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Hadronic vacuum polarization correction to atomic energy levels
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The shift of atomic energy levels due to hadronic vacuum polarization is evaluated in a semiempirical way
for hydrogenlike ions and for muonic hydrogen. A parametric hadronic polarization function obtained from
experimental cross sections of e−e+ annihilation into hadrons is applied to derive an effective relativistic Uehling
potential. The energy corrections originating from hadronic vacuum polarization are calculated for low-lying
levels using analytical Dirac-Coulomb wave functions, as well as bound wave functions accounting for the
finite nuclear size. Closed formulas for the hadronic Uehling potential of an extended nucleus as well as for the
relativistic energy shift in the case of a pointlike nucleus are derived. These results are compared to existing
analytic formulas from nonrelativistic theory.
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I. INTRODUCTION

The precision spectroscopy of hydrogen [1–4], hydrogen-
like, and few-electron highly charged ions [5–13] allows
testing quantum electrodynamics (QED), a cornerstone of the
standard model of particles and interactions, in unprecedented
detail. For example, two-loop effects and shifts due to the
nuclear structure have become accessible. At such precision,
level shifts due to other forces need to be considered as well.
This holds especially true for muonic atoms, which recently
became accessible by precision laser spectroscopy [14,15].
Therefore, in this paper, the correction to the 1s, 2s, and
2p states of hydrogenlike ions due to virtual hadronic pair
creation is studied.

We investigate vacuum polarization (VP) corrections,
whose largest contribution arises from virtual e−e+ pair cre-
ation. This contribution is well understood and will only be
mentioned here due to its importance and as a reference for
further corrections. The next most important VP effect is due
to virtual μ−μ+ pair creation, the contribution of which is
suppressed by the square of the electron-to-muon mass ratio
[16], i.e., by a factor of 1/2072 ≈ 2 × 10−5. Apart from the
different mass of the virtual fermions, the description of the
muonic loop is equivalent to that of the electronic case. The
next one-loop contribution stems from several different virtual
hadronic states (see Fig. 1), which call for a completely differ-
ent description since the virtual particles also interact via the
strong interaction. First treatments were restricted to single
hadrons, such as the ρ-meson [17], one of the most important
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contributors to hadronic VP. Another approach is described in
Ref. [18], in which the hadronic VP is characterized by the
total cross section of hadron production via e−e+ annihila-
tion. Such experimental studies were largely motivated by the
long-standing disagreement [19] of experiment and theory for
the muon g factor. These discrepancies also triggered a range
of perturbative and nonperturbative quantum chromodynamic
calculations (see, e.g., Refs. [20,21] and references therein)
of hadronic vacuum polarization corrections. We employ a
known parametric hadronic polarization function for the pho-
ton propagator from Ref. [22] to account for the complete
hadronic contribution in a semiempirical manner. As we will
see, the high-energy part of the polarization function does not
play a role when calculating shifts of atomic energy levels,
therefore, perturbative quantum chromodynamic results are
not of relevance in our context.

An effective potential can be constructed from the
parametrized VP function, called the hadronic Uehling po-
tential. The hadronic Uehling potentials of a pointlike and
a finite-sized nucleus are given analytically, and relativis-
tic treatments are presented for both cases. Subsequently,
energy-level shifts are calculated as a first-order perturba-
tion employing the analytical Dirac-Coulomb wave function,
as well as with the numerically calculated wave function
accounting for an extended nucleus. We note that such an
approach assumes an infinitely heavy nucleus, i.e., nuclear
recoil effects are excluded in our treatment. These results are
compared to the known nonrelativistic approximation for a
pointlike nucleus [17,23,24]. Results are given for a range
of hydrogenlike systems from H to Cm95+, and for muonic
hydrogen. The results for the different approaches will then
be discussed in their uncertainty and applicability.

