excitation
coefficients are denoted by ρ. The subscripts m, r and a, b
refer to the virtual and core orbitals, respectively. ρma and ρmv

are the single-excitation coefficients, whereas ρmrab and ρmrva

are the double-excitation coefficients. To take into account
the important experimental contributions these ab initio wave
functions are modified by changing the valence excitation
coefficient with modified ρmv using the scaling procedure
such that

ρ ′
mv = ρmv

δE expt
v

δE theory
v

. (17)
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After obtaining the wave functions of the considered states of
alkali-metal atoms using the AO method, we determine the
matrix elements, with k being the intermediate state, using the
following expression [45]:

OL,vk = 〈ψv|OL|ψk〉√〈ψv|ψv〉〈ψk|ψk〉
, (18)

where OL,vk corresponds to either dipole E1 or quadrupole E2
matrix elements depending on D or Q operators, respectively.
Using these matrix elements, the final expression for the main
part of the valence contribution to either the E1 or E2 polar-
izability at imaginary frequency is then given as

αl,Main(ιω) = 2

(2L + 1)(2Jv + 1)

×
∑

m>Nc,m �=v

(Em − Ev )|〈ψv||OL||ψm〉|2
(Em − Ev )2 + ω2

, (19)

where the sum is now restricted by entailing the intermediate
states m after Nc and up to I . We have considered 10–12
E1 and E2 matrix elements for the dominant transitions of
considered atoms using the AO method. For precise calcu-
lations, we use experimental energies Ei from the National
Institute of Standards and Technology (NIST) database [46].
Contributions from the remaining high-lying states are re-
ferred to as the tail part and are evaluated as

αl,Tail(ιω) = 2

(2L + 1)(2Jn + 1)

×
∑
m>I

(Em − En)|〈ψn||OL||ψm〉DF|2
(Em − En)2 + ω2

, (20)

where m > I means that states included in the main contribu-
tion evaluation are excluded here. Since the tail contributions
are much smaller in comparison to the main part, we calculate
them using the DF method.

C. Uncertainty evaluation

The sources of uncertainties in the final values of the
dispersion coefficients can be accounted for by the polar-
izability values of the atoms and the permittivity values of
the materials. We have considered the uncertainties in the
final values of the dispersion coefficients only from the po-
larizability calculations of the atoms without accounting for
errors from experimental data for the optical constants n and
k. To evaluate the uncertainties from the different contribu-
tions of polarizabilities, we have adopted procedures given in
Ref. [47]. One of the sources of uncertainties to the matrix
elements of the SD method can arise from the neglected triple
excitations, which can be estimated by considering triple-
excitation effects perturbatively in the SD method (SDpT
method). Again, ab initio values of the SD and SDpT meth-
ods can be improved by scaling the excitation amplitudes
using the experimental energies. The scaling procedures are
explained in Refs. [48,49]. Using these methods, uncertainties
of the calculated matrix elements are given as the sum of
differences in the values from the SD and SDpT methods and

TABLE I. Contributions to the ground-state dipole polarizabil-
ity (in a.u.) of the Fr atom. Various contributions along with the
absolute values of reduced E1 matrix elements contributing to the
main part of the valence correlations are quoted explicitly. Tail, core,
and valence-core contributions are also given. The core contribution
is estimated using the RPA method. Uncertainties in the values are
given in parentheses. Our final value is compared with previously
reported high-precision calculations.

Contribution E1 αd (0)

Main
7S1/2 − 7P1/2 4.277(8)a 109.4(4)
7S1/2 − 8P1/2 0.33(3) 0.34(7)
7S1/2 − 9P1/2 0.11(2) 0.03(1)
7S1/2 − 10P1/2 0.06(2) 0.008(4)
7S1/2 − 11P1/2 0.03(1) 0.003(2)
7S1/2 − 12P1/2 0.024(9) 0.001(1)
7S1/2 − 7P3/2 5.90(2)a 182.8(9)
7S1/2 − 8P3/2 0.93(5) 2.68(3)
7S1/2 − 9P3/2 0.43(3) 0.51(6)
7S1/2 − 10P3/2 0.27(2) 0.18(2)
7S1/2 − 11P3/2 0.19(1) 0.09(1)
7S1/2 − 12P3/2 0.14(1) 0.05(1)
Tail 1.101(7)
Core 20(2)
vc −1.0(5)
Total 316.6(2.4)
Others 317.8(2.4) [33]

