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Nuclear cusps and singularities in the nonadditive kinetic potential bifunctional
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The nonadditive kinetic potential vNAD is a key quantity in density-functional theory (DFT) embedding
methods, such as frozen density embedding theory and partition DFT. vNAD is a bifunctional of electron
densities ρB and ρtot = ρA + ρB. It can be evaluated using approximate kinetic-energy functionals, but accurate
approximations are challenging. The behavior of vNAD in the vicinity of the nuclei has long been questioned, and
singularities were seen in some approximate calculations. In this article, the existence of singularities in vNAD

is analyzed analytically for various choices of ρB and ρtot , using the nuclear cusp conditions for the density and
Kohn-Sham potential. It is shown that no singularities arise from smoothly partitioned ground-state Kohn-Sham
densities. We confirm this result by numerical calculations on diatomic test systems HeHe, HeLi+, and H2, using
analytical inversion to obtain a numerically exact vNAD for the local density approximation. We examine features
of vNAD which can be used for development and testing of approximations to vNAD[ρB, ρtot] and kinetic-energy
functionals.

DOI: 10.1103/PhysRevA.106.042812

I. INTRODUCTION

When the precise description of large and complex systems
is not affordable computationally, they can be partitioned into
smaller subsystems to make the calculations feasible. The
main quantities of interest often pertain only to a localized
region of the whole system. Such a region can be solved
separately, with a higher level of theory that is more computa-
tionally costly, while the the rest of the system can be solved
with computationally cheaper methods [1,2]. Examples of this
embedding strategy include chromophores in protein environ-
ments or an aqueous solution [3], electrolyte molecules in
solvents [4], organic molecules in aggregates [5], quantum
defects in solids [6], or ions in a plasma with an average-atom
model [7].

Two appealing methods for calculating the electronic struc-
ture of complex molecular systems in the framework of
density-functional theory (DFT) are frozen-density embed-
ding theory (FDET) [8–11] and partition DFT [12,13]. They
allow the total electronic density to be divided into subsystem
densities that can be separately calculated in a formally exact
framework.

In calculations based on system-fragmenting methods
within the Kohn-Sham DFT framework or quantum me-
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chanics combined with molecular mechanics (QM/MM) [3]
approaches, the relation between the potential of two sub-
systems is investigated via the so-called nonadditive kinetic
potential functional vNAD[ρB, ρtot] [14]. This quantity plays a
critical role in calculating the correct ground-state density. In
the overlap regions between partitioned densities, vNAD takes
into account the orthogonality of the wave functions of the full
system (but not between subsystems [15]).

vNAD can be evaluated through a kinetic-energy functional
[8,11], as a “decomposable approximation”; the semi-local
one most commonly used for vNAD was introduced in [16]
and tested comprehensively in [17]. The simple Thomas-
Fermi and von Weizsäcker functionals are found to perform
very poorly [15]. In general kinetic-energy functionals [18,19]
are at a much cruder state of development than exchange-
correlation functionals and perform poorly for vNAD. They
can be used for orbital-free DFT [20], but continue to be
an area of active investigation [21–23]. To go beyond semi-
local approximations, vNAD can be evaluated for real systems
through somewhat problematic numerical inversion [15,24–
26], or “nondecomposable” approximations, specifically for
vNAD [27,28].

DFT approximations are evaluated by their capacity to
provide well-known properties of the ground state with high
accuracy. The cusp relation (or cusp condition) states that for
Coulomb potentials, the electron density has a cusp at the
position of the nuclei. In DFT-related approaches, the cusp
relations [29–33] are an important property of an accurately
calculated ground-state density and have corresponding sin-
gularities in the Kohn-Sham potential. Whether vNAD[ρB, ρtot]
should have such singularities due to nuclear cusps, and
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whether any approximations produce them, has been unclear.
A preliminary investigation with analytic inversion suggested
that there were singularities in vNAD[ρB, ρtot] for diatomic
systems [14]. However, the following questions remain open:
Does vNAD[ρB, ρtot] contain singularities at the nuclei for any
admissible [14] pair of densities ρB and ρtot in any Coulomb
system? Does vNAD[ρB, ρtot] present any other discontinu-
ities? If yes, how are they related to the ground-state charge
density? The presence of singularities is important as a test for
vNAD approximations and potentially to know whether such
features pose a numerical challenge in using vNAD for embed-
ding calculations. Correct reproduction of the kinetic-energy
density or vNAD features around nuclei can be essential to
avoid artificial charge leaks from the nuclei to the environment
[27] and for calculations of properties involving core elec-
trons, including light elements, x-ray spectra, or warm dense
matter in which core orbitals overlap between atoms at high
pressure [34,35].

In this article, we theoretically prove the nonexistence at
the vicinity of the nuclei of singularities in analytically in-
verted vNAD[ρB, ρtot] from a class of densities that weakly
overlap in space and we show consistent numerical results for
model systems. Section II reviews the nonadditive potential
bifunctional and how it can be constructed from analytical
inversion. The setup for a specific class of densities for which
the inverted potential is free of cusp-like singularities is ex-
plained and we conclude the cases for which singularities
at the vicinity of the nuclei are expected. Section III gives
details of how numerical calculations of analytically inverted
vNAD[ρB, ρtot] were carried out for various partitionings of
ground-state Kohn-Sham densities. In Sec. IV we present
results for the diatomic model systems HeHe, HeLi+, and
H2 with comparison to calculations from the von Weizsäcker
kinetic functional [36]. We examine the features found in the
analytically inverted vNAD. Two Appendixes provide more
detailed mathematical analysis of the smooth parts of densi-
ties and potentials and the relation of cusps in densities and
singularities in potentials.

II. THEORY

We assume finite molecular systems throughout this work.
Consider a system described by the DFT Kohn-Sham equa-
tions (in atomic units)[− 1

2∇2 + vKS[ρ](r)
]
φi(r) = εiφi(r), (1)

where ρ is the electronic charge density, φi is a Kohn-Sham
orbital, and εi is the corresponding Kohn-Sham eigenvalue.
The Kohn-Sham potential is

vKS[ρ](r) := vext (r) + vHxc[ρ](r), (2)

where vHxc[ρ](r) := δEHxc
δρ

is the Hartree, exchange, and
correlation (Hxc) potential obtained exactly or via an approx-
imation.