We use natural units with h̄ = c = 1 for the reduced Planck
constant and the speed of light, respectively, and α = e2,
where α is the fine-structure constant and e is the elemen-
tary charge. Three-vectors are denoted by bold letters. For
brevity, we use the potential energy function δV due to the
Uehling potential and refer to this as the Uehling potential,
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FIG. 1. Feynman diagram depicting the leading hadronic vac-
uum polarization contribution. The double line represents a bound
electron that interacts with the Coulomb field of a nucleus (the wavy
line terminated by a cross) via a virtual photon, the propagator of
which is modified by hadronic vacuum polarization represented by
the shaded loop.

even though, strictly speaking, it is the potential multiplied by
the elementary charge.

II. VACUUM POLARIZATION EFFECTS

The interaction of a photon with virtual charged particles
leads to a modification of its propagator. This modified prop-
agator can be described by the vacuum polarization tensor
�λσ (q) and can be written as (see, e.g., Ref. [25])

iDmod
μν (q) = iDμν (q) + iDμλ(q)

i�λσ (q)

4π
Dσν (q), (1)

with the unperturbed photon propagator Dμν (q) and the four-
momentum transfer q. Due to Lorentz and gauge invariance,
the polarization tensor can be cast into the form [25]

�λσ (q) = (q2ηλσ − qλqσ )�(q2), (2)

where ηλσ is the metric tensor [with diagonal elements
(1,−1,−1,−1)] and �(q2) is the polarization function,
which is divergent. After regularization and charge renormal-
ization, the divergent part of �(q2) is isolated and only the
regular part �R(q2) enters into physical calculations.

These leading vacuum polarization effects modify a static
nuclear potential by the Uehling potential [25]

δV (x) =
∫

d3q

(2π )3
eiq·x

(
−4πe

q2

)
ρ̃(q)Re[�R(−q2)], (3)

with the Fourier transform of the nuclear charge distribution
ρ̃(q) which is normalized to Ze. Nuclear recoil corrections to
vacuum polarization are not accounted for in such an effective
potential approach by construction. For a spherically symmet-
ric nuclear charge distribution ρ(r), the angular integration in
Eq. (3) can be carried out, yielding

δV (r) = −2e

π

∫ ∞

0
dq j0(qr)ρ̃(q)Re[�R(−q2)], (4)

with the spherical Bessel function of the first kind jk (x) of
order k, and setting |q| = q and |r| = r from now on. The
Uehling potential leads to the leading perturbative shift of
atomic energy levels, given by

�Enκm = 〈nκm| δV |nκm〉

=
∫ ∞

0
dr δV (r)

[
g2

nκ (r) + f 2
nκ (r)

]
r2, (5)

TABLE I. Values for the parametrization of the hadronic polar-
ization function in Eq. (7) as given in Ref. [22], with the mass of the
Z boson mZ .

Region Range (GeV) Ai Bi Ci (GeV−2)

k0−k1 0.0–0.7 0.0 0.0023092 3.9925370
k1−k2 0.7–2.0 0.0 0.0022333 4.2191779
k2−k3 2.0–4.0 0.0 0.0024402 3.2496684
k3−k4 4.0–10.0 0.0 0.0027340 2.0995092
k4−k5 10.0–mZ 0.0010485 0.0029431 1.0
k5−k6 mZ –104 0.0012234 0.0029237 1.0
k6−k7 104–105 0.0016894 0.0028984 1.0

where n is the principal quantum number, κ is the relativistic
angular momentum quantum number, and m is the magnetic
quantum number. The functions gnκ (r) and fnκ (r) are the large
and small radial components, respectively, of the relativistic
bound wave function in the coordinate representation

ψnκm(r) = 〈r|nκm〉 =
(

gnκ (r)�κm(r/r)
i fnκ (r)�−κm(r/r)

)
, (6)

where the �κm(r/r) are spherical spinors [16].