313.7 [50]
325.8 [51]

aValues are taken from Ref. [52].

from the ab initio and scaled calculations. Uncertainties of
the tail, core, and vc contributions of the polarizabilities are
estimated using the approach discussed in Ref. [47]. From this
procedure, we have assigned a total of 10% and 50% error
bars to the core and vc contributions. The final uncertainty
of the polarizability value is given by adding the individual
uncertainties in the quadrature. From the uncertainties in the
polarizability values we have obtained the uncertainties in the
dispersion coefficients.

IV. RESULTS

A. C3 coefficients of Fr atom

Previously, we calculated the C3 coefficients for various
material walls interacting with alkali atoms [37,41] except for
Fr, so we are not repeating the results for other alkali atoms in
the present work. Here, we provide the C3 coefficients only for
Fr with a number of material walls. We give the static αd (0)
value along with the reduced E1 matrix elements and their
uncertainties for the Fr atom in Table I. Our αd (0) value is
also compared with the other high-precision calculations. We
have taken the experimental values of E1 matrix elements of
the dominant dipole transitions of Fr [52]. Other E1 matrix
elements are calculated using the method given in Sec. III.
Our value is in excellent agreement with value given by Dere-
vianko et al., who used high-precision experimental values
for E1 matrix elements for the principal transitions and other
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TABLE II. Calculated C3 coefficients (in a.u.) of Fr with various
material walls with explicit contributions from the core, vc, main,
and tail parts of its dipole polarizability. The values in parentheses
represent the estimated uncertainty.

Core vc Main Tail Total

Au 0.899 −0.033 1.928 0.024 2.81(9)
Si 0.644 −0.025 1.643 0.020 2.28(6)
SiO2 0.394 −0.014 0.776 0.010 1.17(4)
SiNx 0.482 −0.019 1.173 0.011 1.65(5)
YAG 0.613 −0.023 1.130 0.014 1.73(6)
OS 0.658 −0.024 1.162 0.015 1.81(7)
ES 0.698 −0.029 1.167 0.015 1.85(7)

E1 values found with the SD method [33]. The value given
by Safronova et al. is evaluated using the SD method and
deviates from our value by around 1% [50]. Although the
method we use is that same as that of Refs. [33,50] to calculate
the dipole polarizability of Fr, we have also scaled the E1
matrix elements using experimental energies as explained in
Sec. III. Recently, Śmiałkowski and Tomza used a molecular
MOLPRO package to evaluate the dipole polarizability of Fr,
which is overestimated and diverges by ∼3% from our value
[51]. Using reduced E1 matrix elements given in Table I, we
estimated the dynamic αd (ιω) values and then used them to
estimate different contributions to C3, as given in Table II.
The dominant contributor of C3 coefficients is the main part,
followed by the core, tail, and vc. The total value of C3

coefficient differs from material to material. Consequently,
the various contributions have been added up to provide a
final value of the C3 coefficient. The core provides 27%–38%
of the share of the total value of C3, which is in agreement
with the work by Derevianko et al. [33], who emphasized the
sensitivity of the core to dipole C3 values. On the other hand,
the tail contribution is ∼1% of the total value. The uncertainty
of the final value of C3 comes entirely from the evaluation of
dynamic dipole polarizabilities.

