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Determination of the 2s22p5 − 2s2p6 transition energy in fluorine-like nickel utilizing
a low-lying dielectronic resonance
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High-precision spectroscopy of the low-lying dielectronic resonances in fluorine-like Ni19+ ions was studied
by employing the electron-ion merged-beams method at the heavy-ion storage ring CSRm. The measured
dielectronic-recombination (DR) resonances are identified by comparison with relativistic calculations utilizing
the flexible atomic code. The lowest-energy resonance at about 86 meV is due to DR via the (2s2p6[2S1/2]6s)J=1

intermediate state. The position of this resonance could be determined within an experimental uncertainty of
as low as ±4 meV. The binding energy of the 6s Rydberg electron in the resonance state was calculated using
two different approaches, the multiconfigurational Dirac-Hartree-Fock (MCDHF) method and the stabilization
method (SM). The sum of the experimental (2s2p6[2S1/2]6s)J=1 resonance energy and the theoretical 6s binding
energies from the MCDHF and SM calculations yields the following values for the 2s22p5 2

P3/2 → 2s2p6 2
S1/2

transition energy: 149.056(4)exp(20)theo and 149.032(4)exp(6)theo, respectively. The theoretical calculations reveal
that second-order QED and third-order correlation effects contribute together about 0.1 eV to the total transition
energy. The present precision DR spectroscopic measurement builds a bridge which enables comparisons
between different theories.

DOI: 10.1103/PhysRevA.106.042808

I. INTRODUCTION

Atomic energy levels of highly charged ions (HCIs) are
ideal systems for testing the quantum electrodynamics (QED)
and relativistic effects [1,2]. Electron-beam ion traps [3–5]
and heavy-ion storage rings [6–8] offer unique opportuni-
ties for precision studies with HCI. In particular, heavy-ion
storage rings equipped with an electron cooler serve as
ideal platforms for electron-ion merged-beams experiments.
This technique has been intensively employed at the TSR
at the Max Planck Institute for Nuclear Physics (MPIK) in
Heidelberg [9,10], the CRYRING at the Manne Siegbahn
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Laboratory (MSL) in Stockholm [11] (in 2013 relocated
to GSI in Darmstadt [7]), and the Experimental Storage
Ring (ESR) at GSI [12,13]. More recently, the experimen-
tal approach was also implemented at the ion-storage rings
HIRFL-CSRm and CSRe at the Institute of Modern Physics
(IMP), Chinese Academy of Sciences, and already delivered
results on electron-ion recombination of a number of ion
species [14–16]. Here it is used for a precise determination
of the 2s22p5 2

P3/2 → 2s 2p6 2
S1/2 transition energy in F-like

Ni19+ ions.
The traditional approach to atomic precision spectroscopy

of HCI is x-ray spectroscopy, which has been widely used
for testing QED predictions concerning the atomic structure
of HCI (see, e.g., [17–20]). In a joint experimental and the-
oretical effort, Lindroth et al. [21] demonstrated that QED
contributions to atomic transition energies can also be tested
by electron-ion collision spectroscopy at a heavy-ion storage
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FIG. 1. Left: Schematic diagram of the DR process. The step
(a) → (b) represents a dielectronic capture: a free electron is reso-
nantly captured into a Rydberg shell with simultaneous excitation of
an inner electron. The step (b) → (c) depicts the subsequent radiative
stabilization: the multiply excited intermediate state stabilizes via
photon emission. Right: By energy conversation the core excitation
energy Eexc equals the sum of the Rydberg electron’s binding en-
ergy Ebind and the DR resonance energy Eres. The α vs. Erel curve
represents a made-up DR spectrum that illustrates the principle of
how a merged-beams DR rate coefficient α results from a scan of the
electron-ion collision energy Erel in the electron-ion center-of-mass
frame.

ring, where an electron-ion merged-beams arrangement is
employed for measuring low-energy dielectronic recombina-
tion (DR) resonances with high experimental resolving power.
Moreover, electron-ion collision spectroscopy provides access
to nondipole transitions, which usually cannot easily be stud-
ied by optical spectroscopy [22].

In the DR process, a free electron is resonantly captured
into a Rydberg state with simultaneous excitation of an in-
ner electron (dielectronic capture, Fig. 1). If the thus-formed
intermediate multiply excited state decays radiatively the DR
process will be completed (radiative stabilization). The mea-
sured DR resonance energies Eres correspond to the energies
of the associated doubly excited states with respect to the
first ionization energy of the recombining ion’s initial level.
As depicted in Fig. 1, the core-excitation energy Eexc of the
recombining ion can be obtained as

Eexc = Eres + Ebind, (1)

where Ebind is the absolute value of the Rydberg electron bind-
ing energy. For sufficiently high principal quantum numbers n
of the Rydberg electron the later quantity can be calculated to
a high accuracy, e.g., in the framework of relativistic many-
body perturbation theory (RMBPT) [21,23]. In principle, if
several resonances of a Rydberg series are measured, Ebind

can be extrapolated to zero by extrapolating n → ∞ such
that no separate calculation of Ebind is required [24,25]. In the
present work, however, we employ the joint experimental and
theoretical approach similar to what was used in earlier studies
[21,23,26,27].