A. Hadronic vacuum polarization

The leptonic polarization function is known analytically,
and the corresponding VP shift can be calculated analyti-
cally, as an expansion in powers of the nuclear coupling
strength Zα or in certain cases even exactly. However, in
the case of hadronic VP, the produced particles are strongly
interacting, and a perturbative quantum chromodynamic ap-
proach fails [26]. One possibility is a semiempirical approach
to construct Re[�R

had(q2)] via experimental e−e+ → hadrons
collision data [18]. The approach is summarized, e.g., in
Refs. [26,27]. The main steps are as follows: The Kramers-
Kronig relation enables one to express the real part of a
complex polarization function in terms of its imaginary part.
Then the optical theorem links a measurable total cross sec-
tion σe−e+→hadrons to the forward scattering amplitude, in this
case the imaginary part of the VP function. As a result, the
cross section of the hadrons created in the pair annihilation
process enables the construction of the hadronic polariza-
tion function. This was performed, e.g., in Ref. [18], where
data from different experiments and center-of-mass colli-
sion energy regions were compiled to yield an approximate
parametrization of the polarization function,

Re
[
�R

had(q2)
] = Ai + Bi ln(1 + Ci|q2|), (7)

with the constants Ai, Bi,Ci, which are given for different
regions of q2. For our evaluation, an updated version of this
parametrization with more energy regions will be used, as
given in Ref. [22]. The parameters are shown in Table I for
completeness.

The Uehling potential for this parametrization, assum-
ing a spherically symmetric proton distribution, is therefore
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FIG. 2. The numerical (8) and analytical (9) hadronic Uehling
potential compared to the muonic Uehling potential as a function of
the radius, in units of the reduced Compton wavelength λc/2π of the
electron (adapted from Ref. [28]).

given by

δV full
fns (r) = −2e

π

7∑
i=1

[ ∫ ki

ki−1

dq j0(qr)ρ̃(q)

× [Ai + Bi ln(1 + Ciq
2)]

]
. (8)

For our purposes, a good approximation for the full polariza-
tion function is to use the parameters of its first momentum
region up to infinity, i.e., only using the parameters A1, B1, and
C1. In this case, the Uehling potential of a pointlike nucleus
[ρ̃(q) = Ze] simplifies to

δV approx
point (r) = −2Zα

π

∫ ∞

0
dq j0(qr)[B1 ln(1 + C1q2)]

= −2Zα

r
B1E1

(
r√
C1

)
, (9)

with the exponential integral

En(x) =
∫ ∞

1
dt

e−xt

t n
. (10)

This approximation is physically well motivated because
the low-energy region is the most important one in atomic
physics, and the original range of applicability for the pa-
rameters at 0.7 GeV should be sufficient for our applications.
In fact, we will show in Sec. III that at least up to Z = 96,
no difference between this approximation and the full nu-
merical result is observable for the calculated energy shifts
within our level of uncertainty. The analytical approximation
reduces numerical errors and speeds up the calculations. The
analytical and numerical hadronic Uehling potentials of a
pointlike nucleus are displayed in Fig. 2 and are compared
to the well-known muonic Uehling potential. The oscillations
at low distances in the potential defined by Eq. (8) are due to
the upper momentum cutoff in the parametrized polarization
function, and therefore not physical.

The energy shift for the 1s state and a pointlike nucleus
in first-order perturbation theory is given by the expectation

value [28]

�E analytical
rel., point (1s) = 〈1s|δV approx

point |1s〉

= −Zαλ(2λ
√

C1)2γ B1

γ 2

× 2F1(2γ , 2γ ; 1 + 2γ ; −2λ
√

C1), (11)

using the analytical Coulomb-Dirac wave function [16]
with the charge number Z , the hypergeometric function
2F1(a, b; c; z), and

λ = Zαme, γ =
√

1 − (Zα)2 . (12)

The Taylor expansion of this all-order result up to order (Zα)6

is

�E analytical
rel., point (1s) = − 4B1C1m3

e (Zα)4

+ 32B1C
3/2
1 m4

e (Zα)5

3

− 4B1C1m3
e (Zα)6

× [
1 + 6C1m2

e − ln(2Zα
√

C1me )
]

+ · · · . (13)

A similar calculation may be performed for the 2s state,
yielding approximately

�E analytical
rel., point (2s) = − 1

2
B1C1m3

e (Zα)4

+ 4B1C
3/2
1 m4

e (Zα)5

3
+ · · · . (14)

The very first terms of Eqs. (13) and (14) agree with the
nonrelativistic formula of Friar et al. [23] (see also Ref. [24])
for the case of n = 1, 2, respectively.