B. Quadrupole polarizabilities

To evaluate the C5 coefficients, we require quadrupole po-
larizability of alkali atoms. In Table III, we present the static
values of quadrupole polarizability αq(0) of the ground states
of alkali-metal atoms and compare our resulted values with
the available literature. We calculated the static polarizability
by putting ω = 0 in Eq. (12). Since E2 matrix elements are
required to calculate dynamic polarizability, we provide the
matrix elements of the dominant E2 transitions in Table III
for all the alkali atoms, and their uncertainties are quoted
in the parentheses. The breakdown of polarizability into the
main, tail, core, and vc polarizabilities is also presented. The
main part of the valence polarizability provides the dominant
contribution, followed by tail and core polarizabilities. The
vc contributions for Li, Na, and K are zero due to the non-
availability of D orbitals in the core of these atoms, whereas
very insignificant contributions have been encountered for Rb,
Cs, and Fr. For the final value of total static polarizability, we
have added the core polarizability values from RPA. We have
assigned percentage errors of 3%, 5%, 65%, 65%, 5%, and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

���� (a.u.)

0

2000

4000

6000

8000

10000

��
q

  (
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u
.)

Li
Na
K
Rb
Cs
Fr

FIG. 1. Calculated dynamic quadrupole polarizability αq (in a.u.)
at imaginary frequencies of the alkali atoms.

15% to the tail part of αq in Li, Na, K, Rb, Cs, and Fr, respec-
tively. The net uncertainty of the corresponding final value of
αq is given by adding all the uncertainties in quadrature. From
Table III, we can observe that with an increase in atomic num-
ber, the static quadrupole polarizabilities of alkali atoms from
Li to Cs increase, but the trend breaks at Cs. It is expected that
being the heaviest atom among all the alkalis, Fr could have
the largest polarizability value. Even the previous studies on
the dipole polarizability of alkali atoms report a higher αd (0)
value for the Cs atom than for Fr. The reason can be under-
stood by looking into the various contributions to quadrupole
polarizabilities in Table III. As can be seen, the principally
contributing E2 matrix elements gradually increase with the
size of an alkali atom, while the trend deviates from Cs to Fr.
Since excitation energies of these transitions become larger
with the size of the alkali atom, with similar E2 amplitudes,
contributions from these principal transitions to quadrupole
polarizabilities become lower. Also, the trends of “tail” con-
tributions show a similar behavior from Cs to Fr, suggesting
that E2 matrix elements of the higher excited states behave
in a similar manner. The reason for lower magnitudes in the
E2 matrix elements in Fr compared to Cs could be attributed
to large cancellations in the electron correlation effects and
strong relativistic effects in Fr due to the presence of more
occupied electrons, including in the d orbitals. We did not
find experimental αq(0) results for any alkali atom to compare
our theoretical values to. However, in Table III, we compare
our results with the most recent work by Śmiałkowski et al.,
who calculated the static quadrupole polarizability of alkali
atoms using the MOLPRO package of ab initio programs [51].
Our static value for quadrupole polarizability deviates from
the values reported by Śmiałkowski et al. by less than 1% for
Li to Cs alkali atoms, whereas for Fr, the discrepancy is about
8%. In another work [19], Jiang et al. evaluated the dynamic
quadrupole polarizability of Na and Cs using the oscillator
method. We believe that our values are much more reliable
than the comparable ones due to accurate calculations of the
matrix elements evaluated using the AO method.

Using the E2 matrix elements, the dynamic quadrupole
polarizability αq(ιω) of alkali atoms over a range of frequen-
cies was calculated as presented in Fig. 1. Since our static
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TABLE III. Contributions to the ground-state quadrupole polarizabilities (in a.u.) of the Li, Na, K, Rb, Cs, and Fr atoms. Various
contributions along with the E2 matrix elements contributing to the main part of the valence correlations are quoted explicitly. Tail, core,
and valence-core contributions are also given. The RPA value of core has been considered for the total static value of αq. Uncertainties in
matrix elements and polarizability contributions are quoted in parentheses. Final results are compared with previously available values.

