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Nuclear versus electronic ring currents in oriented torsional molecules induced
by magnetic fields. I. Nuclear currents of toluene
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We develop the theory of nuclear ring currents induced by external magnetic fields in torsional molecules.
The theory is applied to toluene, whose torsion axis is oriented along the magnetic field. We obtain magnetically
induced diatropic and paratropic contributions to the nuclear ring current flowing in the classical and nonclassical
directions, respectively. In the electronic and torsional and rotational ground state of toluene, the strengths of
the diatropic and paratropic nuclear ring-current susceptibilities are −19.9 pA/T and 0.4 fA/T, respectively,
yielding a net current strength of −19.9 pA/T. The paratropic contribution is very small because the torsional
barrier of toluene is very low. The study suggests criteria for observing significant magnetically induced nuclear
ring currents in torsional molecules whose axis is oriented along the magnetic field.
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I. INTRODUCTION

This work is motivated by a recent discovery that exter-
nal magnetic fields can induce torsional angular momenta in
molecules consisting of two fragments (A and B) that can
rotate around an intramolecular torsion axis [1]. Depending
on the height of the torsion barrier, A can rotate relative to
B. Moreover, the entire molecule can rotate around the axis.
For example, the molecular structure of toluene in Fig. 1
consists of the methyl group (A = CH3) and the phenyl group
(B = C6H5) that can rotate around a torsion oriented along the
external magnetic field [2]. The torsion axis is the molecular
principal axis which coincides nearly perfectly with the shared
C—C bond. The field induces rotation of the CH3 and C6H5

groups around the torsion axis since the torsion barrier is
very low. The rotations of the two groups are associated with
magnetically induced torsional angular momenta [1]. The nu-
clei rotating with the two fragments generate a magnetically
induced nuclear ring current, which is investigated here for the
torsional and rotational ground state of toluene. The aim is to
develop the theory, determine the strength of the nuclear ring
currents, and assess whether the total nuclear current consists
of diatropic and paratropic contributions as in the case of
electronic ring currents.

Methods for calculating magnetically induced electronic
current densities have been developed and employed in studies
of molecular aromaticity and electron delocalization pathways
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[3–13]. In aromaticity studies, the magnetic field is usually ap-
plied perpendicular to aromatic rings such as the phenyl ring
of toluene. Magnetically induced electronic current densities
consist of diatropic and paratropic contributions flowing in the
classical and nonclassical directions, respectively. Here the
magnetic field is parallel to the ring, implying that the current-
density flux is perpendicular to the ring. An aim of this study
is to discover analogous partitioning of nuclear probability
current densities. Since electrons and nuclei have opposite
charges, the electronic and nuclear diatropic current densities
flow in opposite directions. The same holds for paratropic
current densities.

Another aim is to elucidate whether one can observe sig-
nificant or even dominant magnetically induced nuclear ring
currents in comparison to the magnetically induced electronic
ring currents. Strong nuclear ring currents are expected for
molecules with a low torsional barrier, since their fragments
can rotate almost freely with respect to each other. We have
chosen toluene in this study because it fulfills this crite-
rion. The quantum-mechanical probabilities of observing the
eclipsed or the staggered conformations of toluene are practi-
cally the same [14].

This paper is organized as follows. Section II presents the
model, the theory, and the numerical methods. Section III
discusses the results obtained for toluene in its torsional or
rotational ground state. The results are summarized and con-
clusions are drawn in Sec. IV.

II. MODEL, THEORY, AND METHODS

In the derivation of the expression for calculating nu-
clear ring currents, we assume that the Born-Oppenheimer
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FIG. 1. Toluene with its torsion axis oriented along the external
magnetic field B in the ez direction. The nuclear center of mass is at
the origin of laboratory fixed Cartesian coordinates x, y, and z. The
orientation of the methyl (A) and phenyl (B) groups are defined by
the rotation angles ϕA and ϕB. (a) The left and right images show the
eclipsed and staggered conformers, with the (x, z) and (y, z) planes
as the Cs symmetry plane, respectively. The numbering k = 1–6, 12,
7–11, and 13–15 denotes the nuclei of the C1–C6 and C7 carbon and
H1–H5 and H6–H8 hydrogen atoms, respectively. The coordinates of
the molecular structures are given in Tables A–D of the Supplemental
Material [2]. (b) Toluene with torsion angles of ϕB = 0◦ and ϕA =
0◦ (eclipsed), ϕA ≈ 10◦, ϕA ≈ 20◦, and ϕA ≈ 30◦ (staggered), seen
along the torsion axis.

approximation (BOA) holds. The wave function for the tor-
sional and rotational motions is obtained by solving the
time-independent Schrödinger equation with periodic bound-
ary conditions for the torsional and rotational motion of the
fragments [15]. The BOA potential energy surface of the tor-
sional motion is considered, whereas all other nuclear degrees
of freedom are neglected.

A. A torsional molecule oriented along the magnetic field

We assume that the nuclear center of mass of molecule AB
is at the origin of a right-handed Cartesian coordinate system
(x, y, z) in the laboratory frame. The homogeneous external
magnetic field B = Bzez is oriented along the unit vector ez.
The torsion axis is also along ez with the fragments A and B
with small and large moments of inertia IA and IB pointing
in the positive and negative z directions, respectively. Angles
ϕA and ϕB representing the rotation around the axis are given
in degrees in the range of 0◦ � ϕA, ϕB � 360◦. The eclipsed

and staggered structures shown in Fig. 1 correspond to ϕA =
ϕB = 0.0◦ and to ϕA ≈ 30◦ and ϕB = 0.0◦, respectively. The
structures belong to the Cs point group with the (x, z) and
(y, z) planes as reflection planes, respectively. The principal
axes, i.e., the axes diagonalizing the moment of inertia tensor,
are oriented along the laboratory x, y, and z axes such that the
principal z axis coincides with the torsion axis.

The Cartesian and cylindrical coordinates (XAk,YAk, ZAk )
and (RAk, ϕAk, ZAk ), and (XBk,YBk, ZBk ) and (RBk, ϕBk, ZBk ), of
the positions of the atomic nuclei in the fragments A (Ak) and
B (Bk) with nuclear masses MAk and MBk and charges QAk and
QBk are given in Tables A–D of the Supplemental Material [2].
Here RAk (RBk) is the radial distance of nucleus Ak (Bk) from
the torsion axis and ZAk (ZBk) is its z coordinate. The atomic
labels are defined in Fig. 1 as well as in [2]. The employed
nuclear masses are 1.0079u for 1H and 12.000u for 12C. The
corresponding charges of the bare-nucleus model employed
are 1e and 6e for H and C, respectively.