The density is given by

ρ(r) :=
∑

i

fi|φi(r)|2, (3)

where fi is the occupation factor of orbital φi. In frozen-
density embedding theory [1], we regard the system as divided

into subsystems j. The ground-state solution for each is ob-
tained by Kohn-Sham equations for its orbitals i:[− 1

2∇2 + vKS[ρ j](r) + vemb[ρ, ρ j](r)
]
φi j (r) = εi jφi j (r),

(4)

where the embedding potential is

vemb[ρ, ρ j](r) =vKS[ρ](r) − vKS[ρ j](r) + δTs[ρ]

δρ(r)
− δTs[ρ j]

δρ j (r)
.

(5)

This formulation relies on the assumption that the potential
vKS[ρ j] exists for each ρ j . In the case of integer fi, this silent
assumption is known as the condition of “noninteracting vs-
representability” [37]. It means that there exists a Kohn-Sham
system for which ρ j is its ground state. This is an admissibility
criterion for ρB and ρtot in vNAD[ρB, ρtot] [14], namely, there
exist Kohn-Sham systems for which each of them is a ground
state.

Evaluation of the differences of Kohn-Sham potentials (ex-
ternal, Hartree, and exchange-correlation) is straightforward.
The last two terms at the right-hand side of Eq. (5), based on a
kinetic-energy functional Ts[ρ] = − 1

2

∑
i fi〈φi[ρ]|∇2|φi[ρ]〉,

constitute the nonadditive kinetic potential bifunctional
vNAD[ρB, ρtot]. φi[ρ] indicates that the expectation value of
the kinetic energy operator is evaluated for optimal orbitals
obtained in the constrained search.

The total kinetic energy of a system (Ts[ρ]) is the sum over
the kinetic energy of all subsystems (Ts[ρ j]) plus an addi-
tional “nonadditive” term (T NAD[ρA, ρB] in the case of two
subsystems), which is due to fermion statistics for electrons
and the constrained search definition of the functional Ts[ρ]
[38]. The nonadditive kinetic potential bifunctional is defined
by the pair of densities provided by total ground-state density
ρtot (r), and is denoted by vNAD[ρB, ρtot](r) where ρB(r) is one
of the possible partitions of the total density. vNAD, in fact,
is the functional derivative of the nonadditive kinetic-energy
bifunctional

vNAD[ρB, ρtot](r) = δT NAD
s [ρ, ρtot](r)

δρ(r)

∣∣∣∣∣
ρ=ρB

= δTs[ρtot](r)

δρtot (r)
− δTs[ρB](r)

δρB(r)
, (6)

where ρB and ρA = ρtot − ρB could be partitioned in different
ways, as discussed in Sec. II B. We note that an alternate
notation convention is used in other work such as [14], in
which the roles of ρA and ρB are swapped; i.e., ρA is the
density of the embedded system and vNAD[ρA, ρtot](r) is the
quantity of interest.

The exact form of δTs[ρ]/δρ is not known (except for
the von Weizsäcker formula [36] for the case of one or two
electrons, as discussed later), so it needs to be approximated
in general. Explicit semi-local approximations to the kinetic-
energy functional [18] Ts[ρ](r) in numerical simulations
proved useful for applications such as orbital-free DFT [20],
but are quite deficient for vNAD[ρB, ρtot] [14,24]. Such failures
prompted interest in implicit functionals for vNAD, constructed
by means of numerical inversion procedures for the Kohn-
Sham equation. Unfortunately, this numerical inversion is an
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ill-defined problem if finite basis sets are used, which results
in numerical instabilities and multiple solutions. While ap-
proaches were developed to handle this nonuniqueness [39],
the instabilities remain a problem that plagues Kohn-Sham
inversion with finite basis sets [40]. Details of the possible
inversion procedures and approximations for construction of
vNAD, and their difficulties, were reviewed by Banafsheh and
Wesolowski, with numerical examples [14]. The Kohn-Sham
equations must be inverted twice to obtain vNAD[ρB, ρtot] for
a given pair of densities, which exacerbates the numerical
problems of inversion. Only for some model systems, and
particular partitionings of the total density ensuring that ρtot >

ρB, can vNAD[ρB, ρtot] be expressed analytically [15], and so
few results for vNAD from the exact KS potential have been
presented in the literature.

A. One-orbital formula

For a Kohn-Sham system described by Eq. (1) with a
density as in Eq. (3), we shall consider the special case in
which only one orbital is occupied. In this situation, we are
able to analytically invert the Kohn-Sham equation [14] and
avoid the problems of numerical inversion, a strategy that
was employed in many other studies of the exact Kohn-Sham
potential [41]. This is the situation for a system of one electron
or two spin-compensated electrons.

If this one occupied orbital is real and positive, as is typi-
cally the case for the lowest-energy state of a molecule, then
φ1(r) = √

ρ1(r). Equation (1) can then be rearranged as:

vKS(r) = ∇2φ1(r)

2φ1(r)
+ ε1 (7)

= ∇2√ρ1(r)

2
√

ρ1(r)
+ ε1. (8)

We define analytical inversion of the density as

vinv[ρ1](r) := ∇2√ρ1(r)

2
√

ρ1(r)
, (9)

which is numerically equivalent to the von Weizsäcker for-
mula, Eq. (16), as discussed below. Here vinv[ρ] is the
effective potential which reproduces the density ρ, which
always exists. (By contrast, the effective potential vs[ρ], for
which ρ is the ground state for the noninteracting electron
system, exists only if ρ is vs-representable.) vinv[ρ] differs
from vKS[ρ], which is an approximate potential using ρ as
an ingredient. In the one-orbital formula case

vinv[ρ1](r) = vKS(r) − ε1. (10)

If we multiply both sides of Eq. (1) by f1φ
∗
1 (r) we obtain

− 1
2 〈φ1|∇2|φ1〉 = ε1|φ1(r)|2 − vKS(r)|φ1(r)|2. (11)

Replacing |φ1(r)|2 by ρ(r) while identifying the left term in
Eq. (11) as Ts[ρ](r), from a functional derivative we obtain

vt [ρ](r) := δTs[ρ]

δρ(r)
= −vKS[ρ](r) + ε1 = −vinv[ρ](r).