Li Na K
Contribution E2 αq(0) Contribution E2 αq(0) Contribution E2 αq(0)

Main Main Main
2S1/2 − 3D3/2 17.340(3) 421.9(1) 3S1/2 − 3D3/2 19.79(1) 589(1) 4S1/2 − 3D3/2 30.51(38) 1897(47)
2S1/2 − 4D3/2 7.282(1) 63.56(2) 3S1/2 − 4D3/2 7.783(3) 76.96(6) 4S1/2 − 4D3/2 4.32(87) 30(12)
2S1/2 − 5D3/2 4.303(2) 20.78(2) 3S1/2 − 5D3/2 4.465(2) 23.63(2) 4S1/2 − 5D3/2 0.69(66) 1(1)
2S1/2 − 6D3/2 2.957(1) 9.49(1) 3S1/2 − 6D3/2 3.020(1) 10.43(1) 4S1/2 − 6D3/2 0.13(47) 0.02(18)
2S1/2 − 7D3/2 2.208(1) 5.188(5) 3S1/2 − 7D3/2 2.234 6 4S1/2 − 7D3/2 0.35(34) 0.2(3)
2S1/2 − 8D3/2 1.734(2) 3.160(7) 3S1/2 − 8D3/2 1.80(5) 3.6(2) 4S1/2 − 8D3/2 0.40(28) 0.2(3)
2S1/2 − 3D5/2 21.24(60) 632(35) 3S1/2 − 3D5/2 24.23(2) 884(1) 4S1/2 − 3D5/2 37.36(46) 2846(70)
2S1/2 − 4D5/2 8.919(2) 95.34(4) 3S1/2 − 4D5/2 9.532(4) 115.4(1) 4S1/2 − 4D3/2 5.28(1.06) 44(18)
2S1/2 − 5D5/2 5.27(36) 31(4) 3S1/2 − 5D5/2 5.469(2) 35.45(3) 4S1/2 − 5D5/2 0.84(79) 1(2)
2S1/2 − 6D5/2 3.622(2) 14.24(2) 3S1/2 − 6D5/2 3.699(1) 15.64(1) 4S1/2 − 6D5/2 0.17(58) 0.04(27)
2S1/2 − 7D5/2 2.704(1) 7.781(6) 3S1/2 − 7D5/2 2.736(1) 8.38(1) 4S1/2 − 7D5/2 0.43(43) 0.2(5)
2S1/2 − 8D5/2 2.123(3) 4.74(1) 3S1/2 − 8D5/2 2.21(7) 5.4(3) 4S1/2 − 8D5/2 0.49(34) 0.3(4)
Tail 114(3) Tail 104(8) Tail 98(64)
Core 0.112(5) Core 1.59(2) Core 16(1)
vc 0 vc 0 vc 0
Total 1424(35) Total 1880(5) Total 4934(107)
Others 1423 [51] Others 1895 [51] Others 4962 [51]

1800 [19]
Rb Cs Fr

Contribution E2 αq(0) Contribution E2 αq(0) Contribution E2 αq(0)
Main Main Main
5S1/2 − 4D3/2 32.88(74) 2451(111) 6S1/2 − 5D3/2 33.62(2.07) 3422(420) 7S1/2 − 6D3/2 33.40(1.82) 3016(328)
5S1/2 − 5D3/2 0.09(92) 0.02(28) 6S1/2 − 6D3/2 12.97(41) 327(21) 7S1/2 − 7D3/2 8.47(39) 130(12)
5S1/2 − 6D3/2 2.10(45) 6(3) 6S1/2 − 7D3/2 8.08(17) 109(5) 7S1/2 − 8D3/2 5.94(15) 56(3)
5S1/2 − 7D3/2 2.00(26) 6(2) 6S1/2 − 8D3/2 5.54(9) 48(2) 7S1/2 − 9D3/2 4.26(39) 27(5)
5S1/2 − 8D3/2 1.71(17) 4(1) 6S1/2 − 9D3/2 4.11(7) 25(1) 7S1/2 − 10D3/2 3.23(6) 15.1(6)
5S1/2 − 9D3/2 1.44(12) 2.8(5) 6S1/2 − 10D3/2 3.21(3) 15.4(3) 7S1/2 − 11D3/2 2.57(5) 9.3(3)
5S1/2 − 4D5/2 40.29(90) 3681(164) 6S1/2 − 5D5/2 41.56(2.41) 5195(601) 7S1/2 − 6D5/2 41.54(2.02) 4610(449)
5S1/2 − 5D5/2 0.07(1.07) 0.01(24) 6S1/2 − 6D5/2 15.20(45) 448(27) 7S1/2 − 7D5/2 9.11(38) 150(12)
5S1/2 − 6D5/2 2.54(30) 9(4) 6S1/2 − 7D5/2 9.63(2) 156(6) 7S1/2 − 8D5/2 6.68(17) 71(4)
5S1/2 − 7D5/2 2.43(30) 9(2) 6S1/2 − 8D5/2 6.63(12) 69(2) 7S1/2 − 9D3/2 4.86(11) 35(2)
5S1/2 − 8D5/2 2.09(18) 6(1) 6S1/2 − 9D3/2 4.94(7) 37(1) 7S1/2 − 10D5/2 3.71(9) 20(1)
5S1/2 − 9D3/2 1.74(14) 4.2(6) 6S1/2 − 10D5/2 3.87(8) 22.3(9) 7S1/2 − 11D5/2 2.96(8) 12.4(6)
Tail 224(145) Tail 644(32) Tail 478(72)
Core 35(2) Core 86(7) Core 125(10)
vc ∼0 vc ∼0 vc ∼0
Total 6440(246) Total 10606(736) Total 8756(560)
Others 6485 [51] Others 10498 [51] Others 9225 [51]