The Cartesian coordinates are replaced by cylindrical co-
ordinates whose ϕB and ϕA angles are defined as [16,17]

ϕA =
∑

k MAkR2
AkϕAk∑

k MAkR2
Ak

−120◦, ϕB =
∑

k MBkR2
BkϕBk∑

k MBkR2
Bk

−90◦.

(1)

In the optimized structures, the carbon and hydrogen atoms of
the phenyl group are located almost in the (x, z) plane. The
nuclei of the para, ipso, and methyl carbon atoms, as well
as the nucleus of the hydrogen atom in the para position, are
practically on the torsion axis with small deviations of less
than 0.015 Å caused by steric interactions. The torsional angle
ϕ = ϕA − ϕB corresponds to the dihedral angle ∠HCCC ≡
Hmethyl − Cmethyl − Cipso − Cortho. The ϕ and ∠HCCC values
are almost identical. In the optimization of the molecular
structures, we assume ∠HCCC = 0◦, 10◦, 20◦, 30◦ and use
Eq. (1) to calculate the mass-weighted ϕA, ϕB, and ϕ of
−0.01◦, 9.91◦, 19.86◦, and 30.03◦. The deviations are mainly
due to tiny distortions of the optimized molecular structure
from the ideal one.

The z components of the canonical angular momenta con-
jugate to ϕA and ϕB are [1,16]

lzA = −ih̄
∂

∂ϕA
, lzB = −ih̄

∂

∂ϕB
, (2)

where h̄ = h
2π

is the Dirac constant. The model neglects cou-
plings to the other nuclear degrees of freedom, implying that
fragments A and B are rigid with constant moments of inertia
which are given by

IA =
∑

k

′IAk, IB =
∑

k

′IBk, (3)

with

IAk = MAkR2
Ak, IBk = MBkR2

Bk . (4)

The summations in Eq. (3) and in subsequent summations
marked with a prime exclude the nuclei close to the torsion
axis. We also introduce the relative contributions cAk and cBk

to the moments of inertia

cAk = IAk

IA
, cBk = IBk

IB
, (5)
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which are normalized as∑
k

′cAk = 1,
∑

k

′cBk = 1. (6)

The corresponding nuclear charges of the rotating parts of
fragments A and B are

QA =
∑

k

′QAk, QB =
∑

k

′QBk . (7)

The related reduced and total moments of inertia for the tor-
sion and the overall rotation are

Ired = IAIB

Itot
, (8)

with Itot = IA + IB. The torsion and rotation angles

ϕ = ϕA − ϕB,

� = IA

Itot
ϕA + IB

Itot
ϕB ≡ ηAϕA + ηBϕB (9)

correspond to the z components of the canonical torsional
and the overall rotational angular momenta of the torsional
molecule,

lz = −ih̄
∂

∂ϕ
= ηBlzA − ηAlzB,

Lz = −ih̄
∂

∂�
= lzA + lzB. (10)

The interaction of the nuclei of the torsional molecule with the
magnetic field B in the ez direction is

−μnB = −μnzBz, (11)

where μn is the nuclear magnetic moment and μnz is its z
component. In analogy with the total moment of inertia in
Eq. (8), μnz can also be expressed as a sum of the contributions
of the fragments A and B,

μnz = μzA + μzB, (12)

which are related to the z components of the canonical angular
momenta of the fragments A and B as [1]

μzA = μN

h̄
gAlzA,

μzB = μN

h̄
gBlzB, (13)

where μN is the nuclear magneton μN = eh̄
2mp

. The g factors
are given by [1]

gA =
∑

k

′gAkcAk,

gB =
∑

k

′gBkcBk, (14)

where

gAk = QAk/e

MAk/mp
,

gBk = QBk/e

MBk/mp
. (15)

Rotations of the fragments A and B with the angles ϕA and
ϕB around the torsion axis of molecule AB exposed to a mag-
netic field B = Bzez are described by the model Hamiltonian

H (ϕA, ϕB; BZ ) = HR(ϕA, ϕB) − μnz(ϕA, ϕB)Bz, (16)

which was derived in Chap. IIa of the Supplemental Material
of Ref. [1]. The field-free torsional or rotational Hamiltonian

HR(ϕA, ϕB) = l2
zA

2IA
+ l2

zB

2IB
+ VR(ϕA, ϕB)

≡ TR(ϕA, ϕB) + VR(ϕA, ϕB) (17)

accounts for the torsional and rotational kinetic (TR) and po-
tential (VR) energies of molecule AB. The interaction potential
of the fragments A and B is modeled as

VR(ϕA, ϕB) = 0.5Vb{1 + cos[NGM(ϕA − ϕB)]}, (18)

where NGM is the number of equivalent periodic global
minima (GMs) (VR = 0), which are separated by equivalent
transition states (TSs) (VR = Vb) with a barrier height of Vb.
One GM and one TS are shown as the staggered and eclipsed
conformers of toluene in the right and the left image of
Fig. 1(a), respectively. All GMs and TSs are obtained by
rotating the ϕA angle with 0◦, 120◦, and 240◦ and the ϕB angle
with 0◦ and 180◦. The number of global minima NGM and
transition states NTS of toluene is 6, which are at ϕ = ϕA −
ϕB = 30◦ + (k − 1) × 60◦ and at ϕA − ϕB = (k − 1) × 60◦,
with k = 1–6, as shown in Fig. 1. The corresponding cyclic
molecular symmetry group is C6(M ) [14].

The model Hamiltonian in Eqs. (16)–(18) is reminiscent
of the Hamiltonian of two coupled coaxial quantum rings.
However, Eqs. (16)–(18) can be used for describing coupled
quantum rings only in the case when each ring contains a
single electron, whereas quantum-ring studies generally focus
on multielectron systems [18,19]. The coupling of the two
electrons in the quantum rings is mediated by the repulsive
Coulomb interaction leading to a different interaction poten-
tial. We also apply a homogeneous coaxial magnetic field,
whereas in studies of quantum-ring systems the rings are
usually exposed to inhomogeneous magnetic fields [18–21].

The Hamiltonian in Eq. (16) can be rewritten using the
� and ϕ [Eq. (9)] coordinates and the conjugate total and
reduced canonical angular momenta Lz and lz [Eq. (10)]. The
Hamiltonian can then be separated into the overall rotation
and the torsion parts,

H (ϕA, ϕB; Bz ) ≡ H̃ (�,ϕ; BZ )

= Hrot (�; Bz ) + Htor (ϕ; Bz ),

Hrot (�; Bz ) = L2
z

2Itot
− μN

h̄
(ηAgA + ηBgB)BzLz,

Htor (ϕ; Bz ) = l2
z

2Ired
− μN

h̄
(gA − gB)Bzlz + Vtor (ϕ), (19)

with the torsional potential Vtor (ϕ) given by Eq. (18). The
Hamiltonian and the canonical angular momentum opera-
tor Lz commute [H, Lz] = 0. The nuclear ring current of
the torsional molecule oriented along the magnetic field can
be expressed in terms of the torsional and rotational eigen-
functions of the Hamiltonian in Eq. (19) and the angular
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FIG. 2. Eclipsed structure of toluene with the phenyl group in
the x-z plane. The upper (y > 0) and lower (y < 0) y-z half planes
are shown.

momentum operator Lz in Eq. (10), with integer torsional and
overall rotational magnetic quantum numbers m and M.