As a consequence of the merged-beams kinematics, the
experimental resolving power of electron-ion merged-beams
experiments is highest at the lowest energies (see, e.g., [28]).
At the same time, the uncertainty of the experimental
electron-ion collision energy scale is lowest at zero colli-
sion energy (see, e.g., [25]). Therefore, work on precision

electron-ion collision spectroscopy concentrated on measur-
ing low-energy DR resonances.

In [21], the 4p1/2 − 4s1/2 transition energy in copper-like
Pb53+ was determined to be Eexc = 118.101 ± 0.001 eV from
measured DR resonances at Eres � 40 meV with an uncer-
tainty of only ±1 meV, corresponding to an accuracy of
8.5 ppm. In a follow-up study, Madzunkov et al. [26] in-
vestigated the 2p1/2 − 2s1/2 transition in Li-like Kr33+. An
uncertainty of ±8 meV was obtained for the transition en-
ergy. This comparatively large value was due to the fact that
the lowest-energy DR resonances of this ion appear only
above about 5 eV. At the TSR, the 2p3/2 − 2s1/2 transi-
tion energy in Li-like Sc18+ could be determined to within
±2 meV [27] from DR resonances in the electron-ion colli-
sion energy range 30–70 meV. Later, Lestinsky et al. [23]
reduced this uncertainty by more than an order of mag-
nitude by using an internally cold electron beam from a
liquid-nitrogen-cooled photocathode [29]. Their result probed
few-body effects on radiative corrections on the 1% level.
Moreover, the experimentally achieved resolving power al-
lowed for the observation of the hyperfine splitting of the
1s2 2s 2S1/2 ground level.

Here, we present a precision-spectroscopy measurement
with a more complex system than the previously studied
Li-like ions, i.e., fluorine-like 58Ni19+. As already reported
in [16], we measured the merged-beams rate coefficient for
DR of 58Ni19+ ions in the energy of 0-160 eV, including all
the DR resonances associated with 2s → 2p core excitations
(�N = 0 DR):

58Ni19+(2s22p5[2P3/2]) + e−

→
{58Ni18+(2s22p5[2P1/2]nl )∗∗ → 58Ni18+ + γ ,

58Ni18+(2s 2p6[2S1/2]nl )∗∗ → 58Ni18+ + γ .
(2)

The lowest-energy (2s 2p6[2S1/2] 6s)J=1 resonance occurs at
∼86 meV. The currently recommended value for the as-
sociated 2s22p5 2

P3/2 − 2s 2p6 2
S1/2 core-transition energy is

149.05 ± 0.12 eV [30]. The results of the above-described
previous electron-ion collision-spectroscopic works sug-
gested that the uncertainty of this value can be much reduced
to a few meV, provided the binding energy of the 6s Rydberg
electron can be evaluated to an even better accuracy. This
would offer an opportunity for a sensitive test of second-
order QED contributions to electron binding energies in
fluorine-like nickel. We mention that previous work on the
2s22p5 2

P3/2 − 2s 2p6 2
S1/2 transition in Ni19+ was carried out

using various experimental [31–33] and theoretical [34–39]
approaches, partly addressing atomic-data needs in fusion-
plasma physics and astrophysics.

The present paper is organized as follows. The experimen-
tal procedure is presented in Sec. II with a detailed discussion
of the data-reduction procedures and the error analysis. In
Sec. III, we present a general description of the theoreti-
cal treatment. The experimental results are then discussed in
Sec. IV. Finally, Sec. V provides a conclusive summary.
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II. EXPERIMENT

A. Measurement procedure

The experiment was performed by employing the electron-
ion merged-beams technique at the heavy-ion storage ring
CSRm at the Institute of Modern Physics in Lanzhou,
China. Several DR measurements related to astrophysical
and plasma applications were carried out successfully at the
CSRm [14–16] since the calibration experiment with lithium-
like Ar15+ in 2015 [14]. Recombination rate-coefficients of
fluorine-like nickel were already published previously in
Ref. [16], which also contains a detailed description of the
experimental setup and procedures. Here we focus on the pre-
cise evaluation of the resonance energies of the lowest-energy
DR resonances.

In the present measurement, the 58Ni19+ ion beam from
a superconducting electron cyclotron resonance ion source
[40] was accelerated by a sector-focused cyclotron and then
injected into the storage ring at an energy of 6.15 MeV/u.
The stored ion beam reached a maximum current of 80 μA
after the injection pulses, corresponding to 3.7×108 stored
ions. The circulating ion beam passed millions of times per
second through the 4-m-long electron-ion interaction region.
In the electron cooler, the electron beam was magnetically
guided to prevent it from diverging. The magnetic fields at
the cathode and the cooler section were 125 mT and 39 mT,
respectively. Thereby, the transverse electron beam energy
spread was reduced by adiabatically passing from the higher
magnetic field in the cathode to the lower magnetic field in
the cooler section [41]. In the electron-ion interaction region,
the expanded electron beam had a diameter of 62 mm and a
particle density of 7.1×106 cm−3. By electron-beam profile
measurements [42] we verified that a uniform beam density
distribution was achieved in the present measurements. The
longitudinal electron energy-spread was largely reduced by
accelerating the electrons to the cooling energy, where the
electrons moved as fast as the stored ions.