10600 [19]

values are accurate, we believe that the dynamic values are
also reliable. We find the static RPA and DF values for the
core contributions are quite close, so we have estimated the
dynamic values of core polarizabilities using the DF method
without losing much accuracy. As the frequency increases, the
polarizability value decreases and reaches a small value be-
yond ω = 1 a.u. This trend is seen for every atom considered
in the present work. Since these dynamic polarizability values
can be important for experimental purposes, we have inferred
these values at a particular frequency by providing a fitting
model. In our previous work [53], we gave the fitting formula
for the dipole polarizability of alkali atoms at imaginary fre-

quencies. Here, we have fitted the quadrupole polarizabilities
of all the alkali atoms using the following fitting formula:

αq(ιω) = A

1 + Bω + C2ω
, (21)

where A, Bm and C are the fitting parameter given in
Table IV.

C. C5 dispersion coefficients

Table V presents the calculated dispersion coefficients
for all considered atoms due to the C5 contributions of the
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TABLE IV. Fitting parameters for the dynamic quadrupole polarizabilities of the alkali-metal atoms at imaginary frequencies.

Atom
Parameter Li Na K Rb Cs Fr

A 1425.04 1879.5 4980.82 6470.66 10420.9 8514.71
B 0.1296 0.1193 0.2097 0.3640 1.1656 0.9549
C 42.0983 49.7813 97.0513 115.692 163.194 138.994

TABLE V. Tabulated C5 coefficients for the alkali-metal atoms with different material walls. The uncertainties in the final values are given
in parentheses. Final results are compared with previously available theoretical values.

Li
Au Si SiO2 SiNx YAG OS ES

Core 0.001 0.004 0.003 0.003 0.005 0.005 0.006
vc 0 0 0 0 0 0 0
Main 17.657 14.870 7.292 10.808 10.827 11.181 11.320
Tail 2.046 1.694 0.861 1.243 1.288 1.338 1.365
Total 19.7(5) 8.1(4) 16.6(2) 12.1(2) 12.1(3) 12.5(3) 12.7(3)
Ref. [15] 19.15

Na
Au Si SiO2 SiNx YAG OS ES

Core 0.077 0.048 0.034 0.036 0.054 0.059 0.064
vc 0 0 0 0 0 0 0
Main 22.610 19.081 9.308 13.846 13.801 14.242 14.401
Tail 1.762 1.464 0.738 1.072 1.103 1.144 1.165
Total 24.45(9) 20.59(8) 10.08(4) 14.95(6) 14.96(6) 15.44(6) 15.63(6)
Ref. [19] 25.2
Ref. [15] 22.48

K
Au Si SiO2 SiNx YAG OS ES

Core 0.702 0.465 0.308 0.347 0.486 0.530 0.571
vc 0 0 0 0 0 0 0
Main 47.036 39.962 19.117 28.784 28.151 28.972 29.146
Tail 1.873 1.539 0.792 1.132 1.188 1.236 1.264
Total 50(1) 42(1) 20.2(6) 30.3(9) 29.8(9) 31(1) 31(1)
Ref. [15] 47.48