The eigenfunctions and eigenenergies are solutions to the
corresponding time-independent Schrödinger equations

H (ϕA, ϕB) ψmM (ϕA, ϕB) = EmM ψmM (ϕA, ϕB) (20)

and

Lz ψmM (ϕA, ϕB) = Mh̄ ψmM (ϕA, ϕB) (21)

using periodic boundary conditions for ϕA and ϕB (in radians)
[15],

ψmM (ϕA = 0, ϕB) = ψmM (ϕA = 2π, ϕB),

ψmM (ϕA, ϕB = 0) = ψmM (ϕA, ϕB = 2π ). (22)

The solutions depend on the magnetic-field strength Bz, i.e.,
EmM ≡ EmM (Bz ) and ψmM (ϕA, ϕB) ≡ ψmM (ϕA, ϕB; Bz ). The
model potential employed in Eq. (18) implies that the tor-
sional and rotational energies are positive.

B. Magnetically induced nuclear ring current
in torsional molecules

1. Nomenclature

Here Jn is the component of the nuclear current that is
perpendicular to a half plane, which is fixed in the laboratory
frame. One edge of the half plane coincides with the torsion
axis (z axis) and the others are in principle infinitely far away
from the molecule. Figure 2 shows the upper (y > 0) and
lower (y < 0) y-z half planes perpendicular to the (x, z) plane
corresponding to azimuthal angles equal to 90◦ and 270◦. The
Jn (SI unit A) is a product of the nuclear charge Qn (SI
unit C) times the probability ring current Jn (SI unit s−1) of
the nuclei flowing through the half plane. For torsional or

rotational eigenstates, Jn is independent of the azimuthal
angle [16], but Jn = J Bz

n depends on the magnetic-field
strength Bz. The used notation is summarized in Table E of
[2].

Probability ring currents J in the classical direction are
clockwise. Since nuclear charges are clockwise, Jn and Jn

have the same sign, whereas classical electronic and nu-
clear probability ring currents have opposite signs, due to the
negative charge of electrons. The total magnetically induced
nuclear ring current Jn,tot in molecule AB consists of contri-
butions from the fragments A and B,

Jn,tot = JnA + JnB, (23)

which are proportional to the probability ring currents JnA and
JnB,

JnA = QAJnA, JnB = QBJnB, (24)

where QA and QB are the nuclear charges rotating with the
fragments. The ring currents depend on the magnetic-field
strength Bz, which we will omit in the notation. We consider
one-dimensional (1D) nuclear probability ring currents, which
are equal to 1D probability ring-current densities [16].

2. Derivation

Magnetically induced nuclear ring currents of torsional
molecules are obtained by determining the 1D probability
ring-current densities ( jnA and jnB), which are equal to the
1D probability ring currents (JnA and JnB) [16], by solving
the time-dependent Schrödinger equation (TDSE) with cyclic
boundary conditions

ih̄
∂

∂t
ψ (ϕA, ϕB) = Hψ (ϕA, ϕB) (25)

and its complex conjugate. A more detailed derivation is given
in Appendix A. The TDSE yields the time derivative of the nu-
clear probability density ρn(ϕA, ϕB) = ψ∗(ϕA, ϕB)ψ (ϕA, ϕB),
which can be inserted in the 2D rotational continuity equa-
tion for the torsional molecule AB,

∂

∂t
ρ(ϕA, ϕB) + ∂

∂ϕA
jA(ϕA, ϕB) + ∂

∂ϕB
jB(ϕA, ϕB) = 0. (26)

The derivation of Eq. (26) is analogous to the derivation of
the angular continuity equation in Ref. [16]. Equations (25)
and (26) yield the expression for the magnetically induced
2D rotational probability ring-current densities of torsional
molecules,

jA(ϕA, ϕB) = − ih̄

2IA

[
ψ∗(ϕA, ϕB)

∂

∂ϕA
ψ (ϕA, ϕB)

− ψ (ϕA, ϕB)
∂

∂ϕA
ψ∗(ϕA, ϕB)

]

− gAμN Bz

h̄
ψ∗(ϕA, ϕB)ψ (ϕA, ϕB). (27)

This expression for the angular component of the current
density can also be derived by alternative approaches, e.g.,
as the functional derivative of the energy with respect to the
magnetic vector potential [22]. A similar expression can be
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derived for jB(ϕA, ϕB). The 1D rotational continuity equa-
tion for fragment A is

∂

∂t
ρnA(ϕA) + ∂

∂ϕA
jnA(ϕA) = 0, (28)

with 1D nuclear density

ρnA(ϕA) =
∫ 2π

0
ρ(ϕA, ϕB)dϕB. (29)

The magnetically induced 1D rotational probability ring-
current density of fragment A around the torsion axis of
molecule AB is given by

jnA(ϕA) =
∫ 2π

0
jA(ϕA, ϕB)dϕB (30)

and a similar expression is obtained for jnB(ϕB). Separation
of the 2D probability ring-current densities jA(ϕA, ϕB) and
jB(ϕA, ϕB) into terms I and II in Eq. (27) leads to analogous
separations of the 1D ones, which have an important physical
meaning, as discussed below.

C. Magnetically induced nuclear ring current in the torsional
ground state of toluene

The general theory of the magnetically induced probability
ring current in torsional molecules can be applied to arbitrary
rotational wave functions ψ (ϕA, ϕB). Molecule AB in its tor-
sional and rotational ground state ψmM (ϕA, ϕB) has torsional
and rotational quantum numbers mM = 0. Since M = 0, the
wave function ψ00(ϕA, ϕB) depends only on the torsional an-
gle ϕ = ϕA − ϕB. Therefore, the ground state

ψ (ϕA, ϕB) =
∑

m′
cm′φm′ (ϕA, ϕB) (31)

can be expanded in orthogonal basis functions

φm′ (ϕA, ϕB) = 1

2π
eim′ϕA e−im′ϕB . (32)

The summation in Eq. (31) is in principle infinite (−∞ <

m′ < ∞); however, converged results are obtained for toluene
with mmax = −mmin = 3606. The Hamiltonian has, for sym-
metry reasons, nonvanishing off-diagonal matrix elements
Hm′n′ = 〈φm′ |H |φn′ 〉 only when m′ ± n′ = NGM holds. The ex-
pressions for calculating the probability ring-current densities
of fragments A and B are