(12)

If the exact Ts[ρ](r) is known [in Eq. (6)], then vinv[ρ](r) =
−δTs(r)/δρ(r).

B. Cusps, singularities, and the nonadditive potential

Let us consider very generally the relationship between
cusps in densities and singularities in potentials; we shall de-
fine both below. Before beginning, we impose two restrictions
on densities and potentials that are assumed throughout the
remainder of this work: (1) densities will be obtained from and
yield singularity-free Hxc potentials; (2) the states considered
always have at least one 1s orbital at each nucleus, which
dominates the density near each nucleus. Both restrictions
apply to the exact ground-state density and potentials. They
ensure (see conclusions found in [42]) that cusp conditions
[31–33,42,43] hold for cusps in densities and for singularities
in both external potentials and approximated Kohn-Sham po-
tentials.

Our goal in this section is to explore how cusps in densities
manifest as singularities in nonadditive potentials. Since this
varies depending on the nature of densities, we first derive a
general rule and then apply it to examples from the literature
and to the work done here.

A nuclear cusp means that the angularly averaged density
obeys limr→RN |∇ρ| = 2ZNρ; a nuclear singularity means that
the potential obeys limr→RN rNv → Z , where rN = r − RN .
We use a short-hand notation to describe cusps via e−2ZN |r−RN |
and singularities via − ZN

|r−RN | . Each cusp and singularity is
uniquely described by (RN , ZN ) for nuclei N in some set N ∈
N . Sums over N without extra clarification imply N ∈ N .

Note that the notation above addresses behavior near each
nucleus, but does not describe every aspect of the system. The
true density and potentials may be written as

ρ(r) :=
∑

N

ρ0,N e−2ZN |r−RN | + ρsmooth(r), (13)

v(r) := −
∑

N

ZN

|r − RN | + vnon-sing(r), (14)

where ρ0,N is the density value at RN . Here ρsmooth(r) has no
cusps and is zero at each nucleus. vnonsing(r) has no singu-
larities, but needs few other restrictions. Both functions are
discussed in more depth in Appendix A.

All subsequent results follow from three theorems below.
The densities involved may be ground-state densities or other
densities which have a mapping of the density to the noninter-
acting potential (Appendix B).

Theorem 1. The density of any electronic system has a
cusp of the form ρ(r) ≈ ρ0,N e−2ZN |r−RN | near every singular-
ity in the external or KS potential, where vext(r) ≈ vs(r) ≈
− ZN

|r−RN | .
Proof. A more general case is a long-known result [31,42].

Here, we use that ρ0,N is nonzero, consistent with our second
restriction of having a 1s orbital, to narrow it down to systems
of relevance. Our first restriction extends it to approximate
Kohn-Sham systems. �

Theorem 2. If the density of an electronic system has a
cusp of the form ρ(r) ≈ ρ0,N e−2ZN |r−RN |, then the external and
Kohn-Sham potentials have singularities vext(r) ≈ vs(r) ≈
− ZN

|r−RN | .
Proof. The result for interacting systems follows from The-

orem 1 and the Hohenberg-Kohn theorem [44,45]. The KS
result is easily shown for up to two electrons by using the von
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Weizsäcker potential [36]

vvW[ρ](r) : = ∇2√ρ(r)

2
√

ρ(r)
(15)

= ∇2ρ(r)

4ρ(r)
− |∇ρ(r)|2

8ρ2(r)
, (16)

and properties of the Laplacian and gradient. Note that while
Eq. (16) is the standard form of vvW, it is analytically equal to
the first form in Eq. (15) via the identity

∇2
√

ρ(r) = 2ρ(r)∇2ρ(r) − [∇ρ(r)]2

4[ρ(r)]3/2
. (17)

Since vs(r) = vvW[ρ](r) + C, for some constant C, the sin-
gularities are inherited by vs. For more than two electrons one
may use the results of Appendix B. This extends the known re-
sult for exact potentials [42] to well-behaved approximations
consistent with our restrictions. �

Theorem 3. There is thus a one-to-one mapping between
cusps in the density and singularities in the external and Kohn-
Sham potentials. That is,

ρ(r) ≈
∑

N

ρ0,N e−2ZN |r−RN | ←→ −
∑

N

ZN
|r−RN | ≈ v (18)

up to smooth terms. This includes the important special case
of no singularities leading to no cusps, which relies on restric-
tion 1 for approximations to DFT.

Proof. This follows directly from the previous two theo-
rems and a recognition that singularities and cusps near a
nucleus at RN are smooth functions near a different nucleus
at RM �= RN .

These theorems let us understand how the nonadditive po-
tential in Eq. (6) behaves in the vicinity of a nucleus. We use
an alternate form vNAD

A,B based on ρA and ρB here rather than
ρB and ρtot as in Eq. (6) to define clearly the nature of the total
density. The most general result is that the set of singularities
in

vNAD
A,B [ρA, ρB] = vs[ρB] − vs[ρA + ρB] (19)

[from Eq. (6) and vs = −δTs/δρ] is equal to the set of singu-
larities from ρB with subtracted the set of singularities from
ρtot = ρA + ρB, which follows from Theorem 3.

We note that the functional vNAD
A,B [ρA, ρB] defined in

Eq. (19) resembles the one defined in FDET and analysed
in Refs. [27,28] but these functionals have different sets of
admissible densities. In FDET, the non-additive kinetic poten-
tial is the functional derivative of T NAD

s [ρA, ρB] with respect
to one of the subsystem densities. For any pair of densities
ρtot and ρB, which are ground states of Kohn-Sham systems,
the potentials given in Eqs. (6) and (19) are well-defined and
equal. The necessary condition that this potential is also equal
to the functional derivative of T NAD

s [ρA, ρB] for a given ρtot

and ρB is that T NAD
s [ρA, ρB] exists for ρA = ρtot − ρB. It does

not exist, however, if ρtot (r) − ρB(r) < 0 on some measurable
volume element.