While atomic wave functions with higher orbital angular
momenta have a small overlap with the short-distance region
where the hadronic Uehling potential is significant, for com-
pleteness, we also discuss the case of the 2p1/2 (i.e., total
angular momentum j = 1/2, κ = 1) orbital. Expanding the
resulting fully relativistic formula in powers of Zα, we obtain

�E analytical
rel., point (2p1/2) = − B1C1

(
3 + 4C1m2

e

)
m3

e

32
(Zα)6

+ B1C
3/2
1

(
5 + 24C1m2

e

)
m4

e

60
(Zα)7

+ · · · . (15)

Let us note that the leading term in Zα may be also obtained in
a different way: To the lowest order, the large and small radial
components of the Dirac wave function can be approximated
as

g2p1/2 (r) = −
(Zα

2

)1/2 (Zα)2r

2
√

3
exp

(
−Zαr

2

)
, (16)

f2p1/2 (r) = −
(Zα

2

)3/2 3Zα

2
√

3
exp

(
−Zαr

2

)
(17)

(see, e.g., Ref. [29]). By evaluating the integral (5) with these
functions and with the approximate potential (9) to the leading
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order in Zα, one can reproduce the term of order (Zα)6 in
Eq. (15). Thus, the hadronic shift for this state is suppressed
by a small factor of (Zα)2 compared to that of the s state, and
its value is negligible, as we will discuss in Sec. III.

For completeness, for the 2p3/2 (i.e., total angular momen-
tum j = 3/2, κ = −2) orbital, we get the following result:

�E analytical
rel., point (2p3/2) = − B1C2

1 m5
e

8
(Zα)6

+ 2B1C
5/2
1 m6

e

5
(Zα)7

+ · · · . (18)

Interestingly, the expansion coefficients for this orbital also
appear in the expansion for the 2p1/2 state [see Eq. (15)].

B. Finite-size hadronic Uehling potential

One possibility to model a finite-size nucleus is by employ-
ing a spherical homogeneous charge distribution ρ(r) with the
effective radius R,

ρ(r) = 3Ze

4πR3
θ (R − r), (19)

for which the momentum representation ρ̃(q) can be easily
found,

ρ̃(q) = Ze
3 j1(qR)

qR
, (20)

where the radius R is related to the root-mean-square (rms)
nuclear radius via R =

√
5/3〈r2〉. To calculate the Uehling

potential corresponding to this charge distribution one sub-
stitutes ρ̃(q) into Eq. (8).

Alternatively to Eq. (8), the Uehling potential corre-
sponding to a finite-size nucleus can also be calculated by
convoluting the Uehling potential of a pointlike nucleus with
a charge distribution ρ(x) in real space:

δV approx
fns (r) = 1

Ze

∫
d3x ρ(x)δV approx

point (r − x). (21)

Using our approximated Uehling potential for a pointlike
nucleus from Eq. (9) and a spherically symmetric charge
distribution, the formula simplifies to

δV approx
fns (r) = −4πeB1

√
C1

r

∫ ∞

0
dx xρ(x)D−

2 (r, x), (22)

with

D±
n (r, x) = En

( |r − x|√
C1

)
± En

( |r + x|√
C1

)
. (23)

This integral can be solved analytically for the homoge-
neously charged model, divided into two separate solutions
for the regions outside and inside of the nucleus:

r > R:

δV approx
fns,out (r) = −3ZαB1

√
C1

rR3

×{√C1R D+
3 (r, R) − C1D−

4 (r, R)}; (24)

r � R:

δV approx
fns,in (r)

= −3ZαB1
√

C1

rR3

×
{√

C1r + √
C1RE3

(
r + R√

C1

)
+ C1E4

(
r + R√

C1

)

− 1

6
e

r−R√
C1

[
2C1 + √

C1(r + 2R) + (r − R)(r + 2R)
]

− (r − R)2(r + 2R)