JnA = h̄

2π IA

∑
m′>0

′m′(|cm′ |2 − |c−m′ |2) − gAμN Bz

2π h̄

= JnAI + JnAII,

JnB = −h̄

2π IB

∑
m′>0

′m′(|cm′ |2 − |c−m′ |2) − gBμN Bz

2π h̄

= JnBI + JnBII, (33)

which show that the probability ring currents of fragments A
and B can be separated into two contributions [for the detailed
derivation, see Eq. (A11)]. The total ring current is the sum of
the A and B contributions, which can analogously be divided

into parts I and II,

Jn = JnA + JnB

≡ JnI + JnII,

JnI = JnAI + JnBI,

JnII = JnAII + JnBII. (34)

Contribution I depends on the torsional or rotational wave
function, whereas contribution II does not. As a conjecture,
this suggests that contributions I and II may be assigned as
nonclassical and classical, respectively. The assignment of
contribution II as classical is confirmed by the fact that it is
proportional to Bz. The tentative assignment of contribution
I as nonclassical implies the working hypothesis that its sign
should be negative. This will be confirmed in Sec. III.

Separation of the probability ring currents into the two
contributions enables an analogous separation of the total
magnetically induced nuclear ring current into two parts, since
the magnetically induced nuclear ring currents are obtained
from the probability ring currents by multiplying them with
the rotating charges QA and QB,

Jn,tot =JnA + JnB = QAJnA + QBJnB

≡JnI + JnII,

JnI = QAJnAI + QBJnBI,

JnII = QAJnAII + QBJnBII. (35)

The II terms are proportional to the strength of the external
magnetic field Bz, whereas the I contributions are implicitly
dependent on Bz through the expansion coefficients c±m′ ,

JnI =
(

QA

IA
− QB

IB

)
h̄

2π

∑
m′>0

′m′(|cm′ |2 − |c−m′ |2),

JnII = −(QAgA + QBgB)
μN

h
Bz, (36)

where m′ = k NGM and k is a positive integer.
The nuclear ring current can be expressed as a Taylor series

expansion with respect to Bz,

Jn(Bz ) = ∂Jn

∂Bz

∣∣∣∣
Bz=0

Bz + · · · , (37)

where the ellipsis denotes higher-order terms. The constant
term vanishes when assuming that the fragments do not rotate
in the absence of Bz. The nuclear ring-current susceptibility
is the coefficient of the term that is linear in Bz. Higher-order
contributions are neglected. The susceptibility of the magneti-
cally induced nuclear ring current in Eq. (38) is obtained in the
limit of vanishing magnetic field by differentiating Eq. (36)
with respect to Bz,

J Bz
nI =

(
QA

IA
− QB

IB

)
h̄

2π

∑
m′>0

′m′ ∂ (|cm′ |2 − |c−m′ |2)

∂Bz

∣∣∣∣
Bz=0

,

J Bz
nII = −(QAgA + QBgB)

μN

h
< 0. (38)

The classical contribution to the nuclear ring-current suscep-
tibility can be calculated analytically, whereas calculations
of the nonclassical part is obtained by diagonalizing the Bz-
dependent Hamiltonian.
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TABLE I. Comparison of calculated and experimental values for the parameters of the model Hamiltonian of toluene.

Molecular property Results from DFT calculationsa Experiment

dihedral angle ∠HCCC (deg)b 0c 10 20 30d

ϕA (deg)e −0.01 9.91 19.86 30.03
ϕB (deg)e 0.00 0.00 0.00 0.00
torsion angle ϕ = ϕA − ϕB (deg) −0.01 9.91 19.86 30.03
moment of inertia IA (μÅ2) 3.113 3.113 3.113 3.113 3.208f

moment of inertia IB (μÅ2) 87.438 87.443 87.449 87.455 84.984f

potential energy V (kJ/mol) 0.038g 0.030 0.011 0.00h 0.0583i

nuclear g factor gA 0.992 0.992 0.992 0.992 j

nuclear g factor gB 0.472 0.472 0.472 0.472 j

aValues calculated at the density-functional theory (DFT) level using the B3LYP functional and the def2-TZVP basis (cf. Appendix B).
b∠HCCC = H7 − C7 − C1 − C2.
cEclipsed structure.
dStaggered structure.
eCalculated using Eq. (1).
fTaken from Ref. [14], independent of torsion angle.
gBarrier height Vb = VR(ϕ = 0) for the eclipsed structure.
hThe potential minimum is set to VR ≡ 0 for the staggered structure.
iTaken from Ref. [26].
jExperimental nuclear g factors are not available.

III. RESULTS AND DISCUSSION

A. Toluene structure calculations

Toluene has six equivalent global minimum structures
(NGM = 6) corresponding to the staggered conformer in
Fig. 1. Only five parameters are needed for describing the
interactions of the toluene nuclei with an external magnetic
field. The parameters are the moments of inertia IA and IB for
rotations of the fragments A and B around the torsion axis or
alternatively the total and reduced moments of inertia Itot and
Ired, the height of the torsion barrier Vb of the methyl group,
and the nuclear g factors gA and gB of the magnetic interaction
with the nuclei of the fragments A and B. The rotating nuclear
charges are assumed to be QA = 3e and QB = 28e.

For toluene, the energy range below 345hc cm−1 has
been studied experimentally with high accuracy. The lowest
excited methyl-rotor and vibrating-rotor states of the elec-
tronic ground state of toluene were investigated by using
high-resolution 2D laser-induced fluorescence spectroscopy
[14]. The experimental value of the torsion barrier Vb of
−1.57hc cm−1 is very small and negative, implying that the
energy of the eclipsed toluene is energetically below the stag-
gered structure [14]. The energy order of the eclipsed and
staggered structures changes when the coupling between the
torsion mode and the lowest vibrational mode was consid-
ered in the model Hamiltonian [14,23–25]. The probability
distribution of the torsional wave function of toluene has its
maximum at the staggered structure even though the global
minimum of the experimental potential energy is for the
eclipsed geometry [14]. Our model Hamiltonian does not
account for this coupling. A proper torsional nuclear density
can be obtained also when ignoring the coupling term if one
uses a Vb of 4.874hc cm−1 that is derived from microwave
spectroscopy measurements [14,26]. The effective Hamilto-
nian for toluene used in our calculations has a torsional
potential energy curve with the global minimum for the stag-
gered structure and a potential barrier Vb of 0.0583 kJ/mol

at the eclipsed structure [26]. The employed potential bar-
rier leads to error compensation in the calculation of the
nuclear density, since it has its minimum at the staggered
structure compensating for the neglected torsional-vibrational
coupling. The coupling term also alters the energetic order
of excited torsional or rotational and vibrating-rotor states,
which cannot be reproduced by the effective potential barrier
[14]. However, studies of excited torsional states are beyond
the scope of this work.