The electron velocity-distribution can be characterized by
the transverse (with respect to the electron-beam direction)
and longitudinal temperatures T‖ and T⊥ [43]

f (�v, vd ) =
(

me

2πkT‖

)1/2

exp

[
−me(v‖ − vd )2

2kT‖

]

× me

2πkT⊥
exp

(
−mev

2
⊥

2kT⊥

)
. (3)

The distribution is termed flattened Maxwellian due to the
fact that T‖ 	 T⊥. Its anisotropy leads to asymmetric DR
resonance line shapes as discussed in more detail below. In
Eq. (3), vd corresponds to the energy detuning applied to the
electron beam. v‖ and v⊥ are the longitudinal and perpendicu-
lar components of the electron velocity �v. The electron-energy
spread that results from Eq. (3) can be calculated as [28]

�Erel =
√

(ln 2kBT⊥)2 + 16 ln 2kBT‖Erel, (4)

where Erel denotes the electron-ion collision energy in the
electron-ion center-of-mass frame. It is evident that the
lowest-energy resonances can be measured with the highest
resolving power.

FIG. 2. Illustration of the timing sequence of detuning voltages
in the present measurement. The voltage was incremented volt by
volt only after each injection, i.e., we only measured recombined ions
at a single detuning voltage during each injection-measurement cycle
to collect a statistically significant number of counts.

The injected ion beam was cooled by the Coulomb inter-
action with the cold electrons inside the electron cooler [44].
At cooling, the electrons and the ions shared the same aver-
age velocity in the laboratory frame, corresponding to zero
electron-ion collision energy in the center-of-mass frame. The
cooling phase at the beginning of each injection-measurement
cycle lasted for 2 s. In the ensuing electron-ion recombina-
tion measurements, the cold electrons acted as an electron
target. Nonzero electron-ion collision energies were realized
by fast detuning the electron beam energy away from the
cooling energy. The electron beam energy was controlled by
a specially designed detuning system, which is capable of
switching quickly between the cooling voltage and positive
or negative detuning voltages as illustrated in Fig. 2. After
every 10 ms of detuning, the ion beam was cooled again for
190 ms to keep the beam quality. The recombined ions with
a changed charge state lowered by one unit were separated
from the primary ion beam in the dipole magnet downstream
from the electron cooler and detected by a movable scintil-
lation particle-detector (YAP: Ce + PMT) with nearly 100%
efficiency [45]. A sketch of the electron cooler and the particle
detector is presented in Fig. 3. The ion current and the revo-
lution frequency were monitored by a DC current transformer
and a Schottky spectrum-analyzer [46], respectively.

FIG. 3. Sketch of the experimental arrangement at the CSRm
electron cooler. The scintillation particle-detector was appropriately
placed behind the dipole magnet downstream of the electron cooler
for stopping and counting the recombined ions.
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B. Data reduction

The absolute recombination rate coefficient α(E ) at the
electron-ion collision energy Erel was obtained by normalizing
the recorded count rates R(Erel ) to the measured electron and
ion currents [47]

α(Erel ) = R(Erel )

Nine(1 − βeβi )

C

L
, (5)

where Ni is the number of the stored ions and ne is the
electron density, which is virtually independent of the electron
energy over the narrow energy range considered in this work.
The subscripts e and i represent the electron and ion beams
respectively. The quantities C = 161.0 m and L = 4.0 m are
the circumference of the ring and the effective interaction
length. βe and βi are the velocity factors of the electron and
ion beams, respectively. The electron-ion collision energy in
the center-of-mass frame was calculated as [48]

Erel = mic
2(1 + μ)

[√
1 + 2μ

(1 + μ)2
(G − 1) − 1

]
, (6)

with the electron-ion mass-ratio μ = me/mi,

G = γeγi −
√(

γ 2
e − 1

)(
γ 2

i − 1
)

cos θ, (7)

γe,i = (1 − β2
e,i )

−1/2, and the angle θ between the two beams
in the laboratory frame.

The recombined ion counts and the related parameters
were stored each millisecond and the recorded data from the
centers of the detuning periods were taken for deriving the
rate coefficient in the data processing. The original spectra
of the ion counts as a function of the detuning voltages up
to ±150 V are presented Fig. 4(a). The data displayed in
Fig. 4(b) resulted from transforming the detuning voltages
into electron-ion collision energies via Eq. (6) and the count
rates into rate coefficients via Eq. (5). It should be noted that,
in addition to DR resonances, the displayed rate coefficient
also contains a contribution by nonresonant radiative recom-
bination (RR, discussed below) that decreases sharply with
increasing |E |, as well as a practically constant background
resulting from charge-changing collisions with residual-gas
particles.