Rb
Au Si SiO2 SiNx YAG OS ES

Core 1.435 0.973 0.631 0.728 0.992 1.076 1.154
vc ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
Main 55.231 46.980 22.377 33.765 32.876 33.818 33.973
Tail 3.743 3.106 1.569 2.274 2.345 2.433 2.479
Total 60(3) 51(2) 25(1) 37(2) 36(2) 37(2) 38(2)

Cs
Au Si SiO2 SiNx YAG OS ES

Core 3.277 2.287 1.442 1.712 2.252 2.431 2.591
vc ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Main 73.938 62.855 29.809 45.015 43.596 44.834 44.941
Tail 9.070 7.605 3.761 5.538 5.594 5.785 5.867
Total 86(5) 73(4) 35(2) 52(3) 51(3) 53(3) 53(3)
Ref. [19] 117

Fr
Au Si SiO2 SiNx YAG OS ES

Core 4.418 3.126 1.943 2.341 3.026 3.257 3.462
vc ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Main 64.978 55.310 26.252 39.656 38.457 39.548 39.669
Tail 7.169 5.987 2.985 4.369 4.448 4.606 4.680
Total 77(4) 64(4) 31(2) 46(3) 46(3) 47(3) 48(3)
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polarizability in the total potential interacting with different
material walls. Using the resulting dynamic polarizability of
the considered atoms and dynamic permittivity values of ma-
terial walls at imaginary frequencies, we obtained the C5 vdW
dispersion coefficients using Eq. (7). The estimated uncertain-
ties of the final values are quoted in parentheses. We have used
an exponential grid to solve the integration of the mentioned
equation. In Table V, core, vc, main, and tail contributions
of dispersion coefficients are given which are explicitly based
on the corresponding contribution of polarizability. The final
value of the C5 coefficient was found by adding up all the
contributions. The increasing size of the alkali atoms increases
the values of the individual contribution and total dispersion
coefficients due to the increasing polarizability of the atom for
any particular material wall. Among the various contributions,
the main part is the dominant contributor to the total C5 dis-
persion coefficient value, followed by the tail, core, and vc.
In Ref. [33], Derevianko et al. emphasized that the C3 coeffi-
cients are sensitive to the core contribution. However, for the
case of the C5 coefficients, the core C5 coefficients are much
smaller and contribute at most 5% to total C5 value, whereas
the tail C5 contributions are prominent. The zero value of the
vc contribution of the C5 coefficient for Li, Na, and K is due to
the zero value of the quadrupole polarizability. After compar-
ing the presented C5 coefficients with the C3 coefficients that
were already reported in our previous work [37,41], it can be
observed that C3 values are at least 25 times smaller than C5

values for any particular system. The reason for this difference
solely depends on the larger quadrupole polarizability of al-
kali atoms compared to their dipole polarizability. Moreover,
the Fr atom has lower values of final C5 coefficients than Cs
due to the smaller valence quadrupole polarizability of Fr than
Cs. Comparing the materials considered in the present work,
the largest C5 values are observed for metal (Au), followed by
the semiconductor (Si) and then dielectrics (sapphire, YAG,
SiNx, and SiO2).

We also compare our values with the available theoretical
values of C5 coefficients. Jiang et al. reported C5 coefficients
for Na and Cs with different materials, including Au [19]. The
reported value for the Na-Au system is in close agreement
with our value. But for the case of the Cs-Au system, our
value deviates from the reported value by 35%. The rea-
son for the discrepancies could be the method used for the
calculation of the dynamic polarizability and permittivity of
the atom and material, respectively. The oscillator method
has been used to calculate the quadrupole polarizability of
Na and Cs. This method overestimates the polarizability val-
ues, especially when the systems become heavier [54]. It
can also be seen from Table V that αd (0) for Cs is not
reliable. This could be one of the reasons for the overesti-
mated value of the C5 coefficient reported by Jiang et al.
The dynamic polarizability values of Na and Cs of Jiang
et al. were evaluated using the oscillator method, which gave
results that deviate slightly from our values, whereas the
dynamic permittivity of Au was evaluated using a single-
frequency Lorentzian approximation, as a result of which
the C5 coefficients reported by them are exaggerated. In an-
other report, Tao and Rappe calculated the C5 coefficients
for Li, Na, and K with Au using an ab initio DFT + vdW
method [15]. Although our values support the values re-