We have also carried out electronic structure calculations of
the torsional barrier, based on Refs. [27–33] (cf. Appendix B).
The results for the potential energy are listed in Table I and
the resulting Cartesian and cylindrical coordinates for the
torsional ∠HCCC = 0◦, 10◦, 20◦, 30◦ are given in Tables A–
D of [2]. The origin of the Cartesian coordinates is at the
center of mass and the principal axes point along x, y, and
z. The z axis coincides with the torsion axis, which is oriented
along the external magnetic field B = Bzez. The molecular
structures are shown in Figs. 1 and 2. The moments of inertia
IA and IB and the g factors gA and gB were calculated using
these coordinates. The carbon nucleus of the methyl group, the
ipso and para carbon atoms of the phenyl group and the para
hydrogen atom were excluded in the calculation of moments
of inertia and g factors because they are very close to the
torsion axis. They were also excluded in the calculations of
the magnetically induced nuclear ring currents.

The calculated and experimental moments of inertia com-
pared in Table I agree well, whereas the ratios between them
suggest that the calculated C—H bonds of the methyl group
are slightly too short compared to the experimental bond
length. The calculated bond length of the methyl C—H bond
of 1.091 Å is 0.054 Å shorter than the one obtained in an
electron-diffraction measurement [34]. The calculated length
of the C—H bond of the phenyl group is 0.014 Å shorter
than obtained experimentally [34], whereas the lengths of the
C—C bonds agree within 0.004 Å with experimental data
[34]. The small deviations are due to the level of theory em-
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ployed in the electronic structure calculation and the neglect
of vibrational effects. The close agreement between calculated
and measured values for the moments of inertia supports the
assumption of robust fragments that were used in Ref. [14].
We use the experimental IA and IB data [14] in the calculations
of nuclear ring currents because they are slightly more accu-
rate than the calculated ones. The same accuracy is expected
for the calculated g factors as for the calculated moments of
inertia.

The barrier height Vb of 0.058 kJ/mol calculated at the
B3LYP/def2-QZVP level agrees well with the experimental
value of 0.0583 kJ/mol [26], which we used as the ef-
fective barrier height in the modeling. Calculations at the
B3LYP/def2-TZVP level yielded a lower barrier of 0.038
kJ/mol. The dependence of the strength of the nuclear ring
current on the barrier height was investigated by using barriers
in the range of [0,40] kJ/mol. The other molecular parameters
were then kept fixed. A vanishing barrier corresponds to free
rotation of the fragments around the torsion axis. The torsional
motion is blocked when using the upper limit of 40 kJ/mol,
whereas the whole molecule is locked in the staggered con-
formation that can rotate around the principal axis.

B. The torsional or rotational wave function of toluene

The ground-state torsional or rotational wave function of
toluene (mM = 0) is ψ (ϕA, ϕB) = ∑′

m′ cm′φm′ (ϕA, ϕB), where
the summation is limited to |m′| = 6k with k = 0, 1, 2 . . .

having the nonvanishing coefficients c±6k . The contributions
to the nuclear ring current in Eq. (36) originate from the
k > 0 terms. The dependence of the dominating expan-
sion coefficients of the wave function on the barrier height
and on the magnetic field strength is shown in Fig. 3,
where Figs. 3(a)–3(e) show |c0|2, |c+6|2, |c+12|2, and the
differences |c6|2 − |c−6|2 and |c12|2 − |c−12|2 as a function
of Vb for four Bz strengths. Figures 3(f)–3(j) show 
|c0|2,

|c+6|2, 
|c+12|2, and |c6|2 − |c−6|2 and |c12|2 − |c−12|2 as
a function of Bz for four barrier heights. The differences

|cm′ |2 = |cm′ |2(Bz ) − |cm′ |2(Bz = 0) enable visualization of
the Bz dependence of the |cm′ |2 coefficients which cannot be
resolved in Figs. 3(a)–3(c).

For Bz = 0 and Vb = 0, all coefficients vanish except |c0| =
1. The nuclear eigenfunction is φ(ϕA, ϕB) = 1

2π
, implying

that the nuclear density is completely delocalized, i.e., all
angles ϕA and ϕB are equally probable. For higher barriers,
the absolute value of the c0 coefficient decreases and the
absolute values of the |c6|, |c−6|, . . . coefficients increase. At
even higher barriers, the absolute values for the c0, c6, and c−6

coefficients decrease and the absolute values of c12 and c−12

and higher-order coefficients increase. In the limit Vb → ∞,
all coefficients are equal, corresponding to a nuclear ground-
state wave function that has equivalent sharp peaks in the six
potential wells. The free rotation of fragment A relative to B at
Vb = 0 changes to a free rotation of six equivalent rigid-rotor
structures when Vb → ∞.

The squared coefficients with opposite quantum num-
bers ±m′ cannot be distinguished on the graphical scale of
Figs. 3(a)–3(c) because the dependence of the coefficients
on the magnetic field is weak. The curves for Bz = 0, 3, 6,
and 9 T coincide within the graphical resolution, suggesting

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 3. Squared coefficients (a) c0, (b) c±6, and (c) c±12 of the
ground-state wave function of toluene as a function of the potential
barrier Vb for magnetic-field strength Bz of 0 (blue), 3 (orange), 6
(green) and 9 T (red). The (d) |c6|2 − |c−6|2 and (e) |c12|2 − |c−12|2
curves are also shown. The right panels show 
|cm′ |2 = |cm′ |2(Bz ) −
|cm′ |2(Bz = 0) for (f) m′ = 0, (g) m′ = 6, and (h) m′ = 12 and (i)
|c6|2 − |c−6|2 and (j) |c12|2 − |c−12|2 as a function of Bz for barrier
heights Vb of 0.4 (blue), 1.6 (orange), 2.8 (green) and 4 kJ/mol
(red), respectively. The sequence of the lines for 0.4, 1.6, 2.8 and
4.0 kJ/mol is from bottom to top in panels (d), (e), (g)–(j), and vice
versa in panel (f).

that the nonclassical contribution to the magnetically induced
nuclear ring current is small. The magnetic dependence is seen
in Figs. 3(d) and 3(e). The |c6|2 − |c−6|2 difference vanishes
for Vb = 0 and it is positive for Vb > 0. The absolute value
of |c6|2 − |c−6|2 increases rapidly with increasing Vb and for
higher barriers it decreases but the value of |c6|2 − |c−6|2
remains positive. The same holds for the |c12|2 − |c−12|2
curve whose maximum is at a higher barrier than for the
|c6|2 − |c−6|2 curve. The maximum of the |c6|2 − |c−6|2 curve
is deeper when increasing the magnetic-field strength. The
distances between the |c6|2 − |c−6|2 curves for Bz = 0, 3, 6,
and 9 T suggest |c6|2 − |c−6|2 is nearly linearly dependent
on Bz. The same holds for |c12|2 − |c−12|2, but it is less pro-
nounced. The calculations show that the |c6|2 − |c−6|2 term
dominates under the studied conditions.