More precisely, if ρA has a set of cusps CA :=
{(RA

N , ZA
N )}N∈NA , ρB has a set of cusps CB :=

{(RB
N , ZB

N )}N∈N B , and ρtot = ρA + ρB has a set of cusps
C := {(RN , ZN )}N∈N , then the singular part of the nonadditive

potential in Eq. (19) is

vNAD
sing (r) =

∑
N∈N B

−ZB
N∣∣r − RB

N

∣∣ +
∑
N∈N

ZN

|r − RN | . (20)

Although we treated C as independent above, it follows from
ρtot = ρA + ρB that C can be obtained from CA and CB by the
following rules: (i) if R = RA

N = RB
M for some N ∈ NA and

M ∈ N B then C has a combined cusp (R,
ρA(R)ZA

N +ρB(R)ZB
M

ρtot (R) );
(ii) other cusps in A and B are included unmodified. Either
set can be empty (although this would be very strange for C),
leading to zero for the corresponding sum.

Applying these rules depends on precise details of the em-
bedding or partitioning scheme. The next sections therefore
apply Eq. (20) to the case of smooth partitioning of densities
studied here, as well as to some cases from the literature.

1. Smooth partitioning of densities

The remainder of the article deals with densities that are
partitioned according to ρA(r) = w(r)ρtot (r) and ρB = [1 −
w(r)]ρtot (r) where 0 < w(r) < 1 is a smooth, cusp-free, and
positive function. 1 − w therefore has the same qualities as w.
In this case, the nonadditive potential has no cusps.

To show this, we recognize that ρA, ρB, and ρtot all have the
same cusps, which follows from the definition of the density
and from w and 1 − w being smooth and finite, so that they
only contribute to smooth terms. Therefore, CA = CB = C and
we obtain

v
NAD,part
sing (r) = 0. (21)

In Sec. III, we numerically apply a smooth cusp-less
function to partition the ground-state density of some model
diatomic systems of two and four electrons and we show
that the corresponding nonadditive potential indeed has no
singularities at the nuclei, consistent with theory.

2. Embedding with a cusp-free density ρB

In some cases, one obtains a density ρB that is cusp-free
in some region of interest, but otherwise has the same cusps
as ρtot, as implicitly assumed in Appendix A of García-Lastra
et al. [27]. This situation happens for, e.g., embedding calcula-
tions where some molecules (with cusps at nuclei) are treated
at one level of theory and an additional molecule (with exist-
ing cusps and new cusps at the additional nuclei) is embedded
in the precomputed set. This is the typical setup for FDET
combining different levels of electronic structure theory [1].
Such situations can also arise via a nonsmooth partitioning in
which w(r) has a constant value of 0 in some region. In such
a case, the difference between effective potentials vs[ρtot] and
vs[ρB] is not uniquely defined [46].

As a result, all cusps of ρB appear in ρA and ρtot, but not
vice versa. All cusps appear with the same value and at the
same nuclear positions when they are present, giving CA = C.
We use NA/∈B to denote nuclei yielding cusps in A and A + B
that are not in B. It follows that

v
NAD,emb
sing (r) =

∑
N∈NA/∈B

ZN

|r − RN | . (22)
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In accordance with this analysis, a nuclear singularity was
found in Appendix A of [27]. This situation also arises when
the density is partitioned not in space but by orbital, so that
ρA, ρB, and ρtot all have the same cusps. An exactly solvable
atom-like model system was studied in this way in [15] and
a nuclear singularity was also found, as expected from our
reasoning.

3. Use of a finite basis to represent densities

Another interesting case is one where densities are ob-
tained using a finite basis set. We first consider a Slater-type
orbital (STO) basis set, which is able to reproduce cusps, but
where the resulting cusps are imperfect [24]. In a finite STO
basis one obtains ρ(r → RN ) ≈ ρ(RN )e−Z̃N |r−RN | where Z̃N

is the finite basis approximation for ZN . Z̃N ≈ ZN varies with
choice of basis, choice of density functional approximation,
and other details of the calculation.

For convenience we assume that all densities contain all
cusps, as in Sec. II B 1. This leads to ρA, ρB, and ρtot de-
fined by cusp sets CA = {(Z̃A

N , RN )}, CB = {(Z̃B
N , RN )}, and

C = {(Z̃N , RN )}, respectively. Importantly, RN is the same in
all cases but Z̃A

N ≈ Z̃B
N ≈ Z̃N are not the same (but are similar)

because of errors introduced by the finite basis. The singular
part of the nonadditive potential is therefore

v
NAD,STO
sing =

∑
N∈N

Z̃N − Z̃B
N

|r − RN | , (23)

where the terms Z̃N − Z̃B
N in the numerator are effectively ran-

dom artifacts, defined by the basis set and other computational
and methodological choices. These artifacts also apply to em-
bedding, per Sec. II B 2. Equation (23) then acts in addition to
the “exact” cusps from Eq. (22).

Gaussian-type orbitals (GTOs), used in many quantum
chemistry calculations, cannot reproduce cusps at all, unlike
STOs, as they are analytic near nuclei. Nevertheless, they have
an effective analogue to Eq. (23) for small but finite rN in the
vicinity of a nucleus.

Of greatest relevance to the present work is that calcula-
tions on a finite grid (adapted to the description of nuclear
cusps and singularities, as discussed in Sec. III) can elimi-
nate these errors entirely. This involves the effective use of
numerical methods, chosen such that the derived potentials
are as consistent as possible with the routines used to solve

the effective Hamiltonians. Specifically, one should use ∇2√ρ

2
√

ρ

[Eq. (16)] rather than the mathematically equivalent ∇2ρ

4ρ
−

|∇ρ|2
8ρ2 [Eq. (16)] when computing potentials.