ported in Ref. [15], the deviation of our values from the
reported ones starts increasing with the increase in the size
of the atom. As it is commonly known that the exchange-
correlation functional and nonlocal correlation energies are
not treated properly in the DFT method, we believe our val-
ues are accurate and more reliable than the values given by
Tao et al.

D. Total vdW potentials

The primary findings of the present work are given in
this section. Figure 2 presents the potential curves due to
dipole and quadrupole effects evaluated using Eqs. (2) and
(3), respectively, for alkali-metal atoms interacting with the
SiNx system. Most of the experiments have been conducted
with SiNx diffraction grating [40,55–61], so for demon-
stration purposes, we have chosen a SiNx wall to observe
the total potential curves with alkali atoms. The total po-
tential curve has been obtained to the first higher-order
interaction of the atom-wall system within the framework
of Lifshitz theory. The individual dipole and quadrupole
potential curves are also plotted. We have evaluated Ud

using our previous value of dipole polarizability [37,41].
It can be observed that the quadrupole contribution makes
a very small contribution to the total potential. If we
scrutinize these graphs at very short separation distances,
i.e., from z = 1 to z = 10 a.u., as presented in the in-
sets in Figs. 2(a)–2(f), we can observe the overwhelming
contribution provided by the quadrupole contribution of
the atom-wall potential. The quadrupole contribution is
more dominant than the dipole from 1 to 6 nm for all
the alkali-metal atoms. As the separation distance increases,
the long-range dispersion interaction is completely imparted
by the dipole effect of the polarizability of the atom as de-
picted in Fig. 2. These results suggest that for a particular
material the quadrupole effects can be quite significant if
the separation distance is very small. Also, the quadrupole
effect is much more effective and can be realized over a
larger separation when the atom or molecule considered
is profoundly polarized. Similar curves can be obtained
for the other materials that have been considered in this
work. It can be conjectured that the higher-order contribu-
tions after the quadrupole term might influence the total
vdW potential in the preliminary test. This might be true
at the diminutive separation distance between the atom
and a wall, but the Lifshitz theory is not applicable be-
low a separation distance of 1 nm [62]. Earlier studies on
physisorption of an atom on materials have shown that oc-
tupole contributions give corrections of about 0.5%–1% to
the total vdW potentials of different atom-surface interac-
tions [63–65]. Hence, we neglect higher-order contributions
and restrict the potentials until quadrupole polarization
effects.

V. CONCLUSION

We have investigated the quadrupole polarization ef-
fects of alkali atoms in the total atom-wall van der
Waals interaction potentials. For this, we considered both
dipole- and quadrupole-induced interactions of atoms with
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(a) Li

(c) K

(e) Cs (f) Fr

(d) Rb

(b) Na

FIG. 2. The vdW potential curves for interactions of the alkali-metal atoms with SiNx for z = 1–100 nm. The insets present the same
potential curves at z = 1–10 nm.

various material walls within the framework of Lifshitz the-
ory. We probed the range of the separation distance at
which these quadrupole effects are dominant. The poten-
tial curves depict that the quadrupole polarization effects of
alkali atoms in a total atom-wall potential are quite signif-

icant when the separation distance between the atom and
material wall ranges from 1 to 10 nm. Beyond this range,
the quadrupole contributions start declining, resulting in
an attractive potential entirely due to the dipole polariza-
tion effects. Also, at significantly shorter distances, the
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attraction due to quadrupole polarization of the alkali atom
increases with the increase in the size of the atom, sug-
gesting quadrupole effects can be dominant when an atom
has a greater tendency to be polarized. The obtained results
could be useful in high-precision experiments for studying
van der Waals interactions at smaller distances very close to
surfaces.
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