6
√

C1
E1

(
R − r√

C1

)}
. (25)

III. RESULTS

In order to have a reference for the other approaches, we
calculate the hadronic energy shift in the nonrelativistic ap-
proximation �E analytical

nonrel., point, which corresponds to the first term
from Eq. (13). The result for hydrogen is

�Ehad. VP
nonrel., point(1s) = −1.395(17) × 10−11 eV

= 0.6647(81)�Emuonic VP
nonrel., point(1s), (26)

with the energy shift due to muonic VP denoted by
�Emuonic VP

nonrel. . This is in good agreement with the formula

�Ehad. VP
nonrel. = 0.671(15)�Emuonic VP

nonrel. (27)

from Ref. [23], with the difference stemming from using more
recent experimental constants B1 and C1 in Eq. (13) as com-
pared to Ref. [23]. For regular and muonic H, our results (see
Tables II) within this model agree well with the recent results
of Ref. [24] (see Table 2 therein).

The values for the hadronic energy shift with an extended
nucleus were calculated numerically using two different meth-
ods, both yielding the same results. The first method consists
of solving the Dirac equation, with inclusion of the potentials
for an extended nucleus, using a B-spline representation and
extracting the corresponding energy eigenvalues. As a con-
sistency check, these results were reproduced by calculating
the expectation value of the finite-nuclear-size (FNS) hadronic
Uehling potential with respect to the semianalytic wave func-
tions belonging to a spherical nucleus given in Ref. [32]. The
results for the ground state of hydrogenlike systems H, Si, Ca,
Xe, Kr, W, Pb, and Cm are shown, and different methods of
approximation are contrasted in Table II. Results for n = 2
excited states are presented in Table III, while values for
muonic hydrogen are given in Table IV.

The errors given in Tables II and III are based on the
numerical convergence of the results, the uncertainty of the
nuclear root-mean-square radii, and, dominantly, the differ-
ence with respect to values obtained by using another set of
parameters to describe the polarization function, stemming
from Ref. [33]. Numeric values using the approximated and
the full Uehling potential always match very well within the
uncertainty given, with the exception of hydrogen due to
numerical difficulties in the evaluation of the full Uehling
potential. In particular for this case, the result from the ap-
proximated analytical formula should be correct due to the
low Z value. In order to show the range of validity for our
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TABLE II. Hadronic vacuum polarization energy shifts using different approaches for the 1s ground state of the considered hydrogenic
systems: The nonrelativistic approximation �E analytical

nonrel., point, the relativistic analytical formula for a pointlike nucleus �E analytical
rel., point , and the analytical

finite-size Uehling potential with numerical finite-size wave functions �E approx
rel., fns. Powers of 10 are enclosed in brackets, and uncertainties are

indicated in parentheses. The root-mean-square nuclear charge radii in the second column are taken from Ref. [30]. The last column shows for
comparison the total Lamb shift contribution �ELS from Ref. [31]. The values have two uncertainties given in parentheses: The second one
is due to the error of the nuclear charge radius, whereas the first one represents all other errors of individual theoretical contributions added
quadratically.

Z Rrms (fm) �E analytical
nonrel., point (eV) �E analytical

rel., point (eV) �E approx
rel., fns (eV) �ELS (eV)

1 0.8783(86) −1.395(17)[−11] −1.396(17)[−11] −1.396(17)[−11] 3.3800262(7)(57)[−5]
14 3.1224(24) −5.361(67)[−7] −5.918(73)[−7] −5.756(72)[−7] 4.80447(18)(4)[−1]
20 3.4776(19) −2.233(28)[−6] −2.713(33)[−6] −2.560(32)[−6] 1.63263(6)(2)[0]
36 4.1884(22) −2.344(29)[−5] −4.270(50)[−5] −3.485(43)[−5] 1.18259(16)(3)[1]
54 4.7859(48) −1.187(15)[−4] −4.445(48)[−4] −2.706(34)[−4] 4.6920(18)(6)[1]
74 5.3658(23) −4.184(52)[−4] −5.098(46)[−3] −1.801(22)[−3] 1.5422(13)(2)[2]
82 5.5012(13) −6.309(79)[−4] −1.413(11)[−2] −3.693(46)[−3] 2.4440(26)(3)[2]