III. NUMERICAL CALCULATIONS

To confirm the validity of the analyses above in a case of
the smooth partitioning of densities, we perform numerical
calculations with the all-electron DFT package DARSEC [47],
which is designed for high-precision calculations on diatomic
molecules, including Kohn-Sham inversions [48]. In DARSEC,
the Kohn-Sham equations are solved self-consistently using
a high-order finite difference approach [49,50]. A real-space
grid based on prolate-spherical coordinates is used to describe
a system with two atomic centers. The grid is dense near

the atoms and increasingly sparse farther away. This atom-
adapted grid provides precise information at the vicinity of
the nuclei to enable exploration of the density and potential at
these points. It also enables treatment of the singular Coulomb
potential at the nuclei, unlike the usual Cartesian grids used
in real-space codes, which are not designed for all-electron
calculations [51]. Due to the cylindrical symmetry of diatomic
molecules, the three-dimensional problem is reduced to a two-
dimensional one in DARSEC. In this work, the systems are
defined within an ellipse with semiminor radius of 15 bohr
and use a 115 × 121 set of grid points for coordinates μ and
ν. DFT calculations were performed using the local density
approximation (LDA) [52,53].

We carefully examined the numerical precision of our
calculations, given the difficulty of describing cusps and
singularities numerically, and the possibility of numerical
artifacts being mistaken for cusps or singularities. We find
robust results in our tests on stencil size and dividing by
denominators close to zero [54]. Tests show a high degree of
mirror symmetry within the region of interest z ∈ [−4,+4]
bohr in vNAD[ρB, ρtot](r) or vNAD[ρA, ρtot](r) for homonu-
clear diatomic systems, which is enabled by the symmetry
of our weighting function. As seen below, nuclear cusps for
the density and singularities for vKS are well reproduced. The
only hint of a singularity in vNAD comes from using a clearly
inadequate stencil size of 2 or an extremely sharp cutoff in
w(r) for partitioning, clearly numerical in both cases [54]. For
all calculations in this article, the finite-difference stencil size
was set to 12, as per standard recommendations for DARSEC.
We additionally demonstrate below excellent agreement be-
tween analytically inverted vinv[ρ] and vKS[ρ], and between
vNAD[ρB, ρtot] from analytical inversion and from the von
Weizsäcker potential.

Based on Eq.(9), we implement in our modified version of
DARSEC the equation

vNAD/INV[ρB, ρtot](r) = vinv[ρB](r) − vinv[ρ1](r), (24)

where ρ1(r) = 2|φ1(r)|2 and φ1(r) is the lowest-energy
orbital. This analytical inversion is appropriate when the con-
ditions for the one-orbital formula are satisfied (Sec. II A).

A. Von Weizsäcker potential

Because the von Weizsäcker potential vvW is mathemati-
cally equivalent to vinv for densities based on one orbital, we
can also obtain correct results for vNAD when using vvW in
place of vinv for calculating subsystems of either one or two
electrons, as follows

vNAD/vW[ρB, ρtot](r) = vvW[ρB](r) − vvW[ρ1](r), (25)

using vvW[ρ(r)] as given in Eq. (16). While, as argued in
Sec. II B 3, such results are expected to give less precise
results than the approach with Eq. (15) [namely vNAD/INV,
Eq. (24)], we demonstrate good agreement between the two
formulations which proves the numerical precision of our
calculations. It is important to note the difference between this
equation and Eq. (6): the second term uses ρ1 not ρtot , as we
would have if we were to take von Weizsäcker as simply an
approximation to δTs/δρ, as was considered in [14]. Such a
formula would be exact only when both ρB and ρtot are one
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FIG. 1. Difference between the analytically inverted vinv[ρ1](r)
and vKS(r) for HeHe, showing agreement to 1 part in 1010. Blue:
vKS(r). Red: �v = vKS(r) − vinv[ρ1](r).

or two electrons, i.e., in the case of H2 but not of HeHe or
HeLi+. However, by using instead a two-electron density from
the orbital φ1 we can have a correct formula also for HeHe and
HeLi+. Such a formula is equivalent, up to a constant, to using
vKS instead of vvW[ρ1]; we tested this option as well and found
very close agreement, consistently with Fig. 1 below.

We compare our vNAD with vNAD/vW as a benchmark to
help examine whether there are any artifacts due to numerical
differences from evaluation using the Laplacian or the gradi-
ent. In Sec. IV, we show the very close agreement of vNAD/vW

and vNAD for our three test systems, demonstrating the numer-
ical precision of our calculations.

B. Localization of one or two electrons

For partitioning the ground-state density numerically, we
use a smooth distribution function 0 � F (z) � 1 that has no
cusps and respects the smoothness of the function explained
in Sec. II B 1. Specifically, we use the Fermi-Dirac distribution
function

F (z − z0) = 1

eα(z−z0 ) + 1
, (26)

where z0 is the cutoff that sets the z at which F = 0.5, and
α is the curve-smoothing parameter. Other similar sigmoid
functions could also be used for this purpose. By partitioning
the total density of the diatomic system aligned along the z
axis into two subdensities we obtain ρB(r) = F (z − z0)ρtot (r)
and ρA(r) = ρtot (r) − ρB(r).

In a diatomic system of N = 2 + 2M (for integer M) elec-
trons where two spin-compensated electrons can be localized
around one nucleus, we choose z0 to satisfy the following
condition:

∫
ρB(r)dr =

∫
F (z − z0)ρtot (r)dr = 2. (27)

For the case of one-electron localization, z0 can be chosen
so that the integral of Eq. (27) is instead 1. We find z0 via
a binary-search algorithm, with tolerance 10−15 for the differ-
ence of the integral from 2 (or 1). For homonuclear systems, z0

should be exactly zero by symmetry. We quantify the density

TABLE I. Summary of key properties for diatomic systems used
in this work. The density overlap is defined in Eq. (28).