Figure 5 presents the background-subtracted experimental
electron-ion recombination spectrum of 58Ni19+ ions in the
energy range of 0–14 eV together with a theoretical result that
we obtained by using the flexible atomic code (FAC) [49]. For
comparison, the calculated DR cross sections were convoluted
with the experimental electron beam velocity distribution
[Eq. (3)]. There is a good agreement with the measured
data. Minor discrepancies are likely to be attributed to an
approximate treatment of electron correlation effects in the
calculation. The inset magnifies the resonances below 1 eV
and the labeled vertical bars mark the calculated DR reso-
nance positions. DR via 2s 2p6[2S1/2]6s and 2s22p5[2P1/2]17l
intermediate levels are the dominant channels in this energy
range. Due to the limited experimental resolution the associ-
ated fine-structure splittings are generally not fully resolved
in the present measurement. However, an isolated resonance
occurs at about 86 meV on top of the steeply decreasing
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RR rate coefficient. It is attributed to the (2s 2p6[2S1/2]6s)J=1

intermediate level.

C. Uncertainty of the energy scale

According to Eq. (6), the accuracy of the electron-ion colli-
sion energy depends on the Lorentz factors of the electron and
ion beams as well as on the angles between the two beams.
The Lorentz factor of the ion beam is

γi = 1 + Ei

mic2
, (8)

where Ei and mi are the ion kinetic energy and the ion
mass, respectively. The energy equivalent of the latter can
be calculated as mic2 ≈ Amuc2 − 19mec2, which neglects
the contributions from the electron binding energies. Using
A = 57.9353424 for the atomic mass of the 58Ni atom [50]
and mec2/muc2 = 5.48579909×10−4 for the electron mass in
atomic mass units [51] one arrives at mic2 ≈ 57.92492muc2.

The Lorentz factor of the electron beam can be calculated
from the cooler-cathode voltage Uc, the space-charge potential
Us of the electron beam, and the detuning voltage Ud as

γe = 1 + e(Uc + Us + Ud )

mec2
. (9)

At cooling, electrons and ions move with the same velocity
such that γi = γe for Ud = 0. The ion energy can be thus
expressed as Ei = e(Uc + Us)mi/me and the Lorentz factor of
the ion beam can be written as

γi = 1 + e(Uc + Us)

mec2
. (10)

Neglecting the uncertainties of the particle masses, the un-
certainty �Erel of the electron-ion collision energy [Eq. (6)]
thus depends on the uncertainty �Ed of the detuning en-
ergy Ed = eUd , the uncertainty �E0 of the cooling energy
E0 = e(Uc + Us), and the uncertainty �θ of the angle θ , i.e.,

(�Erel )
2 =

∣∣∣∣∂Erel

∂γi

∣∣∣∣
2(

�E0

mec2

)2

+
∣∣∣∣∂Erel

∂εd

∣∣∣∣
2(

�Ed

mec2

)2

+
∣∣∣∣∂Erel

∂θ

∣∣∣∣
2

(�θ )2. (11)

The partial derivatives in Eq. (11) can be straightforwardly
calculated after substituting γe = γi + εd in Eq. (7) with
εd = Ed/(mec2).

The cooling energy can be obtained from the cathode
voltage and the space charge potential. Both values bear con-
siderable uncertainties. The cathode voltage can be read from
the power supply with an uncertainty of 0.5%. The space
charge potential and its uncertainty are even less accessible
since Us cannot be measured directly, although its influence on
the ion beam can be monitored by the Schottky beam analysis.
In this situation we determined the ion energy and, thus, the
cooling energy E0 = Eime/mi from the magnetic rigidity of
the storage ring’s dipole magnets, which keep the ions on a
closed orbit. The associated uncertainty results in a relative
uncertainty �E0/E0 = 0.005. We also point out that an ac-
curate value of the cooling energy is required for obtaining
recombination spectra that are symmetric about Erel = 0 on
the electron-ion collision-energy scale (Fig. 4).
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FIG. 6. Systematic uncertainties of the electron-ion collision-
energy scale. The individual contributions [corresponding to the
terms in Eq. (11)] are summed quadratically to obtain the total
uncertainty. At the position of the lowest-energy DR resonance at
86 meV amounts to 2.0 meV (Table I).