Figures 3(f)–3(j) show that 
|cm′ |2 = |cm′ |2(Bz ) −
|cm′ |2(Bz = 0) as a function of the magnetic-field strength is
nearly linear, except for |c0|2. However, the variation of |c0|2
versus Bz is negligible compared to the variation of the other
coefficients. The steepest slope of the 
|c6n|2 (n = 0, 1, 2),
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(a)                                                          (b)

FIG. 4. Contribution from the nonclassical (I) probability ring current J or the nuclear ring current J of (a) the methyl (A) and (b) the
phenyl (B) groups of toluene as a function of the barrier height Vb calculated for four strengths of the magnetic field: Bz = 0 (blue), 3 (orange),
6 (green), and 9 T (red).

|c6|2 − |c−6|2, and |c12|2 − |c−12|2 curves as a function of Bz

is obtained for the highest barrier.

C. Magnetically induced nuclear ring currents in toluene

The magnetically induced probability ring currents and
nuclear ring currents of toluene in the torsional or rotational
ground state consist of contributions from the methyl (A) and
phenyl (B) groups. The ring current of each fragment can be
divided into classical (II) and nonclassical (I) contributions.
The nonclassical contributions are obtained by using the ex-
pansion coefficient of the torsional or rotational wave function
calculated as described in the preceding section. The main
contribution originates from |m′| = 6, as shown in Figs. 3(d)
and 3(i).

The calculated JnAI and JnBI (in units of h̄
2πIA

and h̄
2πIB

, re-
spectively) as a function of Vb and Bz are shown in Figs. 4 and
5, where we have used Bz equal to 0, 3, 6, and 9 T and Vb equal
to 0.4, 1.6, 2.8, and 4.0 kJ/mol. Since the expressions for JnAI

in units of h̄
2πIA

and for JnBI in units of h̄
2πIB

are identical, with
opposite sign, as derived in Appendix A [cf. Eq. (A11)] and
as seen in Eq. (33), it is sufficient to discuss the properties of
the JnAI expression

JnAI

/(
h̄

2π IA

)
= −JnBI

/(
h̄

2π IB

)
. (39)

Figure 5(a) shows that the dependence of JnAI on Bz is almost
linear, for all values of Vb. The linear dependence holds at
least for magnetic fields below 10 T, which is accessible by

standard experimental equipment. It also holds for very low
rotational barriers as the present Vb value of 0.0583 kJ/mol
(not shown). The slope of JnAI/( h̄

2πIA
) as a function of Bz is

steeper for higher torsion barriers as seen in Fig. 5(a) because
the dominant expansion coefficients |c6|2 − |c−6|2 in Fig. 3(i)
exhibit such behavior. For large barriers, JnAI/( h̄

2πIA
) is lev-

eling off because the torsional motion of A relative to B is
blocked. The average slope of JnAI/( h̄

2πIA
) as a function of

Vb for low barriers is also steeper when the magnetic field is
stronger, as seen in Fig. 4(a). This can also be traced back to
the behavior of the expansion coefficients as a function of Bz

in Fig. 3(d).
The nonclassical part (I) of the nuclear ring current JnI =

JnAI + JnBI induced by the magnetic field in the methyl
(A) and phenyl (B) groups is shown in Fig. 6(a) for torsion
barriers of 0.4, 1.6, 2.8, and 4 kJ/mol. The classical part
(II) JnII = JnAII + JnBII is shown in Fig. 6(b). The nuclear
ring current of toluene is nearly linear with respect to the
strength of the external magnetic field, as seen in Fig. 6(a).
The positive slope confirms that contribution I is nonclassi-
cal. In contrast, the classical contribution II depends nearly
linearly on Bz with a negative slope, as seen in Fig. 6(b). For
toluene with a very small torsion barrier, the Bz dependence
in Fig. 6(a) would be an almost horizontal line on the same
scale.

The nonclassical (I) and classical (II) magnetically induced
nuclear ring currents can therefore be assigned as paratropic
and diatropic, respectively. The first contribution to JnI(Bz ) is
positive and therefore nonclassical (paratropic) because the
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(a)                                                      (b)

FIG. 5. Almost linear behavior of the nonclassical contribution (I) to the probability ring current J and the nuclear ring current J of
(a) the methyl (A) and (b) the phenyl (B) groups of toluene calculated with barrier heights Vb of 0.4 (blue), 1.6 (orange), 2.8 (green), and 4
kJ/mol (red).

first factor QA/IA − QB/IB in Eq. (36) is positive and the
second factor

∑′
m′>0 m′(|cm′ |2 − |c−m′ |2) is also positive, as

seen in Fig. 3.
The absolute value of the classical nuclear ring current is

much stronger than the nonclassical one |J Bz
nII | � J Bz

nI . A
strong magnetically induced nuclear ring current in torsional
molecules can be expected when (QAgA + QBgB) is large.
The potential barrier Vb should also be small because a large
Vb increases the strength of the positive nonclassical nuclear
ring current, leading to a weaker total nuclear ring current.

The positive contribution to the nuclear ring current vanishes
when the ratios of the moments of inertia and the charges
of the rotating fragments A and B are equal. For example,
CH3—CH3 has the same IA and IB as well as QA and QB.
If ethylene is aligned parallel to the external magnetic field,
then the field will induce exclusively a diatropic nuclear ring
current, without any paratropic contribution.

The nuclear ring-current susceptibility J Bz
n is the deriva-

tives of the nuclear ring currents with respect to the magnetic
field in the limit of vanishing magnetic field. Here J Bz

n is

(a)                                            (b)                                          (c)

FIG. 6. (a) Nonclassical and paratropic contribution JnI to the nuclear ring current Jn,tot in toluene induced by a magnetic field Bz

calculated for different torsion barriers. (b) Corresponding classical and diatropic contribution JnII. (c) Total nuclear ring current as a function
of the magnetic-field strength Bz calculated using torsion barrier heights Vb of 0.4, 1.6, 2.8, and 4 kJ/mol.
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FIG. 7. Nonclassical (blue), classical (purple), and total (black)
magnetically induced nuclear ring-current susceptibilities of toluene
as a function of the height of the torsion barrier.

a constant because we consider only one direction of the
magnetic field and the nuclear ring current is a 1D function
describing the rotational nuclear charges

J Bz
n = ∂J

∂Bz

∣∣∣∣
Bz=0

. (40)