Ne Ne Cutoff z0 Density overlap
System total in ρB (bohr) (e2/bohr3)

HeHe 4 2 0 3.81 × 10−6

HeLi+ 4 2 −0.29 2.51 × 10−3

H2 2 1 0 1.75 × 10−5

overlap in these systems as∫
ρA(r)ρB(r)dr. (28)

In the present calculations α = 20 bohr−1 was chosen after
testing different values [54]. Too small a value does not con-
stitute localization on one nucleus and too large a value (for
a given grid) leads to numerical discontinuities and artifacts
at z0. Unlike the grid spacing, α is not a numerical parameter
to be converged, but rather defines the way which we choose
to partition the density. The main effect of changing α within
a range 15–50 bohr−1 is that the plateau of vNAD becomes
narrower and taller with larger α (a smaller transition region
between 0 and 1). This behavior gives an indication of how
the width of the transition in other sigmoidal functions would
affect vNAD. Such effects are simply a feature that must be
taken into account consistently with the density partitioned
using a given partitioning function.

IV. RESULTS AND DISCUSSION

Two classes of diatomic model systems were chosen for
this study. One class contains two electrons in total and
one electron was localized around one nucleus; we use the
homonuclear H2. In the second class, there are four electrons
in total and two electrons were localized around one nucleus;
we use the homonuclear HeHe and the heteronuclear HeLi+.
Key properties of these systems for our studies are summa-
rized in Table I. For each system, we compare the analytically
inverted potential with vNAD/vW from Eq. (25).

We study systems with weakly overlapping subsystem den-
sities, in part to enable direct comparison with [14], in which
singularities were previously reported in vNAD. All calcula-
tions are done for a stretched interatomic distance of 6 bohr,
centered on z = 0. For homonuclear systems, the maximum
density overlap between the subdensities occurs at z = 0 by
symmetry, while for the heteronuclear systems the location of
maximum overlap occurs closer to the nucleus with smaller
atomic number.

The graphical representations of the results are provided
in one and two dimensions. The one-dimensional (1D) plot
is the contour along the minimum value of μ used, which is
closest to the interatomic z axis since there are no grid points
at x = 0, y = 0.

A. Two-electron localization

1. Homonuclear model system: HeHe

We begin the study of this system by demonstrating the
numerical precision of our analytical inversion from Eq. (8)

042812-6



NUCLEAR CUSPS AND SINGULARITIES IN THE … PHYSICAL REVIEW A 106, 042812 (2022)

FIG. 2. Ground-state charge density distribution of HeHe in two
dimensions. The vertical line indicates the cutoff plane where z = z0,
dividing the two localized densities which integrate to two electrons.

for ρ1 = 2|φ1(r)|2 and for the eigenvalue ε1 by comparing
to the Kohn-Sham potential from the SCF calculation. We
find that indeed �v = vKS − vinv[ρ1] ≈ 0, as shown in Fig. 1.
The difference between the two is approximately ten orders of
magnitude less than the values of the potential, showing excel-
lent precision. The reduction of precision by the square root
function is the main contributor to the residual difference. �v

is smooth and in particular well behaved around the nuclei.
The singularities at the nuclei are well reproduced for vKS, as
per Eq. (14).

The charge density for HeHe including its partitioning is
depicted in two dimensions in Fig. 2. The nuclear cusps are
clearly seen, as in Eq. (13). The system is symmetrical about
the z = 0 plane, and therefore the cutoff z0 from Eq. (26)
is exactly at z = 0. Consequently, ρA and ρB both integrate
to 2, each localized around a different nucleus with close to
zero charge density in the vicinity of the opposite nucleus, as
shown in one dimension in Fig. 3(a).

We now proceed to analyze vNAD, as shown in one dimen-
sion in comparison to the input densities in Fig. 3. For ρB

localized on the left, we see a shape which starts with a small
positive value and has a small attractive well at the overlap
region of z = 0, a barrier, and another small attractive well
at the right nucleus. This surprising attractive well at the other
nucleus can be attributed to the feature discussed in Sec. II B 1,
in which ρB must have a cusp at both nuclei; the well induces
the extra density for the cusp at the other nucleus. There
is a wall at the location of the right nucleus with a plateau
afterward, preventing ρB from entering that region. The wall
and plateau are similar to the results found with finite basis
sets [24], though in that case the wall was not exactly at the
nucleus but displaced slightly in the direction of the other
nucleus. While the wall is a sharp feature, it is smooth with
several points along it, and there is no sign of any cusps or
singularities. We compare vNAD/INV to vNAD/vW in Fig. 3(b)
and find excellent agreement with differences around 1 part in

FIG. 3. Nonadditive kinetic potential for HeHe, in a 1D represen-
tation. Purple dashed lines mark the location of the nuclei and a black
solid line marks the cutoff z0. (a) Total and partitioned densities.
(b) Analytically inverted kinetic potential vNAD/INV[ρB, ρtot](r) [from
Eq. (24)], where the localized density ρB is on the left, compared
to the same from von Weizsäcker theory [from Eq. (25)]. Blue:
vNAD/INV; Red curve: �v = vNAD/vW − vNAD/INV.

105, found mainly in the overlap region, where the division by
small ρ is most ill-conditioned.

We further examine vNAD in the two-dimensional (2D) rep-
resentation to see the behavior away from the z axis (Fig. 4).
We see that vNAD is essentially constant in the z < 0 region.
The well around z = 0 becomes increasingly attractive away
from the z axis, but the well at the right nucleus is located
only near the z axis. The plateau falls away slowly from the z
axis. The steep wall at the right nucleus can be clearly seen,
but no cusps or singularities are visible here either. We again
compare vNAD/INV and vNAD/vW, now in two dimensions, and
see no perceptible difference except small deviations around
x = 6 bohr near the cutoff, where the density is very small
(Fig. 4).

2. Heteronuclear model system: HeLi+

Next we consider a heteronuclear system, again with four
electrons: HeLi+. We localize two electrons on the Li atom
side, which has z < 0 and is on the left in our plots. We find a
cutoff z0 = −0.29 bohr, which is slightly closer to the nucleus
with the larger atomic number since it has a more steeply
decaying density according to Eq. (13) [Fig. 5(a)]. The density
overlap is larger than for HeHe (Table I).
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FIG. 4. Nonadditive kinetic potential for HeHe in a 2D repre-
sentation, comparing (a) vNAD/INV with (b) vNAD/vW, both in Ry. The
density is localized on the left nucleus. Black dots mark the nuclei
and a black line marks the cutoff z0.