The known Rydberg series limit of the 2s 2p6[2S1/2]nl DR
resonances at 149.05 ± 0.12 eV [30] provides another calibra-
tion point of the energy scale. We applied a 2% correction to
the nominal collision energy scale to achieve agreement of
the experimental series limit with the known value [16]. The
0.08% relative uncertainty of the known series limit is a lower
limit for the uncertainty of the thereby calibrated detuning
energies. This calibration to a certain extent also takes care
of ion-beam dragging effects that occur at nonzero relative
energies, i.e., when Ud �= 0. The dragging effect is caused by
the Coulomb interaction between the electron and ion beams,
which results in a force on the ion beam trying to pull the
ions to the current electron beam velocity [27,52]. It should
be noted that the presently applied measurement mode (Fig. 2)
with alternatingly negative and positive detuning energies ap-
plied for only short time intervals and considerably longer
intervening cooling time intervals was deliberately chosen
to minimize the drag-force effect. During the measurement,
the Schottky spectrum also showed no evident signals of
dragging. To account for possible nonlinearities of the Ud

power supply and the drag-force effect we conservatively
assumed a 1% relative uncertainty for the detuning energy,
i.e., �Ed/Ed = 0.01.

The angle θ between the ion beam and the electron beam
was adjusted to 0 as best as achievable by using correction
coils that are available at the cooler. The remaining uncer-
tainty is estimated to be 0.3 mrad. Since ∂Erel/∂θ ∝ sin θ one
obtains a zero error for θ = 0 from this derivative. Therefore,
we calculated the contribution of �θ to the error budget as the
difference Erel(γi, εd , θ = 0.3 mrad) − Erel(γi, εd , θ = 0).

Figure 6 visualizes the individual contributions to the total
uncertainty which correspond to the summands on the right-
hand side of Eq. (11). Numerical values for these uncertainties
at the position of the lowest-energy DR resonance are given
in Table I. The total systematic uncertainty of the resonance
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TABLE I. Systematic experimental uncertainties of the electron-
ion collision energy 86 meV, i.e., at the position of the lowest-energy
DR-resonance (Fig. 5).

�Erel (meV)

Angle between beams 0.31
Detuning voltage 1.69
Ion beam energy 0.43
Energy calibration 0.86

Total (quadratic sum) 1.97

position is slightly less than 2 meV. Additional statistical and
fitting uncertainties will be discussed below.

III. THEORETICAL TREATMENT

A. MCDHF calculation

The 2s22p5[2P3/2] → 2s2p6[2S1/2] transition energy and
the binding energy of the 6s electron in the 2s2p6[2S1/2]6s
state are calculated by using the relativistic atomic structure
package GRASP2018 [53], which was developed based on the
multiconfigurational Dirac-Hartree-Fock (MCDHF) method
[54,55]. In this method, an atomic-state wave function with
a specific parity P, total angular momentum J , and its pro-
jection M on the quantization axis is approximated by a set
of configuration-state wave functions (CSFs) with the same
PJM as follows [54,55]:

ψα (PJM ) =
nc∑

r=1

cr (α)|φr (PJM )〉. (12)

Here, nc is the number of the CSFs used. cr (α) denotes config-
uration mixing coefficients, which give rise to a representation
of the atomic state |ψα〉 in the chosen basis {|φr〉}. The CSFs

are initially generated as an antisymmetrized product of a set
of orthonormal orbitals and then optimized self-consistently
in the basis of the Dirac-Coulomb-Breit Hamiltonian, which
is followed by the inclusion of the quantum-electrodynamical
effects into the representation cr (α) of the atomic state |ψα〉 by
diagonalizing the Dirac-Coulomb-Breit Hamiltonian matrix.
In the calculations of the excitation energy from 2s22p5 [2P3/2]
to 2s2p6 [2S1/2] in fluorine-like Ni19+ ion, all the single and
double substitutions from the multireference (MR) configu-
rations (the 2s22p5, 2s2p6, 2s22p43p, and 2s2p53p) to the
active set {9s, 9p, 9d , 9 f , 9g, 9h, 9i, 9k} are considered,
which generate 686 327 CSFs for the block of J = 3/2 and
odd parity and 274 090 CSFs for the block of J = 1/2 and
even parity, respectively. Moreover, in obtaining the energy
level (2s2p6[2S1/2]6s)J=1 of neon-like Ni18+ ion, all the single
and double substitutions from the MR configurations (the
2s2p65s, 2s2p66s, and 2s2p67s) to the active set {13s, 13p,
13d , 13 f , 13g, 12h, 11i, 10k} are considered, which generate
522 644 CSFs for the block of J = 1 and even parity.

In Table II, the total energies (Eh) of the 2s22p5 [2P3/2]
and 2s2p6 [2S1/2] levels of fluorine-like Ni19+ ion and the
(2s2p6[2S1/2]6s)J=1 level of neon-like Ni18+ ion are pre-
sented as a function of the increasing active set (AS), as
well as the transition energies �E (eV) for the transi-
tions 2s22p5 2

P3/2 → 2s 2p6 2
S1/2 and (2s2p6[2S1/2]6s)J=1 →

2s2p6 [2S1/2]. The MCDHF calculated total energies and �E
are converged within a few meV with respect to the increasing
size of the AS.