The sum of the nonclassical nuclear ring-current susceptibili-
ties in fragments A and B is

J Bz
nI = J Bz

nAI + J Bz
nBI,

J Bz
nII = J Bz

nAII + J Bz
nBII. (41)

The total nuclear ring-current susceptibility is the sum of the
nonclassical plus the classical contributions

J Bz
n,tot = J Bz

nI + J Bz
nII . (42)

The total nuclear ring-current susceptibility and the nonclas-
sical (I) and classical (II) contributions of fragments A and B
of toluene calculated using Vb = 0.0583 kJ/mol are

J Bz
n,tot = −19.946 pA/T = J Bz

nI + J Bz
nII

= (0.402 × 10−3 − 19.946) pA/T,

J Bz
nI = 0.402 fA/T = J Bz

nIA + J Bz
nIB

= (0.621 − 0.219) fA/T,

J Bz
nII = −19.946 pA/T = J Bz

nIIA + J Bz
nIIB

= (−3.688 − 16.258) pA/T. (43)

The nuclear ring-current susceptibility calculated for toluene
is compared to the one obtained for toluene calculated in
the limit of a very high potential barrier that prevents the
torsion of the methyl with respect to the phenyl group. The
susceptibility as a function of the barrier height in Fig. 7
shows that the rigid-rotor limit is reached already for rather
small barriers of Vb ≈ 10 kJ/mol. The asymptotic value of
the susceptibility in the rigid-rotor limit is −18.639 pA/T.
Figure 7 confirms that high torsion barriers tend to increase
the absolute values of the positive paratropic contributions,

i.e., they diminish the total nuclear ring-current susceptibility.
Thus, (relatively) large values of the total nuclear ring-current
susceptibility profit from low torsion barriers.

IV. CONCLUSION

The theory of magnetically induced nuclear ring currents
in torsional molecules, with the torsion axis oriented along
the magnetic field, has been developed and applied to toluene.
In the derivation of the expression for the nuclear ring current,
we assumed that the Born-Oppenheimer approximation
(BOA) holds. The wave functions for the torsional and
rotational motions were obtained by solving the Schrödinger
equation with cyclic boundary conditions for the torsional
or rotational nuclear motions using the BOA potential
energy surface of the torsion and neglecting the other
nuclear degrees of freedom. In our model, we considered
bare nuclei and neglected couplings with electronic ring
currents.

We found that magnetically induced nuclear ring currents
consist of diatropic and paratropic components, corre-
sponding to nuclei rotating in the classical and nonclassical
directions, respectively. The assignment is analogous to the
diatropic and paratropic contributions to magnetically induced
electronic ring currents in molecules [6,9]. The nonclassical
paratropic component depends on the torsional and rotational
wave function, whereas the classical diatropic component
does not. Thus, the tropicity of nuclear ring currents is
easily assessed, whereas the tropicity of magnetically
induced electronic ring currents can be determined from the
circulation direction with respect to the magnetic-field vector
by following the current density vector around the vortex
[6,11,35].

The application to toluene shows that the nuclear ring cur-
rents and their diatropic and paratropic components depend
almost linearly on the magnetic-field strength at least for
static magnetic fields of less than 10 T that can be created
in a laboratory. Higher-order terms can be neglected when
comparing with an eventual experiment. Thus, magnetically
induced nuclear ring currents can be understood by studying
the related ring-current susceptibility that does not depend on
the magnetic-field strength.

The calculated nuclear ring-current susceptibility for
toluene is J Bz

n,tot = −19.946 pA/T, consisting of 99.9% of
the classical diatropic contribution. The nonclassical parat-
ropic contribution to the ring-current susceptibility is only
0.402 fA/T. It is nonzero but negligible in comparison to the
diatropic contribution. Analysis of the influence of the tor-
sional barrier showed that the small paratropic contribution
is due to the low barrier of 0.0583 kJ/mol of toluene [26].
For a high barrier greater than 10 kJ/mol, the paratropic
contribution approaches 1.306 pA/T, which is obtained in
the rigid-rotor limit. Another factor that affects the paratropic
contribution to the nuclear ring current is the ratio between
the rotating charges (QA and QB) of the fragments divided by
their moments of inertia (IA and IB). When QA/IA = QB/IB,
the paratropic contribution vanishes.

The half plane for calculating the ring-current strength
can be chosen arbitrary, because the strength of the nuclear
ring current passing all half planes must be the same due
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to charge conservation [16]. The nuclear ring-current sus-
ceptibility of −19.946 pA/T is three orders of magnitude
smaller than the electronic diatropic ring-current suscepti-
bility of about 12 nA/T for benzene [7,36], which may
be due to the ratio of 1836 between the nuclear magne-
ton of nuclear ring currents and the Bohr magneton of
electronic current densities. However, magnetically induced
electronic ring-current susceptibilities are generally calcu-
lated for ring-shaped molecules whose rings are perpendicular
to the direction of the external magnetic field [11]. The
strength of the net electronic ring current may then be weaker
than for aromatic rings, because the diatropic and paratropic
contributions to the electronic ring currents may cancel as in
nonaromatic molecules [36].

In the following paper [37] we investigate the electronic
current density of toluene when the external magnetic field is
oriented along the torsion axis as in this work. Our method
to calculate magnetically induced electronic current densities
is presented and the strength of the electronic current-density
susceptibility is compared to nuclear ring currents.

The theoretical predictions call for experiments monitor-
ing magnetically induced nuclear ring currents in oriented
torsional molecules. The first prerequisite is to align the
molecular torsion axis along the magnetic field to employ one
of the experimental methods that are used for investigating

magnetically induced electronic ring currents in studies of
nuclear ring currents. Essentially, this means entering a white
research territory.
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR
CALCULATING NUCLEAR RING CURRENTS

The time derivative of the nuclear probability density
ρn(ϕA, ϕB) = ψ∗(ϕA, ϕB)ψ (ϕA, ϕB) yields

ih̄
∂ρ(ϕA, ϕB)

∂t
= ih̄

∂

∂t
[ψ∗(ϕA, ϕB)ψ (ϕA, ϕB)]

= ψ∗(ϕA, ϕB)Hψ (ϕA, ϕB) − ψ (ϕA, ϕB)[Hψ (ϕA, ϕB)]∗

= − h̄2

2IA

∂

∂ϕA

(
ψ∗(ϕA, ϕB)

∂

∂ϕA
ψ (ϕA, ϕB) − ψ (ϕA, ϕB)

∂

∂ϕA
ψ∗(ϕA, ϕB)

)

− h̄2

2IB

∂

∂ϕB

(
ψ∗(ϕA, ϕB)

∂

∂ϕB
ψ (ϕA, ϕB) − ψ (ϕA, ϕB)