approximation, we computed the energy shift for Z = 96
with Rrms = 5.85 fm. The approximated and full Uehling
potentials evaluated with both numerical methods yield all
the same mean value: −1.2637 × 10−2 eV. We conclude that
the approximated analytical Uehling potential incorporates all
relevant information at least up to Z = 96 and is therefore
applicable in all practical computations. Its use also reduces
the numerical errors and speeds up the calculations signifi-
cantly, thus rendering it also the method of choice for further
applications.

We also observe that, except for hydrogen, the pointlike
nucleus values all differ significantly from the finite-size val-
ues. We conclude that one should always include the effects
of a finite-size nucleus in a relativistic approach. In order to
estimate the error stemming from the assumed nuclear model,
we solved Eq. (22) for Z = 82 with the nuclear charge density
modeled by a Fermi distribution with a skin thickness of 2.3
fm. The result for the perturbative energy shift, −3.646 ×
10−3 eV, differs from the result assuming a homogeneous
nuclear charge distribution on the 1% level and is therefore
negligible.

The highest hadronic VP energy shift for the ions consid-
ered is on the meV level; this is the case for the very heavy
element Pb. Such a small effect cannot be resolved yet ex-
perimentally in a Kα x-ray transition (see, e.g., Refs. [8,13]).
Furthermore, the theoretical Lamb shift values and their un-
certainties [31] given for comparison in Tables II and III show
that uncertainties arising from the nuclear charge distribution

need to be improved by at least one order of magnitude,
and QED terms need to be evaluated more accurately in the
future to render hadronic VP observable. (For more recent
Lamb shift results, see, e.g., Refs. [34–40].) Therefore, we
also consider another system that may feature measurable
shifts, namely, muonic hydrogen. In Table IV, results for this
system are shown, which can be simply obtained by replacing
in the above formulas me by the muon mass mμ [note that
generally, in our approach we neglect nuclear recoil effects,
and the use of the reduced mass mμmp/(mμ + mp), with mp

being the proton mass, would not be appropriate in a rel-
ativistic theory]. We also list results for the 2s and 2p1/2

states, since these classical Lamb shift levels were involved
in the muonic hydrogen laser spectroscopic experiments de-
termining the radius of the proton [14,15]. The uncertainty
of the experimental muonic Lamb shift, 49 881.88(76) GHz
[14] [or, more recently, 49 881.35(65) GHz [15]] translates to
0.003 meV, which would be in principle sufficient to resolve
the hadronic VP contribution, motivating an accurate evalua-
tion of the latter. However, currently the experimental value of
the muonic hydrogen Lamb shift is limited by the uncertainty
of the proton radius [14,15]. For the hadronic VP shift of
the 2s energy level we obtain a value of −0.0153(5) meV
including finite-nuclear-size effects. This result agrees with
the nonrelativistic approach for a pointlike nucleus due to the
smallness of Zα. We note that in the nonrelativistic theory,
recoil effects can be accounted for by replacing the muon
mass mμ with the reduced mass of the atom, reproducing the

TABLE III. Hadronic vacuum polarization energy shifts for the 2s and 2p excited states of the considered hydrogenic systems. Notations
and nuclear radii used are as in Table II.

Z �E approx
rel., fns(2s) (eV) �ELS(2s) (eV) �E approx

rel., fns(2p1/2) (eV) �ELS(2p1/2) (eV) �E approx
rel., fns(2p3/2) (eV) �ELS(2p3/2) (eV)