B. Ab initio calculation

Different theoretical approaches, e.g., the complex coor-
dinate rotation method [56], Feshbach projection operator
method, optical potential method, R-matrix method, etc.
(see e.g., Ref. [57] and references therein) were proposed to

TABLE II. Total energies (Eh) of the 2s22p5 [2P3/2] and 2s2p6 [2S1/2] levels of fluorine-like Ni19+ ion and the (2s2p6[2S1/2]6s)J=1 level of
neon-like Ni18+ ion are presented as a function of the increasing active set (AS), as well as the transition energies �E (eV) for the transitions
2s22p5 2

P3/2 → 2s 2p6 2
S1/2 and (2s2p6[2S1/2]6s)J=1 → 2s2p6 [2S1/2].

F-like Ni19+ (MR = {2s22p5, 2s2p6, 2s22p43p, 2s2p53p})
AO E (2s22p5 [2P3/2]) E (2s2p6 [2S1/2]) �E (2s2p6 [2S1/2] → 2s22p5 [2P3/2])

{3s, 3p, 3d} −1292.5833877 −1287.0299079 151.118
{4s, 4p, 4d , 4 f } −1292.7902178 −1287.3083550 149.169
{5s, 5p, 5d , 5 f , 5g} −1292.8534402 −1287.3745748 149.088
{6s, 6p, 6d , 6 f , 6g, 6h} −1292.8806642 −1287.4035955 149.039
{7s, 7p, 7d , 7 f , 7g, 7h, 7i} −1292.9096358 −1287.4331842 149.022
{8s, 8p, 8d , 8 f , 8g, 8h, 8i, 8k} −1292.9238447 −1287.4474401 149.020
{9s, 9p, 9d , 9 f , 9g, 9h, 9i, 9k} −1292.9295149 −1287.4531798 149.019

Ne-like Ni18+ (MR = {2s2p65s, 2s2p66s, 2s2p67s})

AO E [(2s2p6[2S1/2]6s)J=1] �E [(2s2p6[2S1/2]6s)J=1 → 2s2p6 [2S1/2]]

{8s, 8p, 8d , 8 f , 8g, 8h, 8i, 8k} −1292.8391704 158.08
{9s, 9p, 9d , 9 f , 9g, 9h, 9i, 9k} −1292.8712688 151.37
{10s, 10p, 10d , 10 f , 10g, 10h, 10i, 10k} −1292.8918299 150.13
{11s, 11p, 11d , 11 f , 11g, 11h, 11i, 10k} −1292.9022762 149.63
{12s, 12p, 12d , 12 f , 12g, 12h, 11i, 10k} −1292.9085850 148.99
{13s, 13p, 13d , 13 f , 13g, 12h, 11i, 10k} −1292.9165405 148.82
{14s, 14p, 14d , 14 f , 13g, 12h, 11i, 10k} −1292.9277362 148.97
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describe the autoionizing states. In the present work, we apply
the stabilization method (SM), pioneered by Hazi and cowork-
ers [58,59], utilized in numerous investigations [60–63]. The
idea of this method [64] is to diagonalize the Hamiltonian of
a quantum system with suitable square-integrable real wave
functions and investigate the spectra in the neighborhood of
resonance position under small variations of the basis set.
It can be done elegantly using the spectral density of states
function

ρn(E ) =
∣∣∣∣ ξi+1 − ξi

En(ξi+1) − En(ξi )

∣∣∣∣, (13)

where ξi is the basis variation parameter and En(ξi) is the
energy level near the resonance position. The maximum of the
spectra density function ρn corresponds to the energy of the
resonance state (see, e.g., Ref. [63] for details). Our realiza-
tion of the approach is based on the configuration-interaction
Dirac-Fock-Strum (CI-DFS) method [65–67], where the basis
set is varied by the reference energy parameter for Sturm basis
orbitals.

The QED calculations of the transition 2s2p6 2S1/2 →
2s22p5 2P3/2 energy in fluorine-like nickel is based on the
QED perturbation theory in the extended Furry picture [68],
which previously was also employed for the evaluation of
the ground-state fine-structure energy in fluorine-like ions
[69–72]. The zeroth-order Hamiltonian is defined as

H0 =
∫

d3xψ†(x)[−iα∇ + βm + VC(x) + Vscr (x)]ψ (x),

(14)
where αi and β are the Dirac matrices and ψ (x) is a field
operator expanded in terms of the Dirac wave functions ψn(x)

[−iα∇ + βm + VC(x) + Vscr (x)]ψn(x) = εnψn(x). (15)

In Eq. (14), in addition to the nuclear Coulomb potential VC

the screening potential Vscr, which partially accounts for the
interelectronic interaction has been added. In our calculations,
we employ the core-Hartree and Kohn-Sham potentials.