In this case, we can actually calculate two dis-
tinct quantities, vNAD/INV[ρB, ρtot](r) (localized on Li) and
vNAD/INV[ρA, ρtot](r) (localized on He), as shown in Fig. 5(b).
For HeHe, the corresponding quantities are identical by
symmetry. The shape and magnitude of vNAD[ρB, ρtot](r) is
similar to that of HeHe, with a small positive value on the left
and a wall and plateau on the right. In the overlap region, how-
ever, there is not a step but rather a small peak just to the left of
z0, and then a small slightly attractive well just on the left side
of the He nucleus, next to the steep wall. This well again can
be related to the need to induce a cusp. vNAD[ρA, ρtot](r) has
a similar shape, albeit flipped horizontally, and with a smaller
peak, two attractive wells, and a higher wall. The fact that
there are two attractive wells is in common with He localized
in HeHe.

We compare vNAD/INV[ρB, ρtot](r) and vNAD/vW

[ρB, ρtot](r) and find again excellent agreement with

FIG. 5. Nonadditive kinetic potential for HeLi+ (with Li on the
left side), in a 1D representation. Purple dashed lines mark the loca-
tion of the nuclei and a black solid line marks the cutoff z0. (a) Total
and partitioned densities, with a taller peak for Li. (b) Analytically in-
verted kinetic potential vNAD/INV[ρB, ρtot](r) [from Eq. (24)], which
is localized on the Li side (blue), compared to the same from von
Weizsäcker theory [from Eq. (25)], with �v = vNAD/vW − vNAD/INV

in red. Also shown is vNAD/INV[ρA, ρtot](r) which is localized on the
He side (purple).

differences �v around 1 part in 104, largest around the
peak next to the overlap region. The 2D plots in Fig. 6
also show no perceptible difference between vNAD/INV and
vNAD/vW, except small deviations around x = 6 bohr near
the cutoff. The shapes are similar to HeHe, except that vNAD

is not constant on the left and decreases away from the z
axis. The positive peak just to the left of z = 0 becomes an
attractive well like HeHe, centered about 5 bohr from the z
axis. No cusps or singularities are seen in the 1D or 2D plots.

B. One-electron localization for H2

Our third test system is the stretched H2 system in which
one electron is localized around the left nucleus. The cutoff
is z0 = 0 by symmetry. The vNAD (Fig. 7) shows magnitude
and features similar to those of HeHe and HeLi+. There is a
small attractive well at the overlap region and then a step and a
small well at 5 Ry just to the left of the right nucleus. vNAD/vW

and vNAD/INV agree well with differences again mainly in the
overlap region. The 2D view of vNAD (Fig. 8) is very similar
to HeHe, but with little variation in the attractive well away
from the z axis. The only differences between vNAD/INV and
vNAD/vW are small deviations in x > 4 bohr, in a larger region
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FIG. 6. Nonadditive kinetic potential for HeLi+ in a
2D representation, comparing (a) vNAD/INV[ρB, ρtot](r) with
(b) vNAD/vW[ρB, ρtot](r), both in Ry. The density is localized on Li,
on the left. Black dots mark the nuclei and a black line marks the
cutoff z0.

than for HeHe or HeLi+. No cusps or singularities are seen in
the 1D or 2D plots.

V. CONCLUSION

In this work, we investigated analytically and numerically
the presence of singularities in the nonadditive kinetic poten-
tial vNAD and resolved the uncertainty that surrounded this
question, for a variety of important cases of relevance to parti-
tioning schemes. For two partitioned subdensities that overlap
smoothly and have cusps at all nuclei (Sec. II B 1), the inverted
potential of each has singularities at the vicinity of both nuclei,
which then cancel. vNAD[ρB, ρtot](r) has no singularities at
the nuclei and must be smooth everywhere. This situation
is convenient for approximations since the singularities are
difficult to capture and a smooth vNAD is easier to use in
practical calculations. By contrast, in the usual embedding-

FIG. 7. Nonadditive kinetic potential for H2, in a 1D representa-
tion, where one electron is localized. Purple dashed lines mark the
location of the nuclei and a black solid line marks the cutoff z0.
(a) Total and partitioned densities. (b) Analytically inverted kinetic
potential vNAD/INV[ρB, ρtot](r) [from Eq. (24)], where the localized
density ρB is on the left, compared to the same from von Weizsäcker
theory [from Eq. (25)]. Blue: vNAD/INV; Red curve: �v = vNAD/vW −
vNAD/INV.

theory situation where the subdensity is zero at some nuclei
and lacks cusps there (Sec. II B 2), there are singularities in
vNAD. Singularities can also arise due to the use of Slater-
type orbitals or other basis sets that do not perfectly describe
cusps (Sec. II B 3). Our analysis applies to both the exact KS
potential under some physically likely assumptions and to all
approximated forms known to the authors.

We confirmed these analytic results and demonstrate that
they are achievable numerically with the LDA by perform-
ing grid-based all-electron calculations for diatomic systems
HeHe, HeLi+, and H2, and by computing vNAD[ρB, ρtot] from
analytic inversion. The examination of vNAD[ρB, ρtot] in one
and two dimensions demonstrated smooth behavior and no
cusps or singularities, unlike in [14]. We established that
the analytically inverted vinv from an orbital and eigenvalue
agrees closely with the Kohn-Sham potential used to evaluate
the density. We showed a way of calculating vNAD[ρB, ρtot]
exactly using the von Weizsäcker potential for these systems
since it is exact for one orbital. We benchmarked our calcu-
lations from analytic inversion against vNAD/vW[ρB, ρtot] and
confirmed the close equality of these potentials throughout
space for all three diatomic systems, ensuring that the ana-
lytically inverted potential is numerically precise and does not
suffer from numerical artifacts.
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FIG. 8. Nonadditive kinetic potential for H2 in a 2D representa-
tion, comparing (a) vNAD/INV with (b) vNAD/vW, both in Ry. Black dots
mark the nuclei and a black line marks the cutoff z0.