∂

∂ϕB
ψ∗(ϕA, ϕB)

)

+ igAμN Bz
∂

∂ϕA
[ψ∗(ϕA, ϕB)ψ (ϕA, ϕB)]

+ igBμN Bz
∂

∂ϕB
[ψ∗(ϕA, ϕB)ψ (ϕA, ϕB)], (A1)

which has the form of a rotational continuity equation for molecule AB,

∂

∂t
ρ(ϕA, ϕB) + ∂

∂ϕA
jA(ϕA, ϕB) + ∂

∂ϕB
jB(ϕA, ϕB) = 0. (A2)

Equations (A1) and (A2) yield the expression for the magnetically induced 2D rotational probability ring-current densities of the
oriented torsional molecule,

jA(ϕA, ϕB) = − ih̄

2IA

[
ψ∗(ϕA, ϕB)

∂

∂ϕA
ψ (ϕA, ϕB) − ψ (ϕA, ϕB)

∂

∂ϕA
ψ∗(ϕA, ϕB)

]
− gAμN Bz

h̄
ψ∗(ϕA, ϕB)ψ (ϕA, ϕB)

≡ jAI(ϕA, ϕB) + jAII(ϕA, ϕB),

jB(ϕA, ϕB) = − ih̄

2IB

[
ψ∗(ϕA, ϕB)

∂

∂ϕB
ψ (ϕA, ϕB) − ψ (ϕA, ϕB)

∂

∂ϕB
ψ∗(ϕA, ϕB)

]
− gBμN Bz

h̄
ψ∗(ϕA, ϕB)ψ (ϕA, ϕB)

≡ jBI(ϕA, ϕB) + jBII(ϕA, ϕB). (A3)
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Analogously, the 1D rotational continuity equation for frag-
ment A is

∂

∂t
ρnA(ϕA) + ∂

∂ϕA
jnA(ϕA) = 0, (A4)

with 1D nuclear density

ρnA(ϕA) =
∫ 2π

0
ρ(ϕA, ϕB)dϕB. (A5)

Equations (A2), (A4), and (A5) yield the magnetically
induced 1D rotational probability ring-current density of frag-
ment A around the torsion axis,

jnA(ϕA) =
∫ 2π

0
jA(ϕA, ϕB)dϕB, (A6)

and

jnB(ϕB) =
∫ 2π

0
jB(ϕA, ϕB)dϕA (A7)

for fragment B.
The torsional and rotational ground state ψmM (ϕA, ϕB) of

molecule AB has quantum numbers mM = 0. To simplify the
notation, we will omit these quantum numbers. The wave
function

ψ (ϕA, ϕB) =
∑

m′
cm′φm′ (ϕA, ϕB) (A8)

can be expanded in the orthogonal basis functions

φm′ (ϕA, ϕB) = 1

2π
eim′ϕA e−im′ϕB . (A9)

The expression for calculations of nuclear ring currents con-
tains the integrals

∫ 2π

0
ψ∗(ϕA, ϕB)

∂

∂ϕA
ψ (ϕA, ϕB)dϕA

=
∫ 2π

0
ψ (ϕA, ϕB)

∂

∂ϕB
ψ∗(ϕA, ϕB)dϕB

= i

(2π )2

∑
m′n′

m′c∗
m′cn′2πδm′n′

= i

2π

∑
m′

′m′|cm′ |2,
∫ 2π

0
ψ (ϕA, ϕB)

∂

∂ϕA
ψ∗(ϕA, ϕB)dϕA

=
∫ 2π

0
ψ∗(ϕA, ϕB)

∂

∂ϕB
ψ (ϕA, ϕB)dϕB

= −
∫ 2π

0
ψ∗(ϕA, ϕB)

∂

∂ϕA
ψ (ϕA, ϕB)dϕA

= − i

2π

∑
m′

′m′|cm′ |2. (A10)

Inserting Eq. (A10) into Eqs. (A3), (A6), and (A7) yields the
probability ring-current densities of fragments A and B [16],

JnA(ϕA) = jnA(ϕA)

= h̄

2π IA

∑
m′

′m′|cm′ |2 − gAμN Bz

2π h̄

= h̄

2π IA

∑
m′>0

′m′(|cm′ |2 − |c−m′ |2) − gAμN Bz

2π h̄

≡ JnAI + JnAII ≡ jnAI + jnAII,

JnB(ϕB) = jnB(ϕB)

= −h̄

2π IB

∑
m′>0

′m′(|cm′ |2 − |c−m′ |2) − gBμN Bz

2π h̄

≡ JnBI + JnBII ≡ jnBI + jnBII, (A11)

where contribution I depends on the torsional and rota-
tional wave function and contribution II does not. Nuclear
probability ring currents of electronic eigenstates are time in-
dependent. The continuity equations (A2) and (A4) imply that
the angular probability ring-current density does not depend
on the angle, as seen in Eq. (A11). The following relations
hold for the nuclear probability current density:

Jn = JnA + JnB = jnA + jnB,

JnA = JnAI + JnAII = jnAI + jnAII, (A12)

JnB = JnBI + JnBII = jnBI + jnBII.

The total nuclear ring currents can then be obtain by multiply-
ing with nuclear charges

Jn,tot = JnA + JnB = QAJnA + QBJnB

= JnI + JnII,

JnI = QAJnAI + QBJnBI,

JnII = QAJnAII + QBJnBII. (A13)

The total nuclear ring current is the integrated flux through a
half plane at arbitrary angle φ,

Jn,tot(φ) = JnA(ϕA = φ) + JnB(ϕB = φ). (A14)

The same holds for the expression in Eq. (A12), since the
nuclear ring-current strength does not depend on the angle of
the integration plane.

APPENDIX B: ELECTRONIC STRUCTURE
CALCULATIONS

We have carried out density-functional theory calcula-
tions of the torsion barrier with the B3LYP functional using
the def2-TZVP and def2-QZVP basis sets [27–29]. The
semiempirical D3-BJ term was employed to take dispersion
interactions into account [30]. The calculations were done
with TURBOMOLE 7.4 [31,32], employing the m5 integration
grid [33]. The convergence criteria of the structural optimiza-
tion were 10−6 a.u. for the gradient norm and 10−6Eh for the
energy. The convergence threshold of the electron density was
10−7 a.u.

The minimum structure of the staggered conformer at ϕ =
30◦ was optimized by enforcing the Cs point group symme-

042801-12
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try, with the (y, z) plane as the reflection plane. The relative
energy of the staggered toluene was set to V (ϕ = 30◦) ≡ 0.
The DEFINE module of TURBOMOLE was used for rotating the

methyl group in steps of 10◦. The geometries of the molecular
structures were subsequently optimized while keeping the
dihedral angle ∠HCCC = H7-C7-C1-C2 frozen.
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