The perturbation expansion is performed with respect to
the interaction Hamiltonian

Hint =
∫

d3x[ψ̄ (x)eγ μAμ(x)ψ (x) − ψ†(x)Vscr (x)ψ (x)],

(16)
where γ μ = (β, βαi ), Aμ(x) is a photon field operator. The
second term in Eq. (16) corresponds to the subtraction of the
counterterm. For constructing the perturbative expansion, we
use the two-time Green’s function method [73]. In the present
calculations, we account entirely for the first-order correc-
tions, which are given by the one-photon exchange and the
one-electron self-energy and vacuum polarization diagrams.
These diagrams are computed employing the well-known for-
mal expressions, which can be found in, e.g., Refs. [73,74].
The second-order diagrams include the many-electron radia-
tive (so-called screened QED), one-electron two-loop and
two-photon exchange corrections. Here, we evaluate only
the screened QED correction employing the techniques and
methods thoroughly presented in Refs. [69,75–77]. For the

one-electron two-loop contribution, we use the hydrogenic
values from Ref. [78]. While the two-photon exchange dia-
grams are taken into account within the Breit approximation
and the uncertainty from the missing higher-order correction
is estimated to be α/(8π )(αZ )4/Z2 multiplied by a factor
of 5.

The terms which were not accounted for by the rigorous
QED theory were evaluated within the Breit approxima-
tion employing the CI-DFS method. Within this method,
the many-electron wave function and the energy of an atom
E in the Breit approximation are to be found as solu-
tions of the Dirac-Coulomb-Breit Hamiltonian. Thus, the
CI-DFS method is used to calculate the second- and higher-
order interelectronic-interaction corrections. Moreover, we
evaluated the recoil correction employing the many-body rel-
ativistic mass shift Hamiltonian [75,79–82].

IV. RESULTS AND DISCUSSION

The fitted curve of the low-energy DR spectrum is pre-
sented in Fig. 7(a). The data points below 10 meV were
excluded from the fitting due to the steep rise of the mea-
sured rate coefficient towards lower energies (see Ref. [16]
for details), which is difficult to account for in the fit. In
the fitting procedure, the first resonance was treated as a
Lorentzian profile multiplied by a factor of Eres/Erel as dis-
cussed in Ref. [83], while the remaining resonances were
treated as delta functions. The RR cross sections were calcu-
lated using the Bethe and Salpeter [84] formula. Note that the
semi-empirical formula was feasible for hydrogenic ions, and,
thus, a scaling factor was multiplied to the calculated cross
sections to modify the data to F-like nickel ion. The scaling
factor resulting from the fit was 1.57. The DR and RR cross
sections were added together directly since the interference
effect can be neglected safely. Moreover, the DR and RR
model cross sections were convolved with the electron beam
velocity distribution [Eq. (3)] to account for the experimental
energy spread. The electron-beam temperatures obtained from
the fit are kBT‖ = 0.56 ± 0.05 meV and kBT⊥ = 23 ± 1 meV.

According to the fit, the position of the lowest-energy res-
onance was determined to be 85.8 ± 1.2 meV. Its combined
systematic and statistical (resulting from the fit) uncertainty
is less than 4 meV at a one-sigma confidence level. The
fitted resonance positions and strengths are in fair agree-
ment with the FAC calculation (Table III), which assigns the
(2s2p6[2S1/2]6s)J=1 intermediate level to the lowest-energy
resonance. In Fig. 7(b), the DR fit results are compared with
the background-subtracted experimental data to provide a bet-
ter view of the DR resonances. The fact that the maxima of the
resonances do not coincide with the fitted resonance positions
is a consequence of the asymmetry of the electron-velocity
distribution [Eq. (3)].

As described in Sec. III, we calculated the binding en-
ergy of the 6s electron of the (2s2p6[2S1/2]6s)J=1 level using
the MCDHF and stabilization methods. We find that the
large-scale MCDHF calculations do not converge on the bind-
ing energy as the active sets are increased. The energy of
the autoionizing level turned out to be extremely sensitive
to the choice of basis sets because of the near-degeneracy
with the continuum. Therefore, our MCDHF value for the
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FIG. 7. (a) Fit (red solid line) of the experimental low-energy
DR spectrum (black symbols). The fit accounts for isolated DR
resonances (blue dashed lines) and the RR rate coefficient (orange
solid line). Note that a constant background was subtracted from
the data before the curve fit. (b) Experimental DR rate coefficient
(symbols) after subtraction of a constant background and the fitted
RR contribution along with the fit curve for the DR resonances.
The vertical green bars represent the fitted DR resonance positions
and strengths. The fitted peak position does not match the resonance
maximum due to Eq. (3).

6s binding energy of 148.970 eV bears a rather large uncer-
tainty which is estimated to be ±20 meV. The stabilization
method exhibits a more favorable convergence behavior. It
yields a value of 148.946 ± 0.006 eV for the binding en-
ergy of the 6s electron. The values for the 2s22p5 2P3/2 →
2s 2p6 2S1/2 transition energy in fluorine-like nickel that re-
sults from adding the calculated 6s binding energies in the

TABLE III. Experimental and theoretical positions, natural
widths, and strengths for the lowest-energy resonance as assigned
to the (2s2p6[2S1/2]6s)J=1 intermediate level. The number in the
brackets indicates the experimental uncertainties.