1 −1.745(22)[−12] 4.3218005(8)(72)[−6] −1.743(22)[−17] −5.30919(4)(0)[−8] −6.427(80)[−23] 5.177459[−8]
14 −7.262(91)[−8] 6.40329(23)(5)[−2] −1.431(19)[−10] −1.7316(4)(0) [−3] −4.168(52)[−15] 2.1808(4)(0)[−3]
20 −3.260(41)[−7] 2.21409(9)(2)[−1] −1.321(17)[−9] −6.2940(35)(0)[−3] −4.535(57)[−14] 9.6566(34)(0)[−3]
36 −4.631(58)[−6] 1.68814(25)(4)[0] −6.261(78)[−8] −3.4426(62)(1)[−2] −2.602(33)[−12] 1.2089(9)(0)[−1]
54 −3.887(49)[−5] 7.1723(27)(9)[0] −1.251(16)[−6] 6.0317(72)(36)[−1] −5.036(63)[−11] 7.413(10)(0)[−1]
74 −2.932(37)[−4] 2.5876(20)(4)[1] −1.957(24)[−5] 1.6390(33)(3)[0] −6.217(78)[−10] 3.1615(30)(0)[0]
82 −6.403(80)[−4] 4.2924(44)(4)[1] −5.541(69)[−5] 3.9045(72)(4)[0] −1.462(18)[−9] 5.1088(57)(0)[0]
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TABLE IV. Results for muonic hydrogen within the nonrelativis-
tic approach �E analytical

nonrel., point, i.e., using the analytical formulas to the
lowest order in Zα, and employing the analytical finite-size Uehling
potential with numerical finite-size wave functions �E full

rel., fns. In both
columns, nuclear recoil effects are excluded.

State �E analytical
nonrel., point (meV) �E full

rel., fns (meV)

1s −1.234(15)[−1] −1.229(15)[−1]
2s −1.542(19)[−2] −1.53(5)[−2]
2p1/2 − 1.631(22)[−7] −1.8(1)[−7]

literature value [41,42] of −0.0112 meV [or the most recent
result of −0.011 16(7) meV of Ref. [24]] for the hadronic
shift of the 2s state. As the table also shows, the hadronic VP
correction to the 2p1/2 energy level is negligible at the current
level of experimental and theoretical uncertainties for muonic
hydrogen.

IV. SUMMARY

The rising precision of experimental spectroscopic mea-
surements and theoretical predictions calls for a more detailed
description of known effects. The muonic VP is already an
established part of theory [43]. In order to assure that the
hadronic VP does not limit the precision of theory, a general-
ized approach is desirable. In this paper we take into account
relativistic effects and finite-nuclear-size effects, which are
relevant in highly charged ions. Therefore, this paper is a
contribution to understand and diminish the theoretical uncer-
tainty induced by hadronic vacuum polarization in precision
spectroscopy.

In this work, an effective potential was constructed by
using a parametrized hadronic function obtained from experi-
mental data. An analytic formula for the finite-size Uehling
potential was found, and it was shown to agree with the

numerical approach in all examined systems. Finally, en-
ergy shifts induced by the hadronic Uehling potential were
computed, including an analytical relativistic formula and
two different numerical methods. We would like to note that
hadronic VP diagrams, in which the nucleus interacts strongly
with the loop hadrons, are not accounted for by this approach,
nor are hadronic virtual light-by-light scattering effects. The
energy shifts were determined for hydrogenlike systems rang-
ing from Z = 1 up to Z = 96, and for muonic hydrogen. The
results for the energy shift induced by hadronic VP exhibit that
for our desired level of accuracy, it is sufficient to describe hy-
drogen and light ions nonrelativistically, and heavier systems
relativistically, using the analytical finite-size Uehling poten-
tial. The main source of uncertainty is expected to stem from
the applied nuclear model. This can be improved by using
more elaborate charge distribution models [44] in Eq. (21),
respectively Eq. (3), and taking into account relativistic nu-
clear recoil effects. Another main source of error is due to
uncertainties in the parametrization of the empirical hadronic
VP function. An advanced parametrization, especially in the
low-energy region, could improve this area of precision sci-
ence.

Nowadays, besides energies of transitions between atomic
levels, the g factors of few-electron ions can be experimentally
determined to high precision by means of the continuous
Stern-Gerlach effect in Penning trap setups [45–49]. This
motivates the extension of the calculation of hadronic vacuum
polarization corrections to the bound-electron g factor. Such
calculations are currently underway.
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