Using our reliable results for vNAD[ρB, ρtot], we were able
to learn about its exact features (for LDA). The potentials
shown in Figs. 3, 5, and 7(b) feature a step and a barrier
between the two nuclei. These are desired and expected fea-
tures of vNAD[ρB, ρtot](r) evaluated for a pair of densities
ρB(r) and ρtot (r) for which ρtot − ρB disappears near the
nucleus B. From a practical perspective, any approximation
to vNAD should reproduce these features. Practical calcula-
tions using an approximated vNAD that do not reproduce these
features are prone to an artificial leak of electrons onto the
nucleus B (for a detailed discussion of this issue see [27]).

This work demonstrates the exact features of vNAD which
can be used to develop and test numerical inversion schemes,
kinetic-energy functionals, or nondecomposable approxima-
tions that target vNAD directly. The analytic inversion approach
can be used for further exploration of exact properties of vNAD

in other systems.
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APPENDIX A: SMOOTH DENSITIES, CUSPS,
AND NONSINGULAR POTENTIALS

Densities of electronic systems are finite, meaning that at
any point RN we can make a series expansion in small rN =
r − RN . The general formula for expansion of ρ is,

ρ(r) = ρ0,N + bρrN + Bρ · rN

+ rNC′
ρ · rN + rN · Cρ · rN + . . . , (A1)

where bρ is a scalar, Bρ and C′
ρ are vectors, and Cρ is a 3 × 3

matrix. This includes analytic and nonanalytic terms. We may
rewrite this as

ρ(r) =ρ0,N e−2ZrN + ρsmooth(r), (A2)

ρsmooth(r) =Bρ · rN + rNC′
ρ · rN + rN · C′′

ρ · rN + . . . , (A3)

where Z = −bρ/[2ρ0,N ] and C′′
ρ = Cρ − 2Z2I. Here we focus

on a single nucleus: the smooth density must have a similar
expansion near every nucleus.

We therefore obtain,

∇2ρ(r)

ρ(r)
=−4Z

rN
+ 2C′

ρ

ρ0,N
· r̂N + const., (A4)

where r̂ indicates a unit vector. Clearly, the first term domi-
nates and the second has a radial average of zero. This is how
the cusp gives rise to singularities.

The nonsingular part, vnonsing, of the potential obeys,

lim
r→RN

rNvnonsing(r) =0, ∀RN , (A5)

and contains similar terms to Eq. (A3). It can also have a
constant term, a term BvrN , and even logarithmic singularities
like Lv log(rN ). Any nonsingular potential obeying Eq. (A5)
will not alter any of the conclusions of the main text.

APPENDIX B: CUSPS LEAD TO SINGULARITIES

For two or few electrons it is trivial to show that singu-
larities lead to cusps. The leading terms of our density may
be described using ρ := e−2ZN rN , where rN = r − RN is the
distance from the cusp at RN . The remaining terms begin (by
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definition) at O(rN ) and therefore contribute to the potential
only at a constant or higher terms.

The nontrivial part of the von Weizsäcker potential is there-
fore the part involving only radial derivatives

vvW =∂rrρ

4ρ
+ ∂rρ

2rρ
− (∂rρ)2

8ρ2
= Z2

N

2
− ZN

r
, (B1)

which is clearly dominated by the −ZN
rN

singularity. This gives
our proof for two electrons. To go beyond two electrons, we
show that vvW has the same singularities as the KS potential
for more than two electrons.

To begin, rewrite ρ = ∑
i fi|φi|2, [Eq. (3)] using

ζi(r)
√

ρ(r) :=
√

fiφi(r), (B2)

where
∑

i |ζi(r)|2 = 1∀r, by definition. The KS orbital equa-
tions Eq. (1) yield [ĥ − εi]φi = 0, giving

0 =
√

fi√
ρ

[−∇2

2
+ vKS[ρ] − εi

]
φi

= 1√
ρ

[−∇2

2
+ vKS[ρ] − εi

]
ζi

√
ρ

=
[−∇2

2
− g[ρ] · ∇ + ṽ[ρ] − δi

]
ζi(r), (B3)

for ζi. Here ṽ := vKS[ρ] − vvW[ρ], g[ρ] := ∇√
ρ√

ρ
= ∇ρ

2ρ
, and δi

are constants.

Importantly, we recognize that |g| < ∞ and is smooth in
any nuclear density. Since δi is a constant, it follows that only
differences in the location or magnitude of singularities in
vKS and vvW, which manifest in ṽ, can contribute to cusps in
ζi. We denote the set of effective “nuclei” for which ṽ has
singularities by C̃ = {(RN , zN )}, with locations RN and effec-
tive charges zN �= 0∀N ∈ C̃ (we allow zN < 0 for repulsive
effective nuclei). Only these singularities may lead to cusps
in ζi.

We next recognize that all singularities in ṽ give rise
to cusps or zero solutions in ζi, which follows from the
series expansion of Eq. (B3) on rN = |r − RN | (see the
discussion in the previous Appendix). Thus, to leading
orders, we may define a set ζi∈Ic ≈ ζi,0[1 − zN rN ] with
cusps and a complementary set ζi/∈Ic ≈ 0 without cusps
that are zero at the nuclei. However, by construction
we find 1 = ∑

i |ζi|2 ≈ ∑
i∈Ic

|ζi,0|2 − 2zN rN
∑

i∈Ic
|ζi,0|2 =

CN − 2zN rNCN where CN = ∑
i∈IN

|ζi,0|2. This equation can
only be simultaneously correct for leading and subleading
order terms if zN = 0, i.e., if there is no singularity in the
vicinity of nucleus RN .

Since zN = 0 for all nuclei N , it follows that C̃ must be
the empty set and that ṽ has no singularities. The KS potential
vKS therefore has the same singularities as the von Weizsäcker
potential vvW per Eq. (B1). This extends results to more than
two electrons and yields

∑
N

ρ0,N e−2ZN rN −→
∑

N

−ZN

|r − RN | . (B4)
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