CSRm FAC

Resonance position (meV) 86(4) 80
Natural width (meV) 51(5) 56
Resonance strength (10−18 eV cm2) 10.8(1.0) 10.2

TABLE IV. Comparison of the experimental and theoretical
results for the 2s22p5 2P3/2 → 2s 2p6 2S1/2 transition energy in
fluorine-like nickel ion (in eV). Figures in parentheses represent
one-sigma uncertainties.

Method Energy (eV)

Experiment + theory
Exp. + MCDHF 149.056(4)exp(20)theo

Exp. + SM 149.032(4)exp(6)theo

Theory
MCDHF 149.019(10)
Ab initio 149.046(7)

(2s2p6[ 2S1/2]6s)J=1 level and the experimentally derived DR
resonance position are listed in Table IV.

Table IV also list the results for the 2s22p5 2P3/2 →
2s 2p6 2S1/2 transition energies of our fully relativistic
MCDHF and ab initio QED calculations. For this quantity,
the large-scale MCDHF calculation yield a convergent value
with an uncertainty of ±20 meV when increasing the size
of active sets. In the ab initio QED calculation, the zeroth-
order Dirac result is extended by the correlation corrections
evaluated within the Breit approximation, by the first- and
second-order QED contributions, as well as by the recoil
term. Calculations were performed employing two different
starting potentials, core-Hartree and Kohn-Sham. In Table V
we present the individual theoretical contributions to the tran-
sition 2s22p5 2P3/2 → 2s 2p6 2S1/2 energy in fluorine-like
nickel calculated as was explained above in both utilized
screening potentials. As one can see from the table, the total
results in both potentials perfectly agreeing with each other,
although the individual contributions are different. The final
uncertainty is dominated by the estimation of the QED effect
for the two-photon exchange correction.

Figure 8 compares the present experimentally derived and
theoretical results with the previous results from the lit-
erature. The determined transition energies agree with the
most accurate plasma observation [33] within the error bars.
The calculated values by the SUPERSTRUCTURE code [39]
and by the coupled cluster method with single and dou-
ble excitations (CCSD) [36] are significantly larger than our
results. The MBPT [34,37] and MCDHF [37] calculations
report values for the transition energies without uncertainties,

TABLE V. Individual contributions to the transition
2s22p5 2P3/2 → 2s 2p6 2S1/2 energy in fluorine-like nickel ion
(in eV).

Contribution Core-Hartree Kohn-Sham

Dirac 123.911 128.743
Correlation (1) 27.190 22.723
Correlation (2) −1.536 −1.972
Correlation (3) 0.032(2) 0.102(2)
QED (1) −0.506 −0.510
QED (2) −0.033(6) −0.028(6)
Recoil −0.012(3) −0.012(3)
Total 149.046(7) 149.046(7)
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FIG. 8. Available experimental and theoretical transition ener-
gies of the 2s22p5 2P3/2 → 2s 2p6 2S1/2 along with the present
experimentally derived and fully theoretical results. The vertical lines
corresponds to the currently recommended value from the NIST
Atomic Spectra Database [30]. The gray shaded area marks the
associated uncertainty.

which hampers an accurate comparison. The value obtained
within the CI-MCDF method [35] agrees well with both our
experimental and theoretical results within the given error
bars, but our values are more precise. The individual contri-
butions in Table V indicate that third-order correlation effects
contribute to at least 0.032(2) eV of the total transition energy.
The calculations where the correlation effect was handled
with care [34,35,37] yielded values which agree better with
the experimental data as compared to the simpler approaches.
The MBPT calculations [34,37] are significantly lower than
the present data, indicating that the many-body expansion in
many-electron systems remains a challenging task.

V. SUMMARY AND OUTLOOK

Electron-ion recombination rate coefficients of fluorine-
like nickel ions were measured at the heavy-ion storage
ring CSRm by employing the merged-beams method. The
measured rate coefficients agree well with the most recent
theoretical calculation by the FAC code, even at very low
collision energies. The level-resolved theoretical calculation
facilitates the identification of the measured DR resonances.
Accordingly, the lowest-energy isolated resonance is asso-
ciated with the (2s2p6[2S1/2]6s)J=1 intermediate state. Its
experimental resonance position was extracted by a fit to the
measured recombination spectrum, resulting in a value of
86 meV with a systemic uncertainty of 2 meV and a fitting
error of 2 meV. This accurate measurement of the resonant
position in combination with precision theoretical calculations
of the binding energy of the 6s Rydberg electron enables
a precise determination of the 2s22p5 2P3/2 → 2s 2p6 2S1/2

core-transition energy. At the present level of experimental
accuracy our results are sensitive to third-order correlation
and second-order QED effects. The present study establishes
precision DR spectroscopy with highly charged ions at the
CSRm and paves the way for future precision studies with
highly charged ions at the CSRe and the upcoming Heavy Ion
Accelerator Facility [